

TSEA44: Computer
hardware – a
system on a chip
Lecture 8: Memories, lab4

Today
● Memories/memory controller
● Lab4, new instruction

2016-11-30 2TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Practical info
● Lab closed after 22/12

– Opens again after new year (probably after 2/1-17)
– Ask me or Erik to let you in (if we are at the work)
– Remote login still works

● Office corridors locked during christmas/new year
– Hard to get access to people (if they are not on

vacation)
● Lab used for other courses in the spring

– No access guaranteed after the course end
– Will try to set up some limited access location

● Probably a lab location with limited access only on non-
scheduled hours

2016-11-30 3TSEA44: Computer hardware – a system on a chip

PKMC
2016-11-30 4TSEA44: Computer hardware – a system on a chip

Per Karlströms
Memory Controller

adr
dat_o
dat_i

stb

ack

dat_io

…

adr

…

cs_sdram
cs_sram
cs_flash

Wishbone bus Memory bus

2016-11-30 20:47

Memory on board
2016-11-30 5TSEA44: Computer hardware – a system on a chip

Memory on board, cont.
2016-11-30 6TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

SRAM; Static RAM
● Asynchronous device
● Memory element: latch
● 2 x (256k x 16) = 1 MB

* = active low

2016-11-30 7TSEA44: Computer hardware – a system on a chip

SRAM

data

oe*

ce*

address

16

18

we*

SRAM - Cell
2016-11-30 8TSEA44: Computer hardware – a system on a chip

perk@isy.liu.se 8

2016-11-30 20:47

SRAM - Read
● WL=0,

Precharge
bitlines to
Vdd/2

● WL=1
connects
inverters
to bitlines

● Bitlines are
driven to low
and high

2016-11-30 9TSEA44: Computer hardware – a system on a chip

perk@isy.liu.se

0
1

01
1/2

1
0

1/2

SRAM - Read
● No clocking!

2016-11-30 10TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

SRAM - Write
● WL=0,

Set logic values
on bitlines

● WL=1
connects
inverters
to bitlines

● Bitline values
override
internal
value

2016-11-30 11TSEA44: Computer hardware – a system on a chip

perk@isy.liu.se

01

0 1

1
0

0 1

SRAM - Write
● Timing important (avoid writing to wrong adress)

2016-11-30 12TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

SDRAM; Synchronous Dynamic RAM
● Clocked device
● Memory element: Capacitance
● Needs periodic refreshing
● Pipelined operation
● Burst oriented

– Single burst in our design
● 2 x (16M x 16) = 64MB

2016-11-30 13TSEA44: Computer hardware – a system on a chip

SDRAM4

data

command

clk

multiplexed
address

16

15

A measurement: make sim_jpeg
● Sketchy read cycle

– Precharge bit line to Vdd/2
– Let bit line float
– Connect sense amp to

bit line
– Connect C to bit line
– Hold value in latch
– Write value back to C

● Refresh cycle
– Dummy read cycle

2016-11-30 14TSEA44: Computer hardware – a system on a chip

Word
Bit

C

GND

Precharge

Sense amp

Latch

2016-11-30 20:47

SDRAM Architecture
2016-11-30 15TSEA44: Computer hardware – a system on a chip

SDRAM Read
2016-11-30 16TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

SDRAM Write
2016-11-30 17TSEA44: Computer hardware – a system on a chip

Consecutive read bursts
● Mode register must be programmed

2016-11-30 18TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

FLASH - Interface
● Looks like SRAM

– Read
– Write commands

● Erase is done in blocks
● Contains uCLinux kernel + file system

2016-11-30 19TSEA44: Computer hardware – a system on a chip

FLASH - Cell
2016-11-30 20TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

FLASH – Read (NOR)
2016-11-30 21TSEA44: Computer hardware – a system on a chip

1

0 1

FLASH – Program (to 0)
2016-11-30 22TSEA44: Computer hardware – a system on a chip

U (~13 V)

7 V

2016-11-30 20:47

FLASH – Erase (to 1)
● Only blockwise

2016-11-30 23TSEA44: Computer hardware – a system on a chip

ﾧ

U

0

System Overview
2016-11-30 24TSEA44: Computer hardware – a system on a chip

WB

OR1200 PKMC

FPGA

FLASH SRAM SDRAM

2016-11-30 20:47

PKMC internals
2016-11-30 25TSEA44: Computer hardware – a system on a chip

PKMCAddr
Dec

SDRAM
Ctrl

S
D

S

F

FF

FPGA Board

SRAM
Ctrl

FLASH
Ctrl

WB

SDRAM Controller Internals
2016-11-30 26TSEA44: Computer hardware – a system on a chip

FSM
Command

Refresh
counter

7.2 s between
refreshes

WB
commans

2016-11-30 20:47

Refresh cycle
2016-11-30 27TSEA44: Computer hardware – a system on a chip

Start of refresh cycle

Start of WB cycle

Lab 4, Custom instruction
● Increase performance by adjusting instruction set
● Specific for application domain

– General purpose processor is general purpose
– Not exceptionally good at anything

● Use profiling to find out the most timeconsuming part of
the application code

2016-11-30 28TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Huffman Encoding/Decoding

[
22 12 0 −12 0 0 0 0
0 0 −8 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]

2016-11-30 29TSEA44: Computer hardware – a system on a chip

reg

1) After Q 3) After RLE

2) After zig-zag

4) Huffman coding
- Value are HC (variable length)
 using table lookup
- raw bits are left untouched

22
12
0 4
0 0 -12
-8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

Value raw bits (amplitude value)
 05 10110
 04 1100
 13 100
 24 0011
 04 0111
 F0
 F0
 D1 1
 00

