TSEA44: Computer hardware – a system on a chip

Kent Palmkvist, Erik Bertilsson http://www.isy.liu.se/edu/kurs/TSEA44 Based on slides by Andreas Ehliar

TSEA44: Computer hardware – a system on a chip

Prerequisites (expected knowledge!)

• Digital logic design. You will design both a data path and a control unit for an accelerator.

2017-10-30

- · Binary arithmetic. Signed/unsigned numbers.
- VHDL or Verilog. SystemVerilog (SV) is the language used in the course.
- Computer Architecture. It is extremely important to understand how a CPU executes code. You will also design part of a DMA-controller. Bus cycles are central.
- ASM and C programming. Most of the programming is done in C, with a few cases of inline asm.

What is the course about?

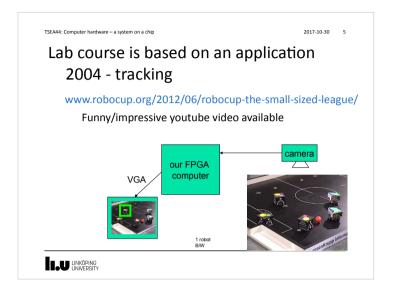
• How to build a complete embedded computer using an FPGA and a few other components. Why?

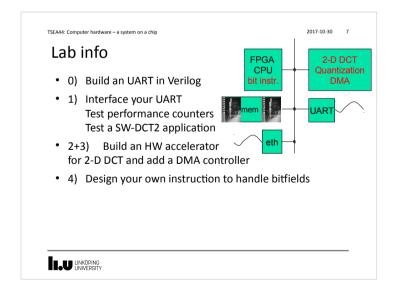
2017-10-30 2

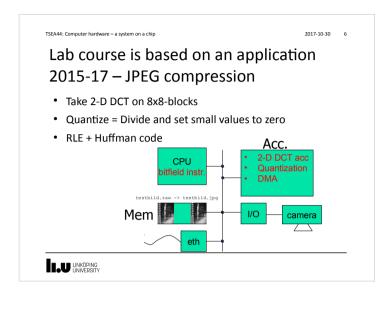
2017-10-30 4

- Only one chip

TSEA44: Computer bardware = a system on a chin


- The computer can easily be tailored to your needs.
- Special instructions
- Accelerators
- DMA transfer
- The computer can be simulated
- A logic analyzer can be added in the FPGA
- Add performance counters
- It's fun!


TSEA44: Computer hardware - a system on a chip


Course organisation

- Lab 0: learn enough Verilog, 4 hours
 - Individual work and demonstration
- · Lab course: 4 mini projects
- 6 groups * 3 students in the lab
- Lectures: 8*2 hours
 - 1 guest lecture from ARM
- Examination 6 credits:
 - 3 written reports/group
 - Oral individual questions

	ab 0 (individual work and demonstration)	
	 Build an UART in Verilog Demonstration 	
	 Deadline 10 November 	
• [ab 1 (in groups of 2 or 3 students)	
	 Interface to the Wishbone bus 	
	 Demonstration (individual questions) Written report 	

TSEX44: Computer hardware – a system on a chip 2017-10-30 Lab tasks and examination, cont. • Lab 2+3

- Design a JPEG accelerator + DMA
- Demonstration (with individual questions) Written report
- Lab 4
 - Custom Instruction
 - Demonstration (with individual questions) Written report

TSEA44: Computer hardware – a system on a chip

2017-10-30 11

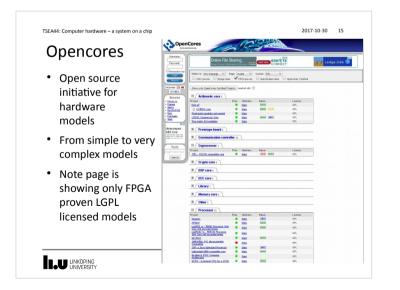
9

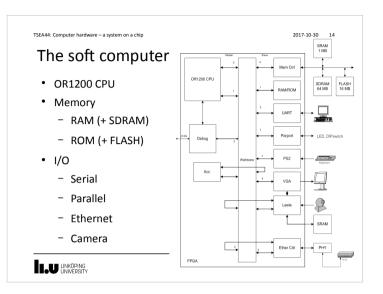
Competition – fastest JPEG compression

- An unaccelerated JPEG compression (using jpegfiles) takes roughly 13.0 Mcycles (@ 25MHz) ~ 2 FPS (Frames Per Second)
- Our record: ~ 100 000 cycles (everything in hardware)
- Goal: Highest framrate. Exception: At over 25 FPS, the smallest implementation wins
- Deadline: 19/12 2017

