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Chapter 1

The system

1.1 Introduction

This text is intended as a laboratory compendium for the course TSEA44 Computer
Hardware - a System On a Chip. We begin with a presentation of the hardware and
software used for the laboratory exercises. If you wonder, the name dafk seen in many
places in this course, comes from the name DAtorteknik FortsättningsKurs which is the
Swedish name of the first version of this course. Roughly translated it means advanced
course in computer technology.

1.2 Hardware

The lab tasks are all tested on real hardware. A suitable technology that is flexible
enough to allow changes on both software and hardware is FPGA-based development
systems. This course is therefore using such a board as the hardware platform on which
the computer system is implemented.

1.2.1 Virtex-II Development board

In the course we will use a development FPGA board from Avnet Corporation. A
block diagram of this board is shown in Figure 1.1. More details are given in the
User’s Guide, [1].

1.2.2 Communication/Memory Module

The main FPGA board is extended with a Communication and Memory Module,
shown in Figure 1.2. More details are given in the User’s Guide, [2].
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8 CHAPTER 1. THE SYSTEM

Figure 1.1: Block diagram of the Avnet main board.

Features of the Communication/Memory module are:

• 1 MB SRAM.

• 16 MB Flash memory.

• 64 MB SDRAM.

• 10(/100/1000) Mb/s Ethernet PHY.

• (IrDA for infrared communication).

• (USB2.0 PHY).

• (PC card connector).

Features within parentheses will not be used in this course.
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Figure 1.2: Block diagram of the Avnet communication and memory module.

1.2.3 Virtex-II 4000 FPGA

The most important circuit on the board is of course the mighty Virtex-II 4000 FPGA,
[5]. The table 1.1 gives some details of this impressive circuit, which is shipped in an
1152 pin BGA (ball grid array).

The internal configurable logic in the FPGA includes four major elements orga-
nized in a regular array:

• CLBs (Configurable Logic Blocks):
This is the programmable logic used to build combinatorial and sequential logic.
The FPGA contains 80 × 72 = 5760 CLBs. Each CLB is made up of 4 slices,
see Figure 1.4.

• Multipliers:
The FPGA contains 120 18× 18-bit multipliers. These are used for the ALU in
the OR1200 CPU.

• Block RAMs:
The FPGA contains 120 18 kbit RAMs. These are typically used for cache
memories inside the CPU, FIFOs in the UART and Ethernet controller.

• DCMs (Digital Clock Managers):
The FPGA contains 12 DCMs. The DCMs can divide/multiply the input clock
frequency. We use a DCM to transform the input 40 MHz to 25 MHz.

A floorplan of the Virtex-II is shown in Figure 1.3.
The CLBs are organized in an array and connected to a switching matrix. Each

CLB comprises 4 slices, which are connected locally. Each slice includes two 4-input
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Device

System

Gates

CLB

(1 CLB = 4 slices = Max 128 bits)

Multiplier

Blocks

SelectRAM Blocks

DCMs

Max I/O

Pads(1)

Array

Row x Col. Slices

Maximum

Distributed

RAM Kbits

18 Kbit

Blocks

Max RAM

(Kbits)

XC2V40 40K 8 x 8 256 8 4 4 72 4 88

XC2V80 80K 16 x 8 512 16 8 8 144 4 120

XC2V250 250K 24 x 16 1,536 48 24 24 432 8 200

XC2V500 500K 32 x 24 3,072 96 32 32 576 8 264

XC2V1000 1M 40 x 32 5,120 160 40 40 720 8 432

XC2V1500 1.5M 48 x 40 7,680 240 48 48 864 8 528

XC2V2000 2M 56 x 48 10,752 336 56 56 1,008 8 624

XC2V3000 3M 64 x 56 14,336 448 96 96 1,728 12 720

XC2V4000 4M 80 x 72 23,040 720 120 120 2,160 12 912

XC2V6000 6M 96 x 88 33,792 1,056 144 144 2,592 12 1,104

XC2V8000 8M 112 x 104 46,592 1,456 168 168 3,024 12 1,108

Table 1.1: Virtex-II table. XC2V4000 is our FPGA.

function generators, carry logic, multiplexers and two storage elements, see Figure 1.4.
The function generator can be programmed as a 4-input lookup table (LUT), 16-bit
RAM or 16-bit variable-tap shift register.

1.3 Open RISC

The computer architecture used in this lab course is based on an open-source processor
design called Open RISC. This processor together with its bus system and some I/O
units are defined and implemented in the FPGA by synthesis of Verilog code.

1.3.1 Top Design

The computer used in this lab course is designed with Verilog modules, which can
be downloaded free from Open Cores (www.opencores.org) and some modules de-
signed by us.

This section describes the main system defined in dafk.sv, which you will use in
lab task 2–4
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Global Clock Mux

DCM DCM IOB

CLB

Programmable I/Os

Block SelectRAM Multiplier

Configurable Logic

Figure 1.3: Virtex-II architectural overview.

The computer in Figure 1.5 consists of the following modules:

• OR1200 CPU:
RISC CPU with a 5-stage pipeline.

• Wishbone:
An interconnect bus with 16 ports, 8 master ports and 8 slave ports.

• Memory Controller:
A memory controller for SRAM, SDRAM and Flash memories.

• UART:
A 16550 UART with baudrates up to 115200 b/s.

• Ethernet Controller:
An implementation of the MAC layer, which requires an external PHY circuit
for a complete solution.

• Parallel Port
• VGA Controller
• Camera Controller
• DCT Accelerator:

It will be your task to finish the implementation of this module.