Run of 0:s Magnitude

-12 =>
12-1, force MSB=0
=> 0011

-8 =>
8-1, force MSB=0
=> 0111

Huffman in JFIF
● Output: 1 – 16 bits
● Encodes bytes
● 2 tables used

– Y DC
– Y AC

2016-11-30 30TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

jpegfiles
2016-11-30 31TSEA44: Computer hardware – a system on a chip

draw_image()

init_encoder()

encode_image()

finish_pass_huff()

init_huffman()

init_image()

forward_DCT()

encode_mcu_huff()

flush_bits()

”write header,
init your HW”

jpeg_fdct_islow()

”quantize”

emit_bits()

”flush remaining bits”

jpegtest.c, jcdctmgr.c, jdct.c, jchuff.c

”init some variables”

Emit_bits()
/* Only the right 24 bits of put_buffer are used; the valid bits are left-justified in
 * this part. At most 16 bits can be passed to emit_bits in one call, and we never retain
 * more than 7 bits in put_buffer between calls, so 24 bits are sufficient.
 */
static void emit_bits (unsigned int code, int size)
{
 unsigned int startcycle;

 new_put_buffer = (int) code;

// Add new bits to old bits. If at least 8 bits then write a char to buffer,
// save the rest until we get more bits.

 new_put_buffer &= (1<<size) - 1; /* mask off any extra bits in code */
 current_buffer_bit += size; /* new number of bits in buffer */
 new_put_buffer = new_put_buffer << (24 - current_buffer_bit); /* align incoming bits */
 new_put_buffer = new_put_buffer | old_put_buffer; /* and merge with old buffer contents */

 while (current_buffer_bit >= 8) {
 int c = ((new_put_buffer >> 16) & 0xFF); // Mask out the 8 bits we want
 buffer[next_buffer] = (char) c;
 next_buffer++;
 if (c == 0xFF) { // 0xFF is a reserved code for tags, if we get image data
 buffer[next_buffer] = 0x00; // with an FF value it has to be followed by 0x00.
 next_buffer++;
 }
 new_put_buffer <<= 8;
 current_buffer_bit -= 8;
 }
 old_put_buffer = new_put_buffer; /* update state variables */
}

2016-11-30 32TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Emit_bits()
2016-11-30 33TSEA44: Computer hardware – a system on a chip

old_put_buffer current_buffer_bit=7

code
size=16

new_put_buffer current_buffer_bit=23

Write bytes to mem

old_put_buffer current_buffer_bit=7

Adding an Instruction
1. Instruction Selection

2. Hardware modification

3. Assembler modification

4. Compiler modification

2016-11-30 34TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Instruction Selection
● l.custx

– No operands
● Instructions for 64 bit

– Not used
– Assembler can understand
– l.sd I(rA),rB

2016-11-30 35TSEA44: Computer hardware – a system on a chip

Hardware Modifications
● Instruction decoder modifications

– Legal instruction
– or1200_ctrl.v

● Special purpose register
– New group
– or1200_sprs.v

● Data path
– New hardware
– or1200_lsu.v
– or1200_vlx_top.v

2016-11-30 36TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

IF

ID

EX

WB

vlx

Or1200 Pipeline
2016-11-30 37TSEA44: Computer hardware – a system on a chip

l.sd (rA),rB

code size

= align

Or1200 Pipeline
● Remember stall

2016-11-30 38TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Align reg2mem
2016-11-30 39TSEA44: Computer hardware – a system on a chip

Proposed Architecture
2016-11-30 40TSEA44: Computer hardware – a system on a chip

Data
path

Control
Unit

Store unit

size code

adr data store_byte_o

stall_cpu_o

Internal regs
(mapped as SPR)
bit_reg
bit_reg_wr_pos
vlx_addr_o

2016-11-30 20:47

Inline asm
2016-11-30 41TSEA44: Computer hardware – a system on a chip

 asm volatile("l.sd 0x0(%0),%1" : : "r"(code), "r"(size));

In jpegfiles insert:

=> code and size will show up at your vlx

template

input input

Data Path
● Fill buffer alternatives

– One bit/clock cycle
– All bits at once

● Write to mem alternatives
– One byte
– One 32 bit word, must be on word boundaries

2016-11-30 42TSEA44: Computer hardware – a system on a chip

buffer

input

mem

2016-11-30 20:47

Control
● May not be needed
● May be an FSM

2016-11-30 43TSEA44: Computer hardware – a system on a chip

Store Unit
● Stores the data
● 0xFF stored as 0xFF00

– JPEG markers
● Only byte alignment!

– Parallel stores faster

2016-11-30 44TSEA44: Computer hardware – a system on a chip

2016-11-30 20:47

Software
● New assembler

– Easy
● New compiler

– Hard problem for complex instructions
– Compiler knows functions

● C
– Inline Assembler

2016-11-30 45TSEA44: Computer hardware – a system on a chip

Instruction Usage
2016-11-30 46TSEA44: Computer hardware – a system on a chip

unsigned char* sb_get_buff_pos(void)
{
 unsigned char* pos;
 asm volatile("l.mfspr %0,%1,0x2":"=r"(pos):"r"(0xc000));
 return pos;
}

output

00000250 <_sb_get_buff_pos>:
 250: 9c 21 ff fc l.addi r1,r1,0xfffffffc
 254: d4 01 10 00 l.sw 0x0(r1),r2
 258: 9c 41 00 04 l.addi r2,r1,0x4
 25c: a9 60 c0 00 l.ori r11,r0,0xc000
 260: b5 6b 00 02 l.mfspr r11,r11,0x2
 264: 84 41 00 00 l.lwz r2,0x0(r1)
 268: 44 00 48 00 l.jr r9
 26c: 9c 21 00 04 l.addi r1,r1,0x4

2016-11-30 20:47

www.liu.se

2016-11-30 20:47

