

TSEA44: Computer
hardware – a
system on a chip
Lecture 6: Design for FPGAs

Material by Andreas Ehliar

Today
● Influence of goal hardware on architecture and code style
● Motivation

– Clock speed
– Area
– Power

● Target FPGA architecture: Xilinx FPGA with 4-input LUTs
– Same as VirtexII used in lab
– Later generations use 6-input LUTs, but same ideas

can be used

2017-11-23 2TSEA44: Computer hardware – a system on a chip

Clock cycle constraints effects on result
2017-11-23 3TSEA44: Computer hardware – a system on a chip

To get the best out of the FPGA
● Understand the architecture
● Use suitable descriptions
● Use available tools to extract implementation

information

– FPGA editor

– Floorplanner

– Planahead

– Datasheets

– Timing reports

2017-11-23 4TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

FPGA components
● CLB:s

– Slices

– LUT
● Hard blocks

– Block memory

– Multipliers

– I/O units

2017-11-23 5TSEA44: Computer hardware – a system on a chip

1/2 slice (total 8 of these in one CLB)
● Note

– 4-input LUT G

– XORG

– CYOG

– MUXCY

– MULTAND

2017-11-23 6TSEA44: Computer hardware – a system on a chip

Combinatorial logic using a LUT
● 4 inputs give any logic function of at most 4 inputs

2017-11-23 7TSEA44: Computer hardware – a system on a chip

LUT

d
c

a
b

Adders and carrychains in Xilinx FPGAs
● 1 fulladder structure using carry chain acceleration

– MUXCY and XORG
located outside LUT

● 1 LUT/bit

2017-11-23 8TSEA44: Computer hardware – a system on a chip

=1
=1=1

B
A

Cout

MUXCY

XORG

iCBAS 

Cin

LUT

11/23/2017 15:34

Extend to Add/subtract in Xilinx FPGAs
● Still one unused input to the LUT

2017-11-23 9TSEA44: Computer hardware – a system on a chip

=1
=1=1

B
A

Cout

S

=1
Sub

Cin

LUT

Rule of thumb for efficient adders in 4-
input LUT based FPGAs

● S = a + K(b,c,d)
● Plain adder
● Adder/subtracter
● 2-to-1 mux and adder
● More strange versions

– S = (opb | opc | opd) + opa

– S = (opb & opc) + (opb & opa)
(Uses MULT_AND located under LUT in slice figure)

2017-11-23 10TSEA44: Computer hardware – a system on a chip

+

K

c
i

c
o

a

S
b
c
d

Carry chain for other purposes:
Comparators

● Compare 2 bits per LUT
● Compare 4 bits per LUT

if one value is constant!

2017-11-23 11TSEA44: Computer hardware – a system on a chip

=1

=1
≥1

0 1

0

LUT

=1

=1
≥1

0 1

0

LUT

1

MUXCY

MUXCY

are_equal

a[3]

a[2]

a[0]

a[1]

b[3]

b[2]

b[1]

b[0]

Carry chain drawbacks
● Example: Address calculation selecting one byte memory

● The carry chain itself is extremely fast
● Getting on the chain is not very fast

2017-11-23 12TSEA44: Computer hardware – a system on a chip

BlockRAM

K
[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

BlockRAM

K
OpA[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

Imm[1:0]

WE delayed by carry chain 2-bit adder in K using 1 LUT
gives faster implementation

11/23/2017 15:34

Multiplexers in FPGAs
● A big difference between ASIC and FPGAs: Multiplexers

are cheap in ASIC and expensive in FPGAs
● 4-input LUT: One 2-to-1 mux
● Specialized multiplexers in the slices are used to combine

LUTs into larger multiplexers

2017-11-23 13TSEA44: Computer hardware – a system on a chip

Multiplexers in Xilinx FPGAs

● Possible use of spare input:
– Invert output, set output to one or zero
– Tricky variants based on a,b, and s[0]

● How many 4-input LUTs needed for a 4-to-1 mux (without
MUXFx components)?

2017-11-23 14TSEA44: Computer hardware – a system on a chip

LUT

d
c

s[0]

b

LUT

a
s[0]

s[1]

MUXF5

Result

Avoiding multiplexers in pipelined
designs

● Multiplexers are costly in FPGAs
● Alternative 1: Use or gates and make sure unused inputs

are set to 0 using reset input of flip-flops
● Alternative 2: Use and gates and make sure unused

inputs are set to 1. (see MULT_AND as well!)

