Lecture 4: The lab system and JPEG encoding

TSEA44: Computer hardware – a system on a chip

2019-11-14 2

Agenda

- Array/memory hints
- Cache in a system
 - The effect of cache in combination with accelerator
- Introduce JPEG encoding of images
 - DCT transform
 - Data reduction

TSEA44: Computer hardware - a system on a chip

2019-11-14 3

Practical issues

- Forming groups
 - Require pass on lab0
 - Send email to me (to get shared folder access)
 - Try to form groups of 2
 - Groups of 1 to 3 is ok; 3 is ok, 2 is prefered, 1 is ok
 - See exam webpage of course for list of students
 - Each group have their own directory to store files /courses/TSEA44/labs/labgrpXX

TSEA44: Computer hardware – a system on a chip

2019-11-14

Some tips about arrays/memories

- · FPGA memories can be created using
 - Flipflops; asynchronous read, synchronous write
 - Distributed using LUTs; asynchronous read, synchronous write, 16x1 each
 - BRAMs; synchronous read, synchronous write, 512x32, 1024x16
- · Memories can be designed
 - Using templates (BRAMs)
 - Inferred (distributed)

TSEA44: Computer hardware - a system on a chip 2019-11-14 5

Some tips about arrays/memories

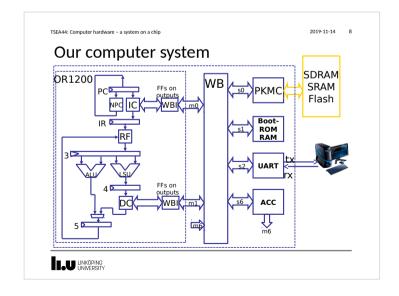
- Usually describe memory as arrays
- Two ways to describe arrays in SystemVerilog
 - Packed, e.g., logic [3:0] p;
 - Guaranteed to be continuous

p[3] p[2] p[1] p[0

- Typical for samples, values
- Unpacked, e.g., logic u [3:0];
 - Support other data types
 - Typical for multiple unit of same type

LIU LINKÖPING

```
TSEA44: Computer hardware - a system on a chip

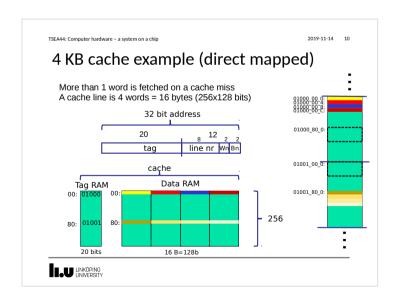

Unpacked arrays

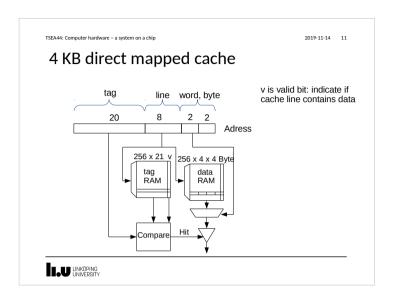
wire [31:0] bus;
reg [7:0] mem [0:3]; // a 4-byte memory
...

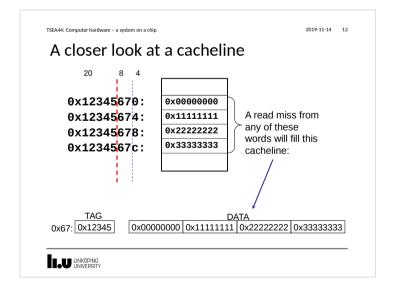
assign bus[31:24] = mem[3];

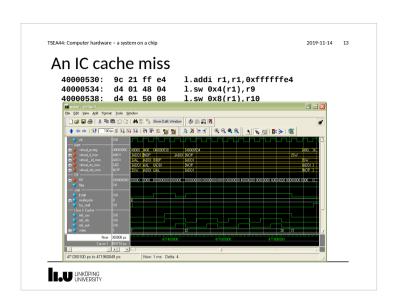
7
0
mem[0][7:0]
mem[1][7:0]
mem[2][7:0]
mem[3][7:0]

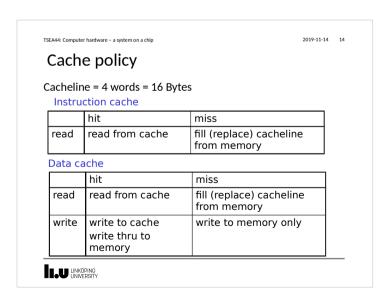
bus[31:0]
```