1.3.2 Structure of the Verilog code

The structure of the Verilog code closely resembles the block diagram shown in Fig-
ure 1.5. Components outside the FPGA are simulated. Here is a list of the hierarchy
instantiated in dafk_tb:

• phy0: Simulation model of the Ethernet physical to logic level chip

• videomem: Simulation model of the video memory
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Figure 1.4: a) Virtex-II slice configuration b) Detail of slice (top half).

• mysram: Simulation model of the SRAM

• sdram0: Simulation model of the SDRAM

• dafk_top: The code to be synthesized in the FPGA

– sys_sig_gen: Generates clock and reset signals

– or1200_top: The OR1200 CPU

– pkmc_top: Memory controller

– rom0: The boot code and vector table resides here

– uart2: UART 16550

– eth3: Ethernet controller

– dvga: VGA controller

– pia: Simple parallel port

– jpg0: DCT accelerator

– perf: Performance counters

– leela: Camera module

– wb_conbus: The wishbone bus
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Figure 1.5: An Open RISC computer.

1.3.3 OR1200 CPU

A block diagram of the OR1200 CPU is shown in Figure 1.6. More information about
the CPU can be found in [6, 7].

The OR1200 CPU, [8], consists of several blocks:

• High Performance 32-Bit CPU/DSP

– 32-bit architecture implementing ORBIS32 instruction set

– Scalar, single-issue 5-stage pipeline delivering sustained throughput

– Single-cycle instruction execution on most instructions

– Can be run at 250MHz in an ASIC

– Thirty-two, 32-bit general-purpose registers

– Custom user instructions

• L1 Caches

– Harvard model with split instruction and data cache
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Figure 1.6: Block diagram of the OR1200 CPU.

– Instruction/data cache size scalable from 1KB to 64KB

• Memory Management Unit

– Harvard model with split instruction and data MMU

– Instruction/data TLB size scalable from 16 to 256 entries

– Direct-mapped hash-based TLB

– Linear address space with 32-bit virtual address and physical address from
24 to 32 bits

– Page size 8KB with per-page attributes

• Advanced Debug Unit

– Conventional target-debug agent with a debug exception handler

– Non-intrusive debug/trace for both RISC and system

– Access and control of debug unit from RISC or via development interface

• Integrated Tick Timer

– Task scheduling and precise time measuring

– Maximum timer range of 232 clock cycles

– Maskable tick-timer interrupt

• Programmable Interrupt Controller

– 2 non-maskable interrupt sources

– 30 maskable interrupt sources

– two interrupt priorities

In this lab course the Power Management module is disabled.

1.3.4 The Wishbone Interconnect Bus

The Wishbone Interconnect is a standard way of connecting IP (Intellectual Property)
blocks in System-on-Chip designs, see for instance [9]. It can be implemented in
different ways ranging from a fully connected crossbar to an ordinary shared bus. In
this course the shared bus variant is used. It is important to understand that there is no
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parallelism in this implementation. It is just a connection between one master and one
slave. Furthermore tristate is not used, instead there are two databuses, one in each
direction. The address bus and the data busses are 32 bits wide.
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Figure 1.7: The Wishbone interconnect bus. In this example Master 0 is addressing
Slave 1. Master 0 has won the arbitration.

We will briefly explain how the Wishbone bus works with a simple example. We
assume a computer system like in Figure 1.5 and that the CPU executes a program
in the memory, that is connected to slave port 1, see Figure 1.7. The CPU places an
address A0 at the address lines at master port 0 and asserts the signal STB. The arbiter
inside the Wishbone grants the bus to master 0. The address A0 will now show up on
all slave ports. Address decoding logic routes the asserted STB-signal only to slave
port 1. The memory at slave port 1 places D1 on the data bus and asserts the signal
ACK. D1 will now show up on all master ports, but ACK will only be asserted at master
port 0.

1.3.5 Memory Controller

In this lab course we will use a simple memory controller, designated PKMC, designed
by us. PKMC is implemented for this particular system and thus needs no configuration.
PKMC handles all communications with the SRAM, SDRAM and FLASH memory.
Especially ensuring that the SDRAM is refreshed correctly.

1.3.6 Ethernet Controller

The Ethernet IP Core, [10], consists of five modules:

• The MAC (Media Access Control) module, formed by transmit, receive, and
control module

• The MII (Media Independent Interface) Management module
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Address Type Content
0x0000_0000 - 0x03ff_ffff SDRAM Programs can be loaded and run

here 64MB
0x2000_0000 - 0x200f_ffff SRAM Data area 1MB
0x4000_0000 - 0x4000_5fff ROM Boot monitor, 24kB
0x4001_1000 - 0x4001_1fff RAM Data area for monitor and stack 8kB
0x9000_0000 - 0x90ff_ffff UART
0x9100_0000 - 0x91ff_ffff Parallel port
0x9200_0000 - 0x92ff_ffff Ethernet
0x9600_0000 - 0x96ff_ffff Accelerator Your JPEG accelerator
0xf000_0000 - 0xf0ff_ffff FLASH Bender, µClinux and Linux

Table 1.2: Memory map of the computer system.

• The Host Interface

The Ethernet IP Core is capable of operating at 10 or 100 Mbps for Ethernet and
Fast Ethernet applications. An external PHY is needed for a complete Ethernet solu-
tion.

In short the ethernet controller works as follows. There are 64 transmit buffers
and 64 receive buffers. These buffers are typically located in the SRAM. To each such
buffer there is a pair of registers (a buffer descriptor) inside the Ethernet Controller, one
register holds the address of the buffer and one register is a control/status-register. The
ethernet controller transmits/receives packets from/to the SRAM buffers with DMA.

1.3.7 VGA Controller

The VGA controller used is designed by us and is a simple single-video-mode con-
troller for use in FPGA or ASIC environments. The VGA controller supports a single
resolution/refresh rate in grey scale or 8-bit pseudocolor with 15-bit color sprites. For
further details see [12].

