11/27/2017 23:25

II LINKOPING
() UNIVERSITY

TSEA44: Computer hardware — a system on a chip

Today

* Hints for documentation
* DMA
* Lab3

¢ Testbenches

2017-11-27

2

v

TSEA44: Computer hardware - a system on a chip 2017-11-27

Lab reports

¢ Labl: Section 3.7.2 is good reading

- Specifies what to include (code, diagrams, state
graphs)

- Specifies things to discuss in the report
¢ Same type of section found for the other lab tasks also
* Include all code you have written/modified

- Assume the reader have access to the original lab
setup

e,

TSEA44: Computer hardware - a system on a chip 2017-11-27

Creating schematics

¢ Alternatives

- Openoffice/libreoffice diagram tool (I use this for
slides)

- Inkscape (potentially very nice looking, very
cumbersome though)

— Dia (decent if you have RTL library for it)

- Tikz (if you really like latex)

— MS Paint (I'm only kidding)

- Hand drawn schematics from whiteboard/paper
* Quality problems...

- Visio (if you have a license for it)

Il.u LINKOPING
UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip 2017-11-27 5 TSEA44: Computer hardware - a system on a chip 2017-11-27 7
schematic_gui Array slicing
* Previous examiners (Andreas Ehliar) hobby project The size of the part select or slice must be constant,

* http://github.com/ehliar/schematic_gui but the position can be variable.

- Tutorial at
https://github.com/ehliar/schematic_gui/blob/master logic [31:0] b;

/tutorial/tutorial.md 2 logic [7:0] a1, a2;
¢ Accessible also on computers in
the lab al = b[x -: 8]; // OK fixed width
module load TSEA44 a2 = b[y +: 8]; /1 OK fixed width
schematic_gui d = b[x:y]; // not OK
[KT [KT
Packed arrays, how to use them Lab 3 - DMA

left to right, right first —

tftp jpegtest .
web page ism

logic [11:0] tm1[0:7][0:7]; z

logic [0:7][0:7][11:0] tm2;

tm1[0][0] // DC component
tm2[0][0]

/1
terminal
tm2[0] /! I:| tm2[0:7][0] // D

Use DMA to fill the DCT acc!

LINKOPING I LINKOPING
Il.u UNIVERSITY I.u UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware — a system on a chip 2017-11-27 9

Proposed architecture
wbm < =0
wbs <—Df

e ety

¢ Design FSM
* Change here — |

* Modify jpegfiles

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip 20171127 10

Address generation

¢ We want to transfer block by
block (8x8)

¢ Address generator must
know format (width, height)
of image

testbild.raw

LINKOPING
UNIVERSITY

TSEA44: Computer hardware - a system on a chip

State diagram

Same as WAITREADY except that we

go to the IDLE state when done.
N
»

" WAITREADYV 1aST

2017-11-27 11

The DMA accelerator has to release
the bus regularly so that other
components can access it. Do it for
every line you read. When we finish
the first block, we start the DCT
accelerator.

RELEASEBUS

a—

" / The DMA module is fetching
an 8x8 block. Once the block

GETBLOCK Is fetched we go to the

e b4 ("% % WAITREADY state and start
- Ny “ the DCT transform.
The DMA module is not \ /
< 7/

doing anything.

In this state we wait until the e
program tells us that It has read the | J
result of the transform by writing to
the control register.

WAITREADY

»

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip

A measurement: make si

Copy 16 words
from SDRAM to DCT (DMA)

INUTUUTT HHiJHHJ
.
LN ‘\ 1 I

2017-11-27 12

m_jpeg

Copy 32 words
from DCT tg SDRAM

JHJH‘JJJHJJJHJJJHJUJHJJ
—_— 1

f !‘\

LINKOPING
UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware — a system on a chip 20171127 13 TSEA44: Computer hardware —a system on a chip 2017-11-27 15

A closer look at the DMA A hint

Release bus for DMA,| DCTQ, DMAWJ DCTQ,,,
m0, m1, m2 4

SDRAM . - . . d, Huffi . Huffi -

o = If CPU is waiting it will e ity il T

() get the bus

tftp
‘DMAN DCTQ, DMA,,| DCTQy., DMA,,| DCTQy,,
read, Huffmany ready Huffman,,,
How long time do these blocks take?