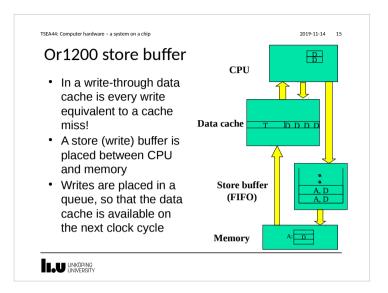


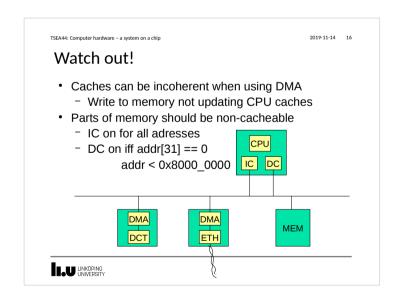

2019-11-14 9


Caches


- Essential! Required to get good (close to 1) instructions per clock cycle (IPC)
- Expect to fetch 1 instruction each clock cyle
 - Internal (FPGA ROM/RAM) memory have a latency of 3 clockcycles
 - External (SRAM/SDRAM/FLASH) have a latency of 4 clockcycles
- Size: (depending on FPGA) there are up to 120 x 2KB block RAMs
 - => Select 8KB each for IC and DC
- Type: direct mapped (or set associative)


LIU LINKÖPING





2019-11-14 17

Accelerator interfacing

- · Accelerator should implement functionality that is timeconsuming to run on the CPU
- · Interfacing the accelerator require additional data moves
- Simplest case (for the processor)
 - CPU send data to accelerator
 - CPU gets data from accelerator
 - · Data available immediately, no waiting
 - Usually difficult to implement, processing takes time

LINKÖPING UNIVERSITY

TSEA44: Computer hardware - a system on a chip

2019-11-14 18

Accelerator interfacing, cont.

- More common case: Accelerator require some time to process data
 - CPU send data to accelerator
 - CPU waits for some time (N clock cycles)
 - No useful work performed by processor
 - CPU gets data from accelerator
 - Worse if time required to wait is unknown
 - Busy wait on the bus: Ask accelerator, but not get a respons for many clock cycles => Stalling CPU, locking bus

TSEA44: Computer hardware = a system on a chin

2019-11-14 19

Accelerator interfacing, cont.

- · Common for the accelerator to have large amount of data to receive, process, and return
- Simplest approach: Use CPU to feed accelerator with data

Mem->CPU

Feed data to accelerator, uses CPU

CPU-> Accelerator

...wait

Return data from accelerator, uses CPU

Accelerator->CPU CPU -> Mem

LINKÖPING UNIVERSITY

TSEA44: Computer hardware - a system on a chip

2019-11-14 20

Accelerator interfacing, cont.

• Want to reduce load on CPU: let the accelerator do the data moves by itself: DMA! (Direct Memory Access)

CPU setups DMA controller in accelerator (startadress, length)

Mem -> Accelerator Feed data to accelerator, CPU do other things

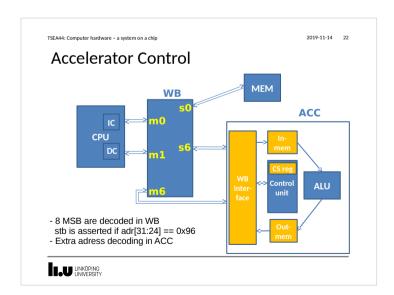
...processing

Accelerator->Mem Return data from accelerator, CPU do other things

A drawback: Both accelerator and CPU compete for the bus Even worse if a number of accelerators work on data in sequence (Accelerator1 -> Accelerator2 ->...)

LINKÖPING

2019-11-14 21

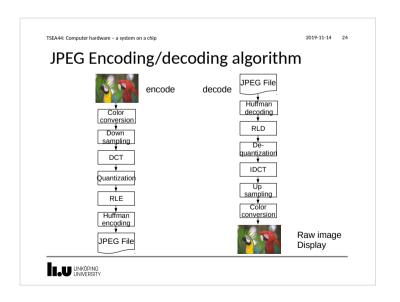

Accelerator interfacing, cont.