1.3.8 UART

The UART (Universal Asynchronous Receiver Transmitter) is an implementation of
the industry standard 16550 device. Details can be found in [13].

1.4 Software

An important part of the computer system is the software running on it. How to access
hardware units, memories etc. is described in this section.

1.4.1 Memory map

The I/O is memory mapped. The memory adresses for the various I/O units and mem-
ory types are show in table 1.2.
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Command Explanation
d <addr> display memory content
m <addr> <data> modify memory content
g <addr> go (execute)
l load Intel hex file
u boot uClinux (copy from FLASH)

Table 1.3: Some useful commands in the monitor.

1.4.2 A simple boot monitor

A simple monitor runs in the memory on slave port 1. The monitor will start at boot.
Use for instance gtkterm and adjust the baud rate to 115200 b/s. Format should be
8N1 and no flow control. The port shall be /dev/ttyUSB0 or similar. Type h for help.
Some available commands are explained in table 1.3.

Type l and then use the command File -> Send raw file in gtkterm to load
an Intel hex file into memory. The hex file itself contains address information.

A simple program.

In this section we will demonstrate how to compile, load and run a C-program in the
monitor evironment. We will use the program described in Listing 1.1 as an example.

Listing 1.1: simpleprog
# i n c l u d e "common.h"

i n t main ( void )
{

i n t Begin_Time , User_Time ;
i n t i ;
p r i n t f ( "Hello␣world!\n" ) ;

Begin_Time = g e t _ t i m e r ( 0 ) ;

f o r ( i =0 ; i <10; i ++) {
l e d ( i ) ; /∗ S e t t h e l e d d i s p l a y on t h e card ∗ /
p r i n t f ( "%d\n" , i ) ;
s l e e p ( 1 ) ; /∗ s l e e p 1 s ∗ /

}

User_Time = g e t _ t i m e r ( Begin_Time ) ;
p r i n t f ( "Time=␣%d␣s\n" , User_Time ) ;

re turn ( 0 ) ;
}

The program prints a string, counts on the LEDs and measures the elapsed time.
To build simpleprog we use a Makefile described in Listing 1.2, in the Makefile

we observe the following:

• A cross-compiler, or32-uclinux-gcc, must be used.
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• The functions printf, get_timer, led and sleep are library functions in
openrisclib, which is included in the lab skeleton for lab 1.

• A link script ram.ld is used to determine where in memory our program should
be located.
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Listing 1.2: Makefile for simpleprog (Listing 1.1)
# The name o f t h e program we want t o c o m p i l e
PROGRAM = s i m p l e p r o g

# The d i r e c t o r y c o n t a i n i n g t h e open r i s c s u p p o r t d i r
LIBDIR = . . / l i b
INCLUDEDIR = . . / i n c l u d e

CFLAGS += −I$ ( INCLUDEDIR) −Wall −W s t r i c t−p r o t o t y p e s
CFLAGS += −Werror−i m p l i c i t −f u n c t i o n−d e c l a r a t i o n
CFLAGS += −Os −g −fno−b u i l t i n −fomi t−frame−p o i n t e r −n o s t d l i b

# T o o l c h a i n c o n f i g u r a t i o n
AS = or32−u c l i n u x−as
CC = or32−u c l i n u x−gcc
LD = or32−u c l i n u x−l d
DUMP = or32−u c l i n u x−objdump −S −D −EB
COPY = or32−u c l i n u x−ob jcopy
SIM = or32−u c l i n u x−sim

# Flags t o LD , need t o i n c l u d e a l i n k s c r i p t he re
LDFLAGS = −Tram . l d

OBJFILES=$ (PROGRAM) . o

HEXFILE=$ (PROGRAM) . hex

SIMPROGRAM=$ (PROGRAM) sim

a l l : $ (PROGRAM) $ ( HEXFILE ) $ (SIMPROGRAM)

# The min imal s u p p o r t l i b c o n t a i n i n g p r i n t f / s l e e p / e t c
o p e n r i s c l i b : $ ( LIBDIR ) / o p e n r i s c l i b . a $ ( LIBDIR ) / c r t . o $ ( LIBDIR ) / r e s e t . o

# Commands t o make t h e open r i s c s u p p o r t l i b
$ ( LIBDIR ) / o p e n r i s c l i b . a :

cd $ ( LIBDIR ) && $ (MAKE)

$ ( LIBDIR ) / c r t . o :
cd $ ( LIBDIR ) && $ (MAKE)

$ ( LIBDIR ) / r e s e t . o :
cd $ ( LIBDIR ) && $ (MAKE)

. S . o :
$ (CC) $ (CFLAGS) −c $<

. c . o :
$ (CC) −c $ (CFLAGS) −o $@ $<

# L ink t h e program t o g e t h e r w i t h t h e s u p p o r t l i b
# ( And c r e a t e a t e x t f i l e w i t h t h e d i s a s s e m b l e d c o n t e n t s o f t h e program )
$ (PROGRAM) : $ ( OBJFILES ) ram . l d o p e n r i s c l i b

$ (LD) −B s t a t i c $ ( LIBDIR ) / c r t . o $ ( OBJFILES ) $ ( LIBDIR ) / o p e n r i s c l i b . a \
$ (LDFLAGS) −o $ (PROGRAM)

$ (DUMP) $ (PROGRAM) > $ (PROGRAM) . t x t

# C re a t e an i n t e l hex dump o f t h e program
$ ( HEXFILE ) : $ (PROGRAM)

$ (COPY) −O i h e x $ (PROGRAM) $ ( HEXFILE )

# C re a t e a b i n a r y we can s i m u l a t e w i t h t h e o p e n r i s c s i m u l a t o r
$ (SIMPROGRAM ) : $ (PROGRAM) ram . l d o p e n r i s c l i b

$ (LD) −B s t a t i c $ ( LIBDIR ) / r e s e t . o $ (PROGRAM) $ (LDFLAGS) −o $ (SIMPROGRAM)
$ (DUMP) $ (SIMPROGRAM) > $ (SIMPROGRAM ) . t x t

# Run t h e s i m u l a t o r on t h e program
sim : $ (SIMPROGRAM)

$ ( SIM ) − i −f sim . c f g $ (SIMPROGRAM)

c l e a n :
rm −f ∗ . o ∗~ sim . p r o f i l e $ (PROGRAM) $ (SIMPROGRAM) $ ( HEXFILE ) ∗ . t x t u a r t 0 . t x u a r t 0 . rx
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We place all the segments of simpleprog at the address 0x2000 with the link
script shown in Listing 1.3.