e [[TG
TSEA44: Computer hardware — a system on a chip 2017-11-27 14 TSEA44: Computer hardware — a system on a chip 2017-11-27 16

DCT => Memory (Software) Burst Read

53 wave - default ER CLK_I
Fle Edt View Insert Formet Took Window CTLO
SHQ%JQQ%E\MH RPUtﬂH o g Gl 1@ of BTE O
DY E T =~ | ADR O
D I = Edl -
& DAT_O
7¢ DAT_I
2| WELO XX\ ! ! ! !
= | SEL_O XXZXX : : VD : : :XXX
CYC_O _:/ : : : : :_
(i STB_LO __ 1/ 1 | [| N
i 1 1 L 1 1
ACK_I 1 v/ | | | N\
cti
Cursor 4 | 638544481 pe |
o] T i |
[718253665 ps 10 715251213 ps [Now: 1'ms Defte: 4 P M bte S

LINKOPING I LINKOPING
Il.u UNIVERSITY I.u UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware — a system on a chip 20171127 17

Burst cycle types

| Signal group | Value ‘ Description

cti 000 Classic cycle
001 Constant address burst cycle
010 Incrementing burst cycle

011-110 | Reserved
111 End of burst

bte 00 Linear burst

01 4-beat wrap burst
10 8-beat wrap burst
11 16-beat wrap burst

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware — a system on a chip 20171127 18

Burst access

¢ Note: Only the SRAM memory controller i the Leela
memory controller has burst support

- Itis a graphics controller not used in our lab setup

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip 2017-11-27 19

Changes in the slave

local address counter l

[<

wb_adr[3:2]

wb_adr[31:4] r

wb_dat_o[31:0]

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware — a system on a chip 2017-11-27 20
void encode_image (void)
{

Why not write DMA? (acc -> memory)

int MCU_count = width*height/DCTSIZE2;

short MCU_block [DCTSIZE2] ;
for(i = 0; i < MCU_count; i++)
{

forward DCT (MCU_block) ;

encode_mcu_huff (MCU_block) ;
}

’ J
1) I/Ois on 0x90, 0x91, ..., 0x99 K

other addr to PKMC
2) Noncacheable data mem addr >= 0x8000_0000,
SDRAM 0x0, SRAM 0x2000_0000 or 0xc000_0000
2) MCU_block must be in noncacheable area
3) Skip MCU_block, let encode_mcu huff read from acc

II LINKOPING
@& UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

Testbenches

Spear,Chris:

System Verilog
for verification.
Springer

20171127 21

Bergeron,Janick:
Writing testbenches
using System Verilog.
Springer

SystemVerilog
for Verification

CHRIS SPERR

Testbench

—|DUT [

cl1o LOOK INSIDEL

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware — a system on a chip

20171127 22

Testbenches

Like High-Level Software

Like an FSM
(same as DUT)

» complicated to design

* hard to test timing
* hard to test flow

(very

different from DUT)

* easy to design

* easy to test timing
* easy to test flow

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip 2017-11-27

An example: A TB for your design

-

Hi-level
tester

Wishbone k.
BFM Ist

slave master

DUT

JPEG AX

\

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip 2017-11-27

Testbench: top level

module jpeg_top_tb() ;
logic clk = 1'b0;
logic rst = 1'bl;
wishbone wb(clk,rst), wbm(clk,rst);

initial begin
#75 rst = 1'b0;
end

always #20 clk = ~clk;

// Instantiate the tester
tester testerO();

// Instantiate the drivers
wishbone_tasks wb0 (.*);

// Instantiate the DUT

jpeg_top dut(.*);

mem memO (.*) ;
endmodule // jpeg_top_tb

II LINKOPING
[UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

Testbench: Hi-level tester

program tester() ;

int result = 0;
int d = 32'h01020304;

initial begin

for (int i=0; i<16; i++) begin

20171127 25

jpeg_top_tb.wb0.m_write(32'h96000000 + 4*i, d); // £ill inmem
d += 32'h04040404;
end

jpeg_top_tb.wb0.m_write(32'h96001000, 32'h01000000); // start ax

while (result != 32'h80000000)

jpeg_top_tb.wb0.m_read(32'h96001000, result) ; // wait for ax

for (int j<8; j++) begin
for (int i=0; i<4; i++) begin
jpeg_top_tb.wb0.m_read(32'h96000800 + 4*i + j*16,result);
$fwrite(L,"35d ", result >>> 16);
$fwrite(l,"$5d ", (result << 16) >>>16);
end
$fwrite(l,"\n");
end
end
endprogram // tester