2017-11-23 15TSEA44: Computer hardware – a system on a chip

Execution
Unit 1

≥1

≥1

≥1

R

R

R

Select active unit

Execution
Unit 2

Execution
Unit 3

F
ro

m
 o

tg
he

r
pi

pe
lin

e
st

ag
es

Memory guidelines
● Standard rule: Large memories should be synchronous
● For high frequency design you want to register the

output of the memory as well.
● For power reasons you should not enable the memory

unless necessary
– Double check that your enables work when inferring a

memory!
● Smaller memories may be asynchronous if necessary
● You should not have a reset signal for your memory array

– Easy to forget for shift registers!

2017-11-23 16TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

Memories larger than one BlockRAM

● Why use the right variant? Reduced power consumption!

2017-11-23 17TSEA44: Computer hardware – a system on a chip

36 bit wide

9 bit
wide

X[35:27]

X[35:0]
X[26:18]

X[17:10]

X[9:0]

72 kilobit using 4 BlockRAMs
that are 9 bits wide

72 kilobit using 4 BlockRAMs
that are 36 bits wide

A case study: A divider for a RISC
processor

● Used in a 32-bit RISC processor
● Target frequency: 320 MHz in a Virtex-4 (speedgrade -12)
● Uses restoring division algorithm (basic operations are

shift, subtract, and select)

– Serial computation

– Very similar to manual division

2017-11-23 18TSEA44: Computer hardware – a system on a chip

dividend
divisor

=quotient×divisor+remainder

Initial divider architecture
2017-11-23 19TSEA44: Computer hardware – a system on a chip

Dividend input

-

1 0

Shift Divisor

 Remainder
 Shift register

Remainder output Quotient output

Divisor input

Next-bit from dividend

MSB

Initial divider architecture
2017-11-23 20TSEA44: Computer hardware – a system on a chip

Dividend input

-

1 0

Shift Divisor

 Remainder
 Shift register

Remainder output Quotient output

Divisor input

Next-bit from dividend

MSB

Retiming
opportunity

Initial speed:
300 MHz

11/23/2017 15:34

Issues
● Cannot combine subtracter and 2-to-1 multiplexer!
● Solution: Preprocess divisor and use an addition instead

2017-11-23 21TSEA44: Computer hardware – a system on a chip

Retimed and using adder
2017-11-23 22TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t f
ro

m
 d

iv
id

e
nd

MSB

1

1 0

Shift

 Newremainder

MSB

Other issues
● Synthesis tool was too clever
● Manually instantiating the components worked
● Alternatively a complete rewrite of the module worked as

well
● Improves clock frequency to 377 MHz (from 300 MHz)

2017-11-23 23TSEA44: Computer hardware – a system on a chip

Dealing with negative numbers
● Idea: Take absolute value of dividend and divisor
● Negate quotient and remainder if necessary
● For a 32 bit divider this seems to require around 128

extra LUTs...

2017-11-23 24TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

Absolute value for divisor
2017-11-23 25TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t f
ro

m
 d

iv
id

e
nd

MSB

1

1 0

Shift

 Newremainder

MSB

Absolute value for dividend
2017-11-23 26TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t f
ro

m
 d

iv
id

e
nd

MSB

1

1 0

Shift

 Newremainder

MSB

Quotient negator: Reuse
negator for dividend

2017-11-23 27TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
e

xt
-b

it
fr

om
 d

iv
id

en
d

MSB

1

1 0

Shift

 Newremainder

MSB

Remainder negator
2017-11-23 28TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
e

xt
-b

it
fr

om
 d

iv
id

en
d

MSB

1

1 0

Shift

 Newremainder

MSB

11/23/2017 15:34

Tricky to do in practice
● Required signals for shift register:

1. Load enable/shift enable

2. Invert enable

3. Input data of new dividend

4. Input data of new dividend (MSB bit)

5. Current value of register
● 5 inputs to a 4 input LUT?

2017-11-23 29TSEA44: Computer hardware – a system on a chip

Tricky to do in practice - Solution
● Solution: Skip MSB of dividend input for ABS operation
● Always invert the dividend, only add 1 as a carry in if

appropriate
– This can be implemented by adding a few extra LSB

bits
– If we had a positive value we can compensate for the

inversion at shift out
– We can even add a control bit to select between

signed/unsigned division
● Manual instantiation was necessary to actually

implement this

2017-11-23 30TSEA44: Computer hardware – a system on a chip

Results for Virtex-4, speedgrade 12
● Unoptimized, unsigned: 300 MHz, 107 LUTs
● Retimed, unsigned: 377 MHz, 140 LUTs
● Retimed, signed: 361 MHz, 151 LUTs
● Retimed, signed or unsigned: 363 MHz, 153 LUTs