Listing 1.3: Link script for simpleprog (Listing 1.1)
MEMORY
{

v e c t o r s : ORIGIN = 0 x00000000 , LENGTH = 0 x00002000
sdram : ORIGIN = 0 x00002000 , LENGTH = 0 x 0 3 f f e 0 0 0

}

SECTIONS
{

. v e c t o r s :
{

∗ ( . v e c t o r s )
} > v e c t o r s

. t e x t :
{

∗ ( . t e x t )
} > sdram

. r o d a t a ALIGN ( 4 ) :
{

∗ ( . r o d a t a )
} > sdram

. r o d a t a . s t r 1 . 1 ALIGN ( 4 ) :
{

∗ ( . r o d a t a . s t r 1 . 1 )
} > sdram

. d a t a ALIGN ( 4 ) :
{

∗ ( . d a t a )
} > sdram

. b s s ALIGN ( 4 ) :
{

∗ ( . b s s )
} > sdram

}

1.4.3 The simulator or32-uclinux-sim

The simulator is started with the command

or32-uclinux-sim -f sim.cfg prog ,

where sim.cfg describes the hardware and prog is the program to run on the simu-
lated hardware. Some help is printed out by the command

or32-uclinux-sim -h .

The simulator can also be started in an interactive mode by

or32-uclinux-sim -f sim.cfg -i prog .
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Figure 1.8: Simulation of the bender monitor.

In Figure 1.8 we show as an example the simulation of a simple monitor in an
xterm window.

The command help lists available commands, for instance t (trace):

>t
00000100: : 00000000 l.j 0x0 (executed) [time 40ns, #1]
00000104: : 00000000 l.j 0x0 (next insn) (delay insn)
GPR00: 00000000 GPR01: 00000000 GPR02: 00000000 GPR03: 00000000
GPR04: 00000000 GPR05: 00000000 GPR06: 00000000 GPR07: 00000000
GPR08: 00000000 GPR09: 00000000 GPR10: 00000000 GPR11: 00000000
GPR12: 00000000 GPR13: 00000000 GPR14: 00000000 GPR15: 00000000
GPR16: 00000000 GPR17: 00000000 GPR18: 00000000 GPR19: 00000000
GPR20: 00000000 GPR21: 00000000 GPR22: 00000000 GPR23: 00000000
GPR24: 00000000 GPR25: 00000000 GPR26: 00000000 GPR27: 00000000
GPR28: 00000000 GPR29: 00000000 GPR30: 00000000 GPR31: 00000000 flag: 0

1.4.4 µClinux

µClinux, which stands for microcontroller Linux, is a Linux variant intended for com-
puters without a Memory Management Unit (MMU). This means that the kernel and
the processes reside in the same address space.

You can start µClinux by giving the u command from the boot monitor. µClinux
is now copied from FLASH (0xf0100000) to SDRAM (0x0) and the booting process
starts.

The command help will list the built-in shell commands.
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An important file is /etc/rc, the start-up file, which is shown in Listing 1.4. If
you want to change the start-up behavior of µClinux this the file to change. In a
running µClinux this file resides in a non-writable file system. A new system must be
recompiled on a host computer, downloaded over the serial port and flashed to the flash
memory. It is very unlikely that you have to do this in the course of this lab series.

Listing 1.4: µClinux configuration file /etc/rc
# ! / b i n / sh
#
s e t e n v PATH / b i n : / s b i n : / u s r / b i n
hos tname b en de r
#
mount − t p roc none / p roc
#
/ b i n / expand / ramfs512 . img / dev / ram1
mount − t e x t 2 / dev / ram1 / v a r
mkdir / v a r / l o g / v a r / l o g / boa / v a r / l o c k / v a r / tmp / v a r / run
chmod 777 / v a r / tmp
#
/ b i n / expand / ramfs8192 . img / dev / ram2
mount − t e x t 2 / dev / ram2 / mnt
mkdir / mnt / b i n

# S e t up t h e w e b s e r v e r s t u f f
mkdir / mnt / h t d o c s
cp / misc /∗ / mnt / h t d o c s
mkdir / mnt / h t d o c s / cg i−b i n

# Br ing up t h e l o c a l i n t e r f a c e
/ s b i n / i f c o n f i g l o 1 2 7 . 0 . 0 . 1
/ s b i n / r o u t e add −n e t 1 2 7 . 0 . 0 . 0