- Stop communication between accelerators from going over the bus
 - Use special memories interconnecting only accelerators
 - Remove bus use (increase availability for the CPU)
 - The memories are unavailable to the CPU

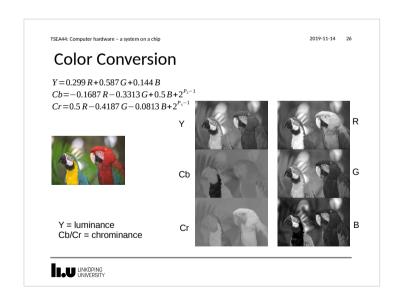
CPU->Accelerator (setup startadress, length etc.)
Mem->Accelerator1

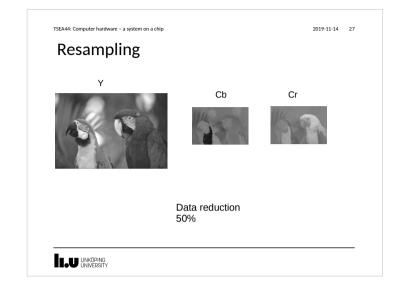
- ... process in Accelerator1, store result in extra memory
- ... process in Accelerator2, read input from extra memory Accelerator2->Mem

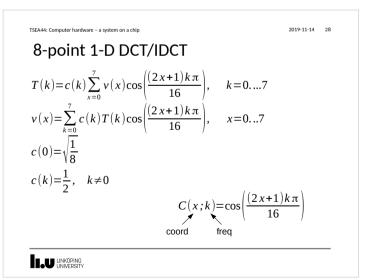
LIU LINKÖPING


TSEA44: Computer hardware - a system on a chip

2019-11-14 23


JPEG Introduction


- Joint Photographers Expert Group
- Image compression standard defined by JPEG
 - Remove things that we cannot see
 - Decoded image is slightly different from original
 - Lossy compression


LINKÖPING UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2019-11-14 25 **Problem definition** • JPEG compression of testbild.raw 512x400 pixels - JPEG works on 8x8 blocks => 3200 blocks Unaccelerated JPEG takes more than 32 000 000 clock cycles => 1 block takes more than 10 000 clock cycles! ··· Move DCT,Q Move Huffman Build DMA Build accelerator Build new instruction ... M DCT,Q M H ... M H CPU МН M DCT,Q M DCT,Q Accelerator LINKÖPING UNIVERSITY

2019-11-14 29

2019-11-14 30

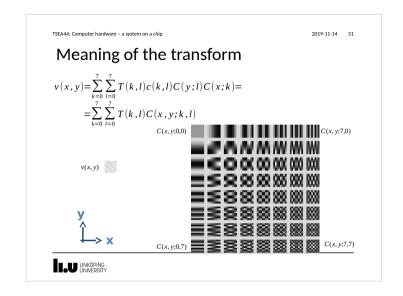
8x8-point 2-D DCT/IDCT

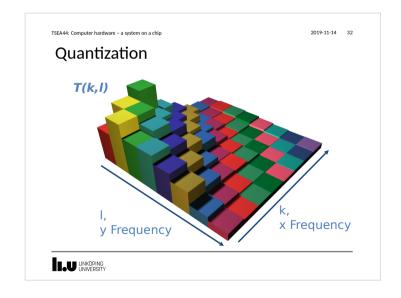
$$T(k,l) = c(k,l) \sum_{x=0}^{7} \sum_{y=0}^{7} v(x,y) C(y;l) C(x;k), \qquad k,l = 0...7$$

$$v(x,y) = \sum_{k=0}^{7} \sum_{l=0}^{7} c(k,l) T(k,l) C(y;l) C(x;k), \qquad x,y = 0...7$$

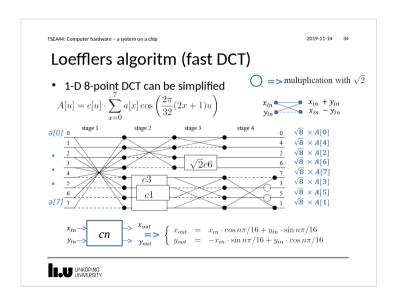
$$c(0,0) = \frac{1}{8} \qquad k = l = 0$$