// print outmem

LINKOPING
UNIVERSITY

TSEA44: Computer hardware — a system on a chip

Testbench: mem

module mem(wishbone.slave wbm) ;

logic [7:0] rom[0:2047];

logic [1:0] state;
logic [8:0] adr;
integer blockx, blocky, x, y, i;

initial begin
// A test image, same as dma_dct_hw.c
for (blocky=0; blocky< HEIGHT; blocky++)

; blockx< WIDTH; blockx++)

(x=0; x<8; x++)

20171127 26

rom[blockx*8+x+ (blocky*8+y) * 'PITCH] = i++; // these are not wishbone cycles

assign wbm.err = 1'b0;
assign wbm.rty = 1'b0;

always_ff @(posedge wbm.clk)
if (wbm.rst)
state <= 2'h0;
else H always_£f @ (posedge
case (state) 1 adr <= wbm.adr[8:
2'h0: if (wbm.stb) state <= 2'hl
2'hl: state < N
2'h2: state <= 2'hl
endcase

assign wbm.dat_i = {

endmodule // mem

assign wbm.ack = state[1];

wbm. c1k)

01;

rom[adr], rom[adr+l],
rom[adr+2], rom[adr+3]};

LINKOPING
UNIVERSITY

TSEA44: Computer hardware — a system on a chip 2017-11-27 27
DMA? Easy!
7/ 1nit DMA-engine
jpeg_top_tb.wb0.m_write(32'h96001800, 32'h0);
jpeg_top_tb.wb0.m_write (32'h96001804, ?);
jpeg_top_tb.wb0.m_write (32'h96001808, ?);
jpeg_top_tb.wb0.m_write(32'h9600180c, ?);
jpeg_top_tb.wb0.m_write (32'h96001810, ?); // start DMA engine
for (int blocky=0; blocky< HEIGHT; blocky++) begin
for (int blockx=0; blockx< WIDTH; blockx++) begin
// Wait for DCTDMA to fill the DCT accelerator
result = 0;
while (?) // wait for block to finish
jpeg_top_tb.wb0.m_read(32'h96001810, result);
$display("blocky=%5d blockx=%5d", blocky, blockx);
for (int j=0; j<8; j++) begin
for (int i=0; i<4; i++) begin
jpeg_top_tb.wb0.m_read(32'h96000800 + 4*i + j*16, result);
$furite(I,"%5d ", result >>> 16);
$fwrite(l,"$5d ", (result << 16) >>>16);
end
$fwrite(l,"\n");
end
jpeg_top_tb.wb0.m write(?); // start next block
nd
end
LINKOPING
UNIVERSITY
TSEA44: Computer hardware - a system on a chip 2017-11-27 28
1/
. task m_read(input [31:0] adr,
tput logic [31:0] data);
wishbone_tasks.sv output logic (31101 data)
—_ begin
@ (posedge wb.clk) ;
wb.adr <= adr;
May/may not consume time gttt
May/may not be synthable vhowe <10
ay/may not ! wb.cyc <= 1'bl;
Do not contain always/initial wb.sel <= 4'hf;
Do not return values. Pass via output @ (posedge wb.clk) ;
#1;
mod-_u: wish?:nf_;efsks (wishbone .master wb) ; while (loldack) begin
int result = 0; @ (posedge wb.clk) ;
reg oldack; ;
reg [31:0] olddat; end
always ff @(posedge wb.clk) begin wb.stb <= 1'b0;
oldack <= wb.ack; wb.we <= 1'b0;
olddat <= wb.dat_i; wb.cyc <= 1'b0;
end wb.sel <= 4'h0;
r— data = olddat;
adr m end
data< m_read Wb endtask // m_read
/7
_ task m write(input [31:0] adr,
adr input [31:0] dat);
dat = // similar to m_read
endtask // m_write
LINKIPING endmodule // wishbone_tasks
UNIVERSITY 28