# S e t IP a d d r e s s from c o n f i g u r a t i o n da ta i n f l a s h
/ s b i n / s e t i p

# S t a r t t h e web s e r v e r
/ s b i n / boa −d &

Running programs under µClinux

We demonstrate how to run a program in the µClinux environment by an example.
The program, shown in Listing 1.5, displays the contents of a Special Purpose Reg-
ister (SPR). It uses inline assembler to read a register. We use the Makefile shown in
Listing 1.6 to compile the program shown in Listing 1.5. The flags -r and -d to $CC
are important, otherwise the program will not execute.
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Listing 1.5: Program showing contents of a special purpose register.
# i n c l u d e < s y s / t y p e s . h>
# i n c l u d e < s y s / s t a t . h>
# i n c l u d e <asm / i o . h>
# i n c l u d e <asm / s p r _ d e f s . h>
# i n c l u d e <asm / boa rd . h>

i n t main ( i n t argc , char ∗ a rgv [ ] )
{

unsigned long va l , add r ;

i f ( a r g c == 2) {
add r = s t r t o u l ( a rgv [ 1 ] , 0 , 0 ) ;

/∗ Read SPR ∗ /
asm ( "l.mfspr␣%0,%1,0" : "=r" ( v a l ) : "r" ( add r ) ) ;
p r i n t f ( "\nSPR␣%04lx:␣%08lx\n" , addr , v a l ) ;

} e l s e re turn −1;
re turn 0 ;

}

Listing 1.6: Makefile to compile the program showing an SPR (Listing 1.5).
CC = or32 -uclibc -gcc
STRIP = or32 -uclibc -strip

PRGS = mfspr

all: $(PRGS)

mfspr: mfspr.o
$(CC) -r -d mfspr.o -o $@
$(STRIP) -g $@

Finally the program can be downloaded with tftp. Change directory (cd) to a
writable portion of the filesystem, like for instance /var/tmp. Then start the tftp
client
> tftp IP_address_of_your_tftp_server
Retrieve the program:
> get mfspr
See section 4.3.2 for more information on how to start the TFTP server.



24 CHAPTER 1. THE SYSTEM



Chapter 2

Lab task 0 - Build a UART in
Verilog

2.1 Introduction

In this introductory lab exercise you will learn the HDL Verilog. We require that you
are familiar with another HDL, typically VHDL. In our opinion hardware design is
done by drawing hardware diagrams, so that the programming in Verilog is just a final
simple translation step!

You will also get (re)acquainted with the tools used in this course, ModelSim and
make (or Xilinx Project Navigator).

The initial tests will use the Zedboard instead of the described VirtexII. Once the
design works on the Zedboard, you will move the design to the VirtexII board.

2.2 A simple UART

A computer system is hard to use if you can not communicate with it. One of the
simplest ways to send and receive characters is to use a serial communication protocol
such as RS232.

2.2.1 General

For the lab you will have to download tsea44.tgz. Uncompress the downloaded file
using tar xzvf tsea44.tgz. Make sure the path does not contains spaces or other
strange characters. Inspect the directory hw and you will find:

• lab0_zed.sv, a skeleton for the top file when using zedboard.

• lab0.sv, a skeleton for the top file when using VirtexII.

• lab0_zed.ucf, lab0.ucf, User Constraints Files for use with zedboard and
VirtexII respectively.

• dafk_tb, a folder containing the testbenches for both zedboard and VirtexII
board.

25
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• simulator, a folder containing tcl script files for use with the modelsim simu-
lator.

2.2.2 The RS232 protocol

In this exercise you shall design a simple RS232 transceiver in Verilog. We assume
that the serial port of the FPGA board is connected to a PC, where a terminal program
is running. This is typically gtkterm if you are using Linux or Teraterm if you are
running in Windows. The bit rate should be fixed 115200 bits/s. Your design shall use
the parameters 8N1, that is 8 message bits, no parity bit and 1 stop bit, see Figure 2.1.
Messages are sent and received with LSB first. Furthermore your UART shall support
full duplex operation, that is be able to transmit and receive at the same time.

start 1 0 stop1 1 0000

Figure 2.1: The letter C (0x43). Time per bit is 8.68 µs.

2.2.3 The zedboard hardware

The system clock of the zedboard is running at 100 MHz. You will need a reset-signal
and a send-signal, see Figure 2.2. Both these signals are active-high.

UART

rst_i(SW1)

tx_o

rx_i

clk_i

led_o

switch_i

send_i(SW2)

Figure 2.2: The UART.

Your task is twofold with an additional feature:

• send exactly one ASCII-coded character from the switches of the zedboard to
the PC by pressing the button BTNU switch once, see Figure 2.2.

• catch the incoming characters from rx_i and present the ASCII code on the
LED display, see Figure 2.2.

• when reset is pressed and released (BTND switch) output (and keep) on the LED
the value of the last two digits of your student-id. Example: the student linus123
should output the value 23 on the LED (00010111).

Some advice before you start:
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• The signal rx_i is asynchronous. We strongly advice you to synchronize it!

• You will use your UART on the VirtexII board in the second part of lab0 with
a slower system clock of 40 MHz, and finally in lab task 1 with an even slower
system clock of 25 MHz. We suggest that you prepare the frequency change
with an ‘ifdef ‘else ‘endif construct.

• Avoid continously sending the character while BTNU is pressed.

2.2.4 A simple testbench

You will also need a test bench. Since you are designing both a transmitter and a
receiver you may choose to test them both at the same time, see Figure 2.3.

There are two different boards used, and there are therefore two different test-
benches available. Use the lab0_zed_tb to test the design to run on the zedboard.
The corresponding designfile is then named lab0_zed.sv.

testbench

UART

clk_i

rx_i

tx_o

led_o

switch_i

send_i rst_i

Figure 2.3: A testbench.