2017-11-23 31TSEA44: Computer hardware – a system on a chip

Manual instantiation
● Last resort when synthesis attributes and rewriting the

RTL code does not work
● Not portable between FPGA vendors

– Suprisingly portable to ASIC however

2017-11-23 32TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

Manual instantiation of flip-flops
● Allows you to ensure that the correct signals are

corrected to the D, CE, and SR inputs

– XST (Xilinx own synthesis tool, not used in the lab)
often seem to select the wrong input for SR

– Background: SR input is quite slow compared to D
input

● Can sometimes be avoided by rewriting the code or using
synthesis attributes

● Often easier to just instantiate flip-flop primitives directly

2017-11-23 33TSEA44: Computer hardware – a system on a chip

Manual instantiation of Memories and
DSP Blocks

● Well documented in various application notes

2017-11-23 34TSEA44: Computer hardware – a system on a chip

Synthesis attributes
● A convenient way to force the synthesis tool to do what

you mean
● In VHDL:

attribute keep : string;
attribute keep of mysignal: signal is "TRUE"

● In Verilog:

(* KEEP = "TRUE" *) wire mysignal;
● Note: Synthesis attributes discussed here are for XST, not

Precision!

– (Read the Precision manual)

2017-11-23 35TSEA44: Computer hardware – a system on a chip

Synthesis attribute KEEP
● Preserves the selected signal
● Use case:

– The synthesis tool makes a bad optimization decision.

– By using KEEP you can ensure that a certain signal is
not hidden inside a LUT and hence guide the
optimization process

2017-11-23 36TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

KEEP example from a display controller
wire inimagey = (yctr > 31) && (yctr < 192);
wire inimagex = (xctr > 15) && (xctr < 26);
...

always @(posedge clk) begin
 if (inimagey && (xctr == 15)) begin
 ...
 end else if(inimagey && (xctr == 26)) begin
 ...
 if (inimagey && (xctr == 15)) begin
 ...
 end else if(inimagey && (yctr[2:0] == 7)) begin
 ...

● Problem: Synthesis tool merged inimagey test with other
tests in suboptimal way

2017-11-23 37TSEA44: Computer hardware – a system on a chip

Solution: Force inimagey and inimagex
to be separate signals

(* KEEP = "TRUE" *) wire inimagey;
(* KEEP = "TRUE" *) wire inimagex;

assign inimagey = (yctr > 31) && (yctr < 192);
assign inimagex = (xctr > 15) && (xctr < 26);

● Saved area in an area constrained situation
● Especially important when targetting both CPLD and

FPGAs with a single IP core

2017-11-23 38TSEA44: Computer hardware – a system on a chip

SIGNAL ENCODING attribute
● Allows you to select encoding for state machines
● Useful when synthesis tool make suboptimal state

machine encoding choices
● (Alternatively: You can disable FSM optimization if you

really want to)

2017-11-23 39TSEA44: Computer hardware – a system on a chip

Example: Memory byte select in a
processor

● Signal encoding specified 2 FF, 4 states.
● Two signals into mux control signal

2017-11-23 40TSEA44: Computer hardware – a system on a chip

FSM
BlockRAM

11/23/2017 15:34

Example: Memory byte select in a
processor

● Heuristics in the synthesis tool selected one-hot coding
for the FSM...

2017-11-23 41TSEA44: Computer hardware – a system on a chip

FSM
BlockRAM

K

EQUIVALENT REGISTER REMOVAL
attribute

● Allows you to specify that certain registers should not be
optimized away.

● Perfect when you do not want the synthesis tool to touch
your carefully optimized (duplicated) flip-flops

2017-11-23 42TSEA44: Computer hardware – a system on a chip

Example: Operand bus in a processor

● Problem: Manual register duplication in read operand
stage is removed by synthesis tool

● Solution: Disable optimization locally by setting
EQUIVALENT_REGISTER_REMOVAL to "no"

2017-11-23 43TSEA44: Computer hardware – a system on a chip

Very heavy fanoutDecode

ALU Shifter Memory MAC

Read OPS

Fetch

4-to-1 multiplexer using two LUT4
2017-11-23 44TSEA44: Computer hardware – a system on a chip

11/23/2017 15:34

4-to-1 multiplexer using two LUT4
2017-11-23 45TSEA44: Computer hardware – a system on a chip

LUT

A
B

S[1]
S[0]

LUT

D
C O

T = S1[1] ? S[0] : {S[0] ? B : A};

O = S1[1] ? {T ? D : C} : T;

Conclusions
● By mapping your design to the FPGA in an efficient manner

you can significantly improve the performance of your
design

● Keep this in mind early in the design phase.
● (However, don't optimize unless you really need to.)

2017-11-23 46TSEA44: Computer hardware – a system on a chip

www.liu.se

11/23/2017 15:34