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip 2017-11-27 29 TSEA44: Computer hardware — a system on a chip 2017-11-27 31
R d e H TB| initial begin
ace Con |t|0ns m... @ (posedge clk) ;
stb <= 1;
alwla)y::ff) @ (posedge clk) begin | Reee ack @ (posedge clk) ;
Threads executing =ai) stb=0
in parallel end while (ack == 0)
pin stb* =0 @ (posedge clk) ;
no particular order alw:y::fz.@ (posedge clk) begin stb J ctb <= 0;
end ' :r—————————f end
i N
ack
‘ stb
> A cycles ack
DUT v
Read ack 1
fack*=0 ack = 0 [always ff @ (posedge clk)
b*=a b =b* case (ack)
0: if (stb)
Nonblocking assignment (<=) . :ck_(zAl;
=> no race condition e ack <= 0
Blocking assignment (=) endcase;
ct=b c=c* => race condition
II LINKOPING II LINKOPING
oW UNIVERSITY @& UNIVERSITY
TSEA44: Computer hardware - a system on a chip 2017-11-27 30 TSEA44: Computer hardware - a system on a chip 2017-11-27 32

Race conditions program block

always_ff @(posedge clk) begin
count = count + 1;
end

always_£f @(posedge clk) begin

$write (“count=%d\n”, count);
end

> A cycles

count = count +1

| print count |

always_ff @(posedge clk) begin
count <= count + 1;
end

always_ff @ (posedge clk) begin

$write (”count=%d\n”, count);
end

> A cycles

countt = count +1 count = count*

| print count |

LINKOPING
Il.u UNIVERSITY

¢ Purpose: Identifies verification code

* A program is different from a module

— Only initial blocks allowed

- Executes last

- (module -> clocking/assertions -> program)

- No race situation in previous example!

The Program block functions pretty much like a C program

Testbenches are more like software than hardware

LINKOPING
II.“ UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

Hm... TB (program)

@ (posedge clk) ;
stb <= 1;

@ (posedge clk) ;

oldack ack
1< K-

2017-11-27

DUT (module)

33

stb >| always_ff @ (posedge clk)

case (ack)
0: if (stb) ack <= 1;
1: ack <= 0;

endcase;

#1

#1;
while (oldack == 0) begin
@ (posedge clk) ;
#1;
end
stb <= 0;
#
stb J
oldack
ack

I
L
L

LINKOPING
UNIVERSITY

TSEA44: Computer hardware — a system on a chip

Clocking block

2017-11-27

34

SystemVerilog adds the clocking block that identifies clock signals, and capture the timing and
synchronization requirements of the blocks being modeled.

A clocking block assembles signals that are synchronous to a particular clock, and makes their
timing explicit.

The clocking block is a key element in cycle-based methodology, which enables users to write
testbenches at a higher level of abstraction. Rather than focusing on signals and transitions in
time, the test can be defined in terms of cycles and transactions.

Possible to simulate setup and hold time

signal sampled here signal driven here

4

n
|

clock ‘

input skew 4 > outplt skew

—t

|

LINKOPING
UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Clocking block

interface wishbone (input clk,rst);
wire stb,ack;

clocking cb @ (posedge clk);
input ack;
output stb;

endclocking // cb

modport tb (clocking cb,
input clk,rst);

endinterface // wishbone

2017-11-27 35

module tb();
logic clk = 1'b0;
logic rst = 1'bl;

// instantiate a WB
wishbone wb (clk,rst);

initial begin
#75 rst = 1'b0;
end

always #20 clk = ~clk;

// Instantiate the DUT
jpeg_top dut(.*);

// Instantiate the tester
tester tester0(.*);
mem memO (.*) ;

endmodule // jpeg_top_tb

LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip

Clocking block

program tester (wishbone.tb wb);

initial begin
for (int i=0; i<3; i++) begin
wb.cb.stb <= 0;
#41;
wb.cb.stb <= 1;
while (wb.cb.ack==0)
##1;
end
end
endprogram // tester

ack

stb

2017-11-27 36

module jpeg_top (wishbone wb) ;
reg state;

assign wb.ack = state;

always_ff @ (posedge wb.clk)
if (wb.rst)
state <= 1'b0;
else if(state)
state <= 1'b0;
else if (wb.stb)
state <= 1'bl;
endmodule // jpeg_top

LINKOPING
UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

A complex testbench

2017-11-27 37

(from Spear: SV for verification)