The code for the test bench shown in Figure 2.3, is listed in Listing 2.1.
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Listing 2.1: Test bench for the UART.
‘timescale 1ns / 10ps

module lab0_zed_tb ();

reg clk_i;
reg rst_i;
reg send_i;
reg [7:0] switch_i;
wire [7:0] led_o;
wire jumper;

// Instantiate a UART
lab0_zed uart(.clk_i(clk_i), .rst_i(rst_i), .rx_i(jumper), .tx_o(jumper),

.led_o(led_o), .switch_i(switch_i), .send_i(send_i )) ;

always #5 clk_i = ~clk_i; // 100 MHz clock

initial
begin

clk_i = 1’b0;
switch_i = 8’h43; // C
rst_i = 1’b1;
send_i = 1’b0;
#200 rst_i = 1’b0;
#1000 send_i = 1’b1;
#1100 send_i = 1’b0;

end

endmodule
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2.3 Exercises

Preparation task 1
Individual! Draw a HW diagram of the UART. Use simple components like counters,
registers, shift registers, and state machines. Show this to the lab supervisor at the start
of the lab!

Laboration task 0.1
Individual!
a) Translate your HW diagram into Verilog code to be used on the zedboard. Use the
lab0_zed.sv file
b) Simulate your design in ModelSim, using the lab0_zed_tb
c) Synthesize your design, program the FPGA and test run your design.
d) Move the design to the VirtexII board. Do this by copying the code into lab0.sv,
update the clock frequency, and if necessary modifying the testbench lab0_tb.sv

2.3.1 Commands

Add definitions of tools to use by adding the course module using the command
module load courses/TSEA44. To start the simulator with the zedboard design,
use the command make sim_lab0_zed, and to start the simulator with the VirtexII
design use the command make sim_lab0. To generate a bitfile to program the FPGA
of the zedboard use make lab0_zed.bit and for the VirtexII use make lab0.bit.

To configure the Zedboard FPGA with a .BIT file, use sh utils/download_zed.sh
lab0_zed.bit, and use use sh utils/download.sh lab0.bit to program the Vir-
texII board. There are also a makefile target prog_lab0_zed and prog_lab0 to sim-
plify these tasks.
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2.3.2 A User Constraint File

You will need the User Constraint File that describe the board signals. The list used
for the zedboard is shown in Listing 2.3. The exact same signals and names men-
tioned in Listing 2.3 must be present in the interface declaration of you top module.
Comment out the lines that you don’t use. (This file is included in the lab skeleton as
lab0_zed.ucf for the zedboard and lab0.ucf for the Virtex II board.)

Listing 2.2: User constraints file for your UART on zedboard
NET "clk_i" LOC = "Y9" | IOSTANDARD=LVCMOS33; // 100 MHz on Zedboard
NET "rst_i" LOC = "R16" | IOSTANDARD=LVCMOS18; // BTND (downward) on green flexo
NET "send_i" LOC = "T18" | IOSTANDARD=LVCMOS18; // BTNU (up) on green flexo
// black switches
NET "switch_i <0>" LOC = "F22" | IOSTANDARD=LVCMOS18; // SW0
NET "switch_i <1>" LOC = "G22" | IOSTANDARD=LVCMOS18; // SW1
NET "switch_i <2>" LOC = "H22" | IOSTANDARD=LVCMOS18; // SW2
NET "switch_i <3>" LOC = "F21" | IOSTANDARD=LVCMOS18; // SW3
NET "switch_i <4>" LOC = "H19" | IOSTANDARD=LVCMOS18; // SW4
NET "switch_i <5>" LOC = "H18" | IOSTANDARD=LVCMOS18; // SW5
NET "switch_i <6>" LOC = "H17" | IOSTANDARD=LVCMOS18; // SW6
NET "switch_i <7>" LOC = "M15" | IOSTANDARD=LVCMOS18; // SW7
// row of LEDs above switches
NET "led_o <0>" LOC = "T22" | IOSTANDARD=LVCMOS33; // LED LD0
NET "led_o <1>" LOC = "T21" | IOSTANDARD=LVCMOS33; // LED LD1
NET "led_o <2>" LOC = "U22" | IOSTANDARD=LVCMOS33; // LED LD2
NET "led_o <3>" LOC = "U21" | IOSTANDARD=LVCMOS33; // LED LD3
NET "led_o <4>" LOC = "V22" | IOSTANDARD=LVCMOS33; // LED LD4
NET "led_o <5>" LOC = "W22" | IOSTANDARD=LVCMOS33; // LED LD5
NET "led_o <6>" LOC = "U19" | IOSTANDARD=LVCMOS33; // LED LD6
NET "led_o <7>" LOC = "U14" | IOSTANDARD=LVCMOS33; // LED LD7
// PMOD JB connected to USB -UART
NET "rx_i" LOC = "V10" | IOSTANDARD=LVCMOS33; // PMOD B, JB3
NET "tx_o" LOC = "W11" | IOSTANDARD=LVCMOS33; // PMOD B, JB2

Listing 2.3: User constraints file for your UART on VirtexII

NET "clk_i" LOC = "AK19"; // 40 MHz in this lab
NET "rst_i" LOC = "C2"; // SW1 (red) on green flexo
NET "send_i" LOC = "B3"; // SW2 (black) on green flexo
// blue DIP switches
NET "switch_i <7>" LOC = "AL3"; // SWITCH 1
NET "switch_i <6>" LOC = "AK3"; // SWITCH 2
NET "switch_i <5>" LOC = "AJ5"; // SWITCH 3
NET "switch_i <4>" LOC = "AH6"; // SWITCH 4
NET "switch_i <3>" LOC = "AG7"; // SWITCH 5
NET "switch_i <2>" LOC = "AF7"; // SWITCH 6
NET "switch_i <1>" LOC = "AF11"; // SWITCH 7
NET "switch_i <0>" LOC = "AE11"; // SWITCH 8
// row of LEDs
NET "led_o <7>" LOC = "N9"; // LED D4
NET "led_o <6>" LOC = "P8"; // LED D5
NET "led_o <5>" LOC = "N8"; // LED D6
NET "led_o <4>" LOC = "N7"; // LED D7
NET "led_o <3>" LOC = "M6"; // LED D8
NET "led_o <2>" LOC = "M3"; // LED D9
NET "led_o <1>" LOC = "L6"; // LED D10
NET "led_o <0>" LOC = "L3"; // LED D11
// rainbow flat cable
NET "rx_i" LOC = "M9";
NET "tx_o" LOC = "K5";
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2.4 gtkterm usage

Start gtkterm in a shell or from Applications->Accessories->GTKTerm if your
computer have the board to use connected. All computers have a zedboard connected,
but there are fewer VirtexII boards.