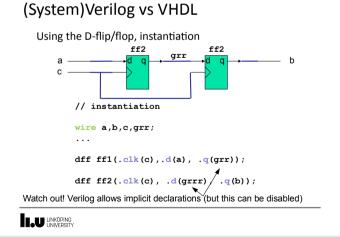
wunderb.jpg 320 x 240

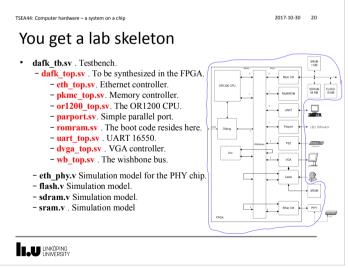
TSEA44: Computer hardware – a system on a chip

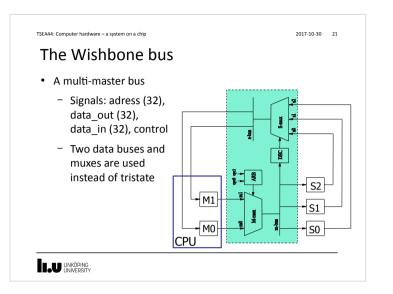

2017-10-30 10

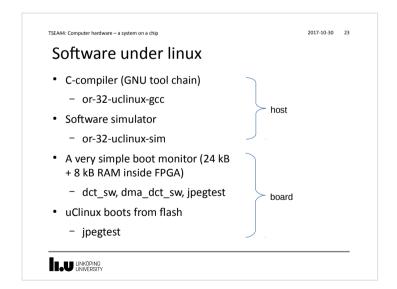

Written report requirements

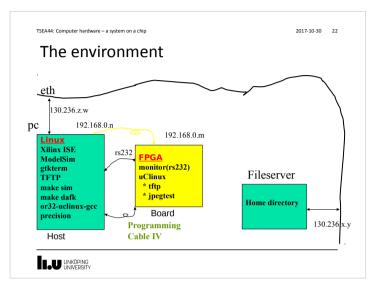
- A readable short report typically consisting of
 - Introduction
 - Design, where you explain with text and diagrams how your design works
 - Results, that you have measured
 - Conclusions
 - Appendix: All Verilog and C code with comments!



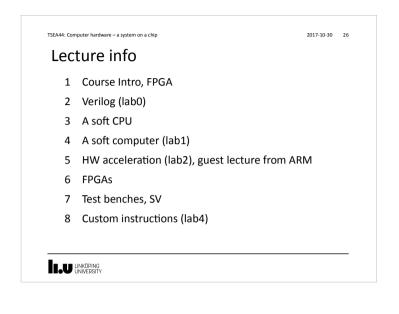


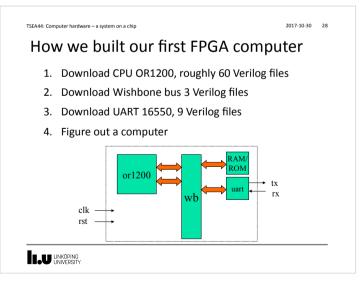

TSEA44: Computer hardware – a system on a chip	2017-10-30	16
Processor core: Openrisc 1200		
 Initially developed within opcores initiative Split into a new website Openrisc.io 		
 Complete risc processor including synthesizal instructions set simulator etc. 	ble code,	
		_