(7\
Agent Score- Checker | -
Read testbild.raw boa rd Compute DCT+Q
_____ v
Driver Assertions Monitor | - Functional
WB cycle) WB cycle coverage
A

DUT

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware — a system on a chip

Object Oriented Programming

¢ SVincludes OOP

¢ Classes can be defined

- Inside a program

- Inside a module

- Stand alone

2017-11-27 38

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip

0]0]

program class_t;

class packet;
// members in class
integer size;
integer payload [];
integer i;
// Constructor
function new (integer size);
begin
this.size = size;
payload = new[size];
for (i=0; i < this.size; i ++)
payload[i] = $random();
en
endfunction
// Task in class (object method)
task print ();
begin
$write ("Payload : ");
for (i=0; i < size; i +4+)
Swrite ", payload[i]) ;
$write("\n") ;
end
endtask

2017-11-27

// Function in class (cbject method)
function integer get_size();
begin
get_size = this.size;
end
endfunction
endclass

packet pkt;

initial begin
pkt = new(5);
pkt.print();
$display ("Size of packet %0d",
pkt.get_size()) ;
end

endprogram

39

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip

What is an assertion?

2017-11-27

¢ A concise description of [un]desired behavior

0o 1 2

3

req J_\

ack [17]

I

Example intended behavior

“After the request signal is asserted, the

acknowledge signal must come 1 to 3 cycles later”

40

Tom Fitzpatrick, SystemVerilog for VHDL

Users, DATE04

LINKOPING
II.“ UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware — a system on a chip 20171127 41

Assertions

: property req ack;
SVA Assertion @(posedge clk) req ##[1:3] $rose(ack):
endproperty

as_req ack: assert property (req ack);

sample_inputs : process (clk)
begin VHDL

1€ rising edge(clk) then

+ watural;

walt until rising_edge (CLK) ;
exit when (STROBE REQ = '0') and (REQ = '1%);
and 1oop;
c¥crE cnT i= 0

Example intended behavior

walt until rising_edge (CLK) ;
CYCLE_CNT := CYCLE_CNT + 1;
exit when ((STROBE_ACK = '0') and (ACK = "1')) or (CYCLE CNT = 3);
and 1oop;
1f ((STROBE ACK = '0') and (ACK = '1')) then
report "Agsertion success" saverity Note;

report failure® severity mrror;

HDL Assertion | e process protecot;

Tom Fitzpatrick, SystemVerilog for VHDL Users, DATE'04

II LINKOPING
UNIVERSITY

TSEA44: Computer hardware — a system on a chip 20171127 42

Assertions

¢ Assertions are built of
1. Boolean expressions
2. Sequences
3. Properties

4. Assertion directives

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip 2017-11-27

Sequential regular expressions

¢ Describing a sequence of events

¢ Sequences of Boolean expressions can be described with
a specified time step in-between

* ##N delay operator

* [*N] repetition operator [z |

(EXEEEEEXIT!

a3

sequence sl;
@ (posedge clk) a ##1 b ##4 c ##[1:5] z;
endsequence

II LINKOPING
() UNIVERSITY

TSEA44: Computer hardware —a system on a chip 2017-11-27

Properties

¢ Declare property by name
* Formal parameters to enable property reuse

* Top level operators
not desired/undesired
disable iff reset
|->, |=>implication

property pl;

disable iff (rst)
x |-> sl;

endproperty

44

II LINKOPING
@& UNIVERSITY

clk

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

Assertion Directives

2017-11-27

¢ assert —checks that the property is never violated

¢ cover —tracks all occurrences of property

al: assert p1 else Sdisplay(“grr”);

property s2a;

@ (posedge clk) disable iff (rst)

Srose(stb) |-> ##[0:16] S$rose(ack);

endproperty

a_s2a:assert property (s2a) else

Sdisplay (" (%0t) (3m) Delayed ack on addr %h",

Stime, adr);

45

LINKOPING
UNIVERSITY

TSEA44: Computer hardware — a system on a chip

Coverage

Code coverage (code profiling)

- reflects how thorough the HDL code was exercised

Functional Coverage (histogram binning)

2017-11-27

- perceives the design from a user's or a system

point of view

- Have you covered all of your typical scenarios?