Communication parameters are set from Configuration->Port and should for the
zedboard be /dev/ttyUSB0 and for the VirtexII board be/dev/ttyUSB2. For both
boards use speed 115200, no parity, 8 bits, 1 stop bit and no flow control.
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Chapter 3

Lab task 1 - Interfacing to the
Wishbone bus

3.1 Introduction

In this lab exercise you will get acquainted with the OR 1200 RISC processor and
particularly the Wishbone bus. You will do this by designing and interfacing two
modules, a UART and a performance counter module to the Wishbone bus.

OR1200

1

0 1

I/F

WB
Boot Monitor in ROM

RAM

2

stx_pad_o

srx_pad_i

Performance

Counters

Parallel Port7

9

in_pad_i

out_pad_o

lab1.sv

clk_i rst_i

UARTI/F

Figure 3.1: The computer. The two gray modules will be designed by you.

Figure 3.1 depicts the computer that you are going to work with in this laboratory
exercise. You will have to:

1. modify your UART from the previous lab and interface it to the Wishbone bus.
The wishbone interface should be inserted into lab1/lab1_uart_top.sv.

2. check the UART device drivers in the boot monitor. The driver is in this file
monitor/firmware/src/uartfun.c.

3. download and execute a benchmark program, that performs the DCT part of
JPEG compression on a small image in your RAM module.

33
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4. simulate the computer running the benchmark program.

5. design a module containing hardware performance counters (perf_top.sv in
the lab skeleton).

3.2 Some Basic Facts on the Wishbone Bus

The Wishbone bus is intended for implementation in FPGAs or ASICs. Typical for
such a bus is that multiplexers are used instead of tristate buffers. Two data buses are
used, one for each direction, see Figure 3.2a.

Master Slave

wb.stb

wb.cyc

wb.ack

wb.dat_o

wb.dat_i

wb.adr

(a) A Wishbone Master/Slave inter-
face.

wb.dat_o

wb.stb

wb.cyc

wb.we

wb.ack

clk

wb.adr

(b) A Wishbone write cycle.

wb.we

wb.stb

wb.cyc

wb.ack

wb.dat_i

wb.adr

(c) A Wishbone read cycle.

Figure 3.2: The Wishbone bus protocol.

In this lab we will only need a subset of the Wishbone protocol, namely the basic
write and read bus cycles.

For the write cycle, see Figure 3.2b, we have:

1. The master places address and data on the buses wb.adr and wb.dat_o, re-
spectively. Finally the master asserts the wb.stb-signal, wb.cyc-signal, and
wb.we-signal.

2. The slave, when ready, decodes the address bus, latches the data and asserts the
wb.ack-signal.
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3. The Master deasserts the wb.stb, wb.cyc and wb.we-signals.

4. The slave deasserts the wb.ack-signal.

For the read cycle, see Figure 3.2c, we have:

1. The master places the address on the bus wb.adr and asserts the wb.stb-signal,
the wb.cyc-signal, and deasserts the wb.we-signal.

2. The slave, when ready, decodes the address bus, places the data on the data bus
wb.dat_i and asserts the wb.ack-signal.

3. The Master deasserts the wb.stb and wb.cyc-signals.

4. The slave deasserts the wb.ack-signal.

In these basic write and read bus cycles the wb.stb and wb.cyc-signals are identical.
The wb.cyc-signal is used for arbitration of the bus, so the master may assert it for
many cycles, for instance during a cache line refill.

3.2.1 A Wishbone Interconnect

Before we begin with the actual integration of the computer we would like to give a
short explanation of the Wishbone interconnect. In Figure 3.3 we show an example
of 2 masters and 3 slaves connected to a Wishbone bus. The m-bus is all the signals
going from the master to a slave, like the address bus, data bus and in particular the
stb-signal. The s-bus is all the signals going from the slave to a master, like the data
bus and the ack-signal.

M0 M1

ARB

DEC

S0 S1 S2

m−bus

s−bus

m0 m1

s0 s1 s2

cyc1

M−mux

S−mux

cyc0

Figure 3.3: A Wishbone interconnect for 2 masters and 3 slaves.

An arbiter, a finite state machine, listens to the cyc-signals from the masters. The
masters M0 and M1 are, in our implementation, granted the bus in a round-robin fash-
ion. The m-bus is then connected to all the slaves. The stb-signal is, however, only
asserted at the addressed slave port.
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In the return path the addressed slave’s s-bus is connected to all the masters. This
is handled by the block DEC. The ack-signal is, however, only asserted at the master
that won the arbitration.

3.3 A Simple Computer

3.3.1 General

For the lab you will have to download tsea44.tgz if you haven’t done so already.
Uncompress the zip-file to your home directory. Inspect the directory hw and you will
find:

• the file lab1/lab1_uart_top.sv, a skeleton for the top file.

• the file lab1.ucf, a User Constraints File.

• the directory or1200 containing the CPU. The top file is or1200_top.sv.

• the directory monitor containing both HW and SW for the boot monitor.

• the directory wb containing the Wishbone interconnect.

• the directory include containing some include files.

• the directory firmware, which contains the example program dct_sw/dct_sw
that can be downloaded to your computer with the boot monitor.