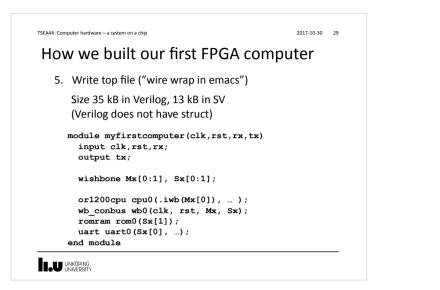


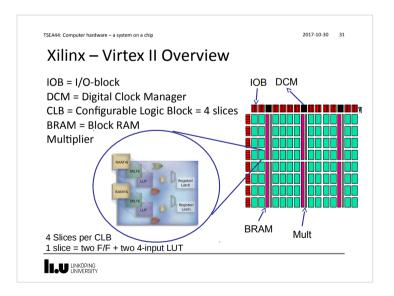


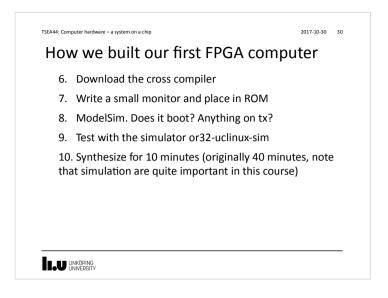
2017-10-30 18

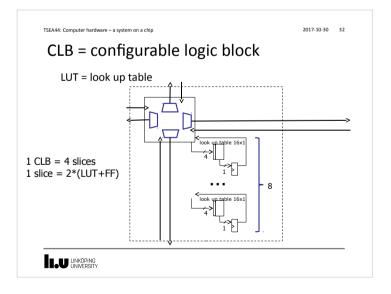


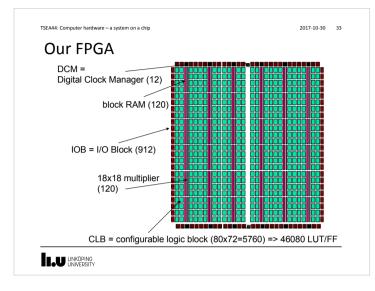


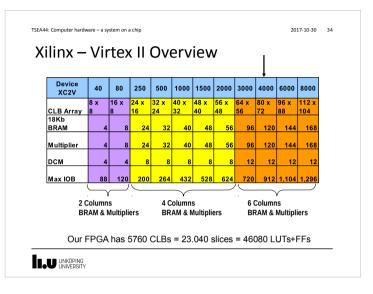

Booting uClinux	uClinux/OR32 Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne Calibrating delay loop ok - 2.00 BogoMTPS Memory available: 53000x/63235k RAM, 0k/0k ROM (667892k kernel data, 2182k co Swansee University Computer Society NET3.035 for Linux 2.0
ueimux	NET3: Unix domain sockets 0.13 for Linux NET3.035. Swansea University Computer Society TCP/IP for NET3.034 IP Protocols: ICMP, UDP, TCP uClinux version 2.0.38.lpre3 (olles%kotte) (gcc version 3.2.3) #180 Sat Sep 1
	9:01:55 CEST 2004 Serial driver version 4.13pl with no serial options enabled ttys00 at 0x90000000 (irq = 2) is a 16550A Ramdisk driver initialized : 16 ramdisks of 2048K size
	Blkmem copyright 1998,1999 D. Jeff Dionne Blkmem copyright 1998 Kenneth Albanowski Blkmem O disk images:
	loop: registered device at major 7 eth0: Open Ethernet Core Version 1.0 RAMDISK: Romfs filesystem found at block 0 RAMDISK: Loading 1606 blocks into ram disk done.
	VFS: Mounted root (romfs filesystem). Executing shell Shell invoked to run file: /etc/rc
	Command: #!/bin/sh Command: setenv PATH /bin:/usr/bin Command: hostname bender
	Command: # Command: mount -t proc none /proc Nore of the same Command: #
	Command: # start web server Command: /sbin/boa -d & [12]

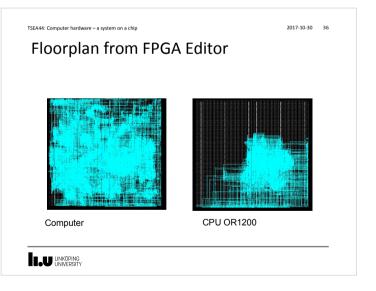


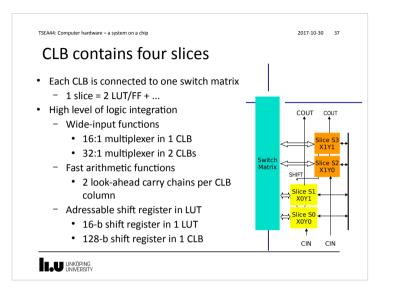


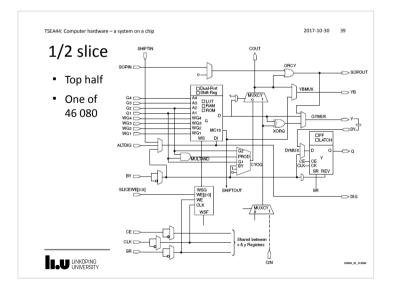


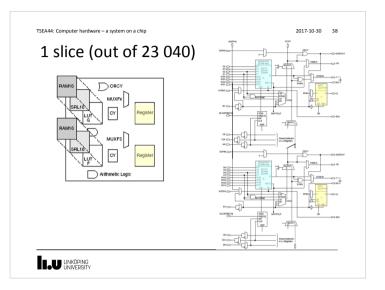











Synthesis result									
Synthe	31	310	3	un					
 Module	-+	LUT	-+-	 FF			+ MULT 18x18		1
	-+		-+-		-+		+	+	I
/	1	64			1		l i i i i i i i i i i i i i i i i i i i	216	1
cpu	1	5029		1345		12	4	I	1
dvga	1	813		755		4	l	1	1
eth3	1	3022		2337		4	L	I	1
jpg0	1	2203	1	900	1	2	13	1	1
leela	1	685		552		4	2	I	1
pia	1	2	1	5	1		l .	1	1
pkmc mc	1	218	T	122	1		I	L	1
rom0	1	82	T	3	1	12	I	L	1
sys sig gen	1		T	6	1		I	L	1
uart2	1	825		346			L	I	1
wb_conbus		616		11	Т		I	1	I
 Total	-+ 	13559	-+- 			38	+ I 19	+ 216	+
 Available	+-+	46080	+-+++			120		+	+