- Error cases? Corner cases? Protocols?

Functional coverage also allows relationships,

- "OK, I've covered every state in my state machine,
but did I ever have an interrupt at the same time?
When the input buffer was full, did I have all types
of packets injected? Did I ever inject two

errorneous packets in a row?”

46

LINKOPING
Il.u UNIVERSITY

TSEA44: Computer hardware - a system on a chip

2017-11-27 47

memory mem = new();

Coverage /7 Task o ¢

task drive

// DUT With Coverage
module simple_coverage () ;

logic [7:0] addr; w <=

logic [7:0] data; data <
. par <=

logic par; P

logic zw; display

logic en;

// Coverage Grou
covergroup memory @ (posedge en);
address : coverpoint addr {

bins low = {0,50};
bins med = {51,150};
bins high = {151,255};

}

parity : coverpoint par {
bins even ;
bins odd

initial

{1};

read_write : coverpoint rw {
bins read
bins write = {1};
) end

endgroup

drive values
(input [7:0] a, input [7:0] d,
input r);

#5 en <= 1;
addr <= a;

@s2tns Addre
rw %x, parity
stime,a, d, r,

// Testvector generation

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip

Report

5ns Address : 36 data 81, rw 1, parity 0

35ns Address : 13 data 76, m
45ns Address :237 data 8¢, n

2017-11-27 48

\COVERGRQUP -COVERAGE;, 1 (lzﬁ oot R 0 ModelSim says.

sl cater 77;rw0;-part
@Qovergraupss :143 data f2, rw 0, parity 1 Metri_cJ Goal/ Status

At Least
TYPE /simple_coverage/memory 44.4% 100 Uncovered

Coverpoint memory::address 33.3% 100 Uncovered

covered/total bins: 1 3

bin low 9 1 Covered

bin med 0 1ZERO

bin high 0 1 ZERO
Coverpoint memory::parity 50.0% 100 Uncovered

covered/total bins: 1 2

bin even 9 1 Covered

bin odd 0 1 ZERO
Coverpoint memory::read_write 50.0% 100 Uncovered

covered/total bins: 1 2

bin read 9 1 Covered

bin write 0 1ZERO

TOTAL COVERGROUP COVERAGE: 44.4% COVERGROUP TYPES: 1

- Report
generator:

LINKOPING
Il.u UNIVERSITY

11/27/2017 23:25

TSEA44: Computer hardware - a system on a chip

Cross coverage

enum { red, green, blue } color;
bit [3:0] pixel adr;

covergroup gl @(posedgiy
c¢: coverpoint color;

a: coverpoint pixel adr; <« | 16 bins for pixel

2017-11-27 49

Sample event

3 bins for color

AxC: cross color, pixel adr;4——
endgroup;

48 (=16 * 3)
cross products

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware — a system on a chip

SV enhanced scheduling

timeslot n |<

Active
(design)
Observed
(assertions)

Reactive

(testbench)

20171127 50

timeslot n+1

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware - a system on a chip

Constrained randomization

program rc;

class Bus;
rand bit[31:0] addr;
rand bit[31:0] data;
constraint word_align {addr[1:0] == 2'b0;
addr([31:24] == 8'h99;}
endclass // Bus

initial begin
Bus bus = new;
repeat (50) begin
if (bus.randomize() == 1)
$display ("addr = Ox%h data = 0x%h\n",
bus.addr, bus.data);
else
$display ("Randomization failed.\n");
end
end
endprogram // rc

2017-11-27

51

II LINKOPING
o UNIVERSITY

TSEA44: Computer hardware —a system on a chip

Parallel threads

fork fork fork
I:IIJT
join join_any join_none

2017-11-27

52

II LINKOPING
[UNIVERSITY

TSEA44: Computer hardware - a system on a chip 2017-11-27 53

An example-sketch

* WB arbitration test

= Instantiate 4 wishbone_tasks

program tester2() ;
initial begin

fork
begin // 2
for (int i; i<100; it++)
jpeg_top_tb.wb2.m_write(32'h100, 32/h0);
end

begin // 6
for (int i; i<100; i++)
jpeg_top_tb.wb6.m_write(32'h20000000, result);
end

join

end
endprogram

II LINKOPING
UNIVERSITY

www.liu.se

LINKOPING
UNIVERSITY