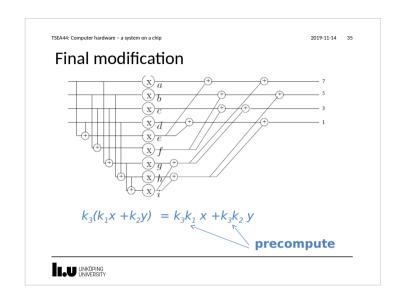
$$c(k,l) = \frac{1}{4} \qquad else$$

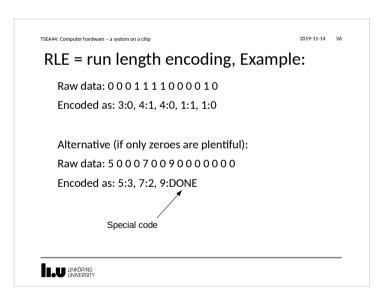

$$C(x;k) = \cos\left(\frac{(2x+1)k\pi}{16}\right)$$


LIU LINKÖPING

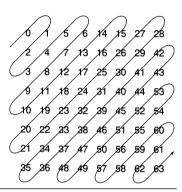
TSEA44: Computer hardware - a system on a chip **Simplifications** T(k,l)=c(k,l) $\sum_{x=0}^{3n} \left[\sum_{y=0}^{x-1} v(x,y)C(y;l) \right] C(x;k)$ $= c(k,l) \sum_{x=0}^{7} B(x,l) C(x;k)$


2. 1-D DCT can be simplified for N=8


LU LINKÖPING UNIVERSITY



2019-11-14 33 TSEA44: Computer bardware = a system on a chin **Data Reduction** • Transform, rounded division result Y_a = round (DCT_a(Y)/Q_i) 162 162 162 161 162 157 163 161 162 162 162 161 162 157 163 161 $162 \quad 162 \quad 162 \quad 161 \quad 162 \quad 157 \quad 163 \quad 161$ 162 162 162 161 162 157 163 161 162 162 162 161 162 157 163 161 $DCT_2(Y) =$ 164 164 158 155 161 159 159 160 160 160 163 158 160 162 159 156 $\begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \end{bmatrix}$ 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99 LINKÖPING LINIVERSITY



Zigzag Pattern

- · Increase possibility of zeros at the end of the sequence
 - Small energy in highest frequencies

LIU LINKÖPING

TSEA44: Computer hardware - a system on a chip

2019-11-14 38

2019-11-14 37

Magnitude encoding (DC only)

Encoded value	DC Value Range	
0	0	
1	[-1]	[1]
2	[-3, -2]	[2, 3]
3	[-7, -4]	[4, 7]
4	[-15, -8]	[8, 15]
5	[-31, -16]	[16, 31]
6	[-63, -32]	[32, 63]
7	[-127, -64]	[64, 127]
8	[-255, -128]	[128, 255]
9	[-511, -256]	[256, 511]
10	[-1023, -512]	[512, 1023]
11	[-2047, -1024]	[1024, 2047]

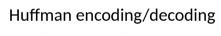
LINKÖPING UNIVERSITY

2019-11-14 39 TSEA44: Computer hardware - a system on a chip An example of RLE 3) After RLE 1) After Q 22 12 0 -12 0 0 0 0 0 0 -8 0 0 0 0 0 -12 => 12-1, force MSB=0 8-1, force MSB=0 => 0111

2) After zig-zag

22 12 0 4 0 0 -12 0000000000000001

4) Huffman coding


Value are HC (variable length) using table lookup

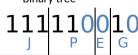
2019-11-14 40

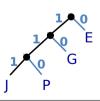
Run of 0:s Magnitude (number of raw bits)

- raw bits are left untouched

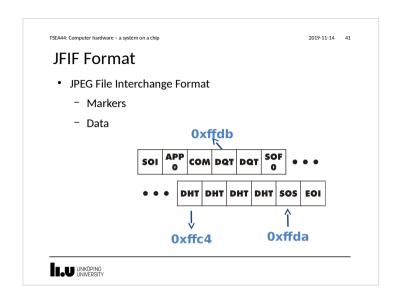
LU LINKÖPING reg

• Analogy: Morse Code


TSEA44: Computer hardware - a system on a chip



Binary codes


- Mutually exclusive codes

- Binary tree

2019-11-14 42

Finally

- AC and DC values are treated differently
- Two Huffman LUTs are used
- DC
 - Differential, magnitude encoding, Huffman table lookup

 in
 code
 length

 0x00
 1010
 4

 0x01
 00
 2

 0x02
 01
 2

 0x03
 100
 3

 0x04
 1011
 4

 0x05
 11010
 5

max length=16

- AC
 - As mentioned, raw bits left untouched, Huffman table lookup
- Example: value 04, raw bits 1100 =>10111100....

www.liu.se