3.3.2 A Wishbone Interface for the UART

Let’s start our computer design with the UART. In the introductory lab you designed a
simple UART. All that is needed now is to attach a Wishbone interface to your design,
see Figure 3.4.

Since you will use a boot monitor that is written for the standard 16550 UART,
you will want to make your design emulate that UART.

Luckily our device driver does not use much of the functionality in the 16550.
The main enhancement in the 16550 are 16 character FIFOs in both directions. This is
more or less mandatory when you run an OS, which always has some interrupt latency.

The driver routine expects three bytesized registers:

1. transmit register, adr=0, write-only

2. receive register, adr=0, read-only

3. status register, adr=5, read-only

In the status register, you will only need two F/Fs:

• rx_full, set when the stop-bit is received and reset when the receive register is
read. Use signal wb_sel[3] to determine when the receive register is read.
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Figure 3.4: A sketch of the Wishbone interface for the UART. The signal load_tx is
a single-pulsed version of send. The tx_empty F/F is connected to two wires.

• tx_empty, set when the stop-bit has been transmitted and reset when the trans-
mit register is written. The 16550 has two slightly different flags for this case.
The monitor will work if you connect tx_empty to both these flags.

Figure 3.5 shows address maps for the UART connected to an 8 bit bus and a 32 bit
bus. The transmit register should be placed on wb.dat_o[31:24], the receive register
on wb.dat_i[31:24]. The status register should be placed on wb.dat_i[23:16].
What about address decoding? The 8 most significant bits are already decoded in the
wb.stb-signal. Since we are now using a 32 bit data bus, we will not use the two
least significant address bits. Instead the wb.sel-signal is used to access individual
data bytes. For instance wb.sel[3] is asserted when a byte on address 0x9000_0000
or (for instance) 0x9000_0004 is accessed. To prevent an access to 0x9000_0004 to
reset the status F/Fs, we connect wb.adr[2] to the AND gates.

Preparation task 2
Why must the wb.sel[3]-signal be included in the reset condition for the rx_full
F/F?

The code for the lab skeleton lab1_uart_top.sv is given in the listing 3.1. The
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7 0 07152331

9000_0000

1

2

3

4

5

9000_0000

4

sel[0]sel[1]sel[2]sel[3]

a) b)

tx_empty rx_full

rx_fulltx_empty

rx/tx rx/tx

Figure 3.5: a) Address map for the UART connected to an 8 bit bus b) Address map
for the UART connected to a 32 bit bus. The sel-signals are used to address individual
bytes.

definition of the wishbone SystemVerilog interface can be found in the appendix sec-
tion B.5.

Listing 3.1: Lab skeleton lab1_uart_top.sv.
module l a b 1 _ u a r t _ t o p

( wishbone . s l a v e wb ,
output wire i n t _ o ,
input wire s r x _ p a d _ i ,
output wire s t x _ p a d _ o ) ;

a s s i g n i n t _ o = 1 ’ b0 ; / / I n t e r r u p t , n o t used i n t h i s l a b
a s s i g n wb . e r r = 1 ’ b0 ; / / Error , n o t used i n t h i s l a b
a s s i g n wb . r t y = 1 ’ b0 ; / / Re t ry , n o t used i n t h i s l a b
a s s i g n wb . ack = wb . s t b ; / / change i f needed

/ / Here you must i n s t a n t i a t e l a b 0 _ u a r t or c u t and p a s t e
/ / You w i l l a l s o have t o change t h e i n t e r f a c e o f l a b 0 _ u a r t t o make t h i s work .
a s s i g n s t x _ p a d _ o = s r x _ p a d _ i ; / / Change t h i s l i n e . . : )

endmodule

Preparation task 3
Write Verilog code for the Wishbone interface of your UART.

Preparation task 4
Inspect the driver routines getch and putch in the file
monitor/firmware/src/uartfun.c. You will also have to look in uartfun.h.

3.3.3 The Monitor

The monitor directory contains a couple of Verilog files that implements an 8 kB
block RAM at base address 0x4001_0000. This RAM will contain the stack of the
monitor. The monitor itself is implemented in an 24 kB block ROM at base address
0x4000_0000. The contents of the block ROM is in the Verilog file mon_prog_bram_contents.v.

The software is in the sub directories firmware/src and firmware/include.
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Check mon2.c to see what the monitor does at startup so that you can verify that
the hardware does the correct thing.

3.3.4 Test Your Design

In Figure 3.6a we show a test bench for the computer. The only signals that the test
bench has to activate in this case are the clk_i- and rst_i-signals. We check the
behavior of the computer by listening to tx-signal from the UART. Part of a testbench
has already been written for you in dafk_tb/lab1_tb.v. This test bench can be
started with make sim_lab1.

Remember that you may be required to change parts of the testbench also. Make
sure to verify the testbench outputs to verify that both the input pattern and the output
patterns are as expected.

OR1200

1

0 1

I/F

WB
Boot Monitor in ROM

RAM

2

Performance

Counters

Parallel Port
7

9

lab1.sv

clk_i rst_i

lab1_tb.sv

uart_tasksUARTI/F

(a) A test bench. The module uart_tasks gives a nice printout.

(b) A test run in ModelSim, showing the signals tx and rx_data in the test bench.

Figure 3.6: Simulation of your design

There is also a smaller test bench, lab1/uart_tb.sv, that will test only your
UART design. This test bench can be started with make sim_uart. Remember to
verify that the generated testpattern is correct, and adjust the testbench if necessary.

Laboration task 1.1
Test your computer.
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3.4 A Benchmark Program

3.4.1 JPEG Compression

We will use the first part, DCT, of the JPEG compression algorithm to test our com-
puter. This section is inspired by [3]. We begin with a short discussion of how DCT
works.

3.4.2 Integer DCT

The two dimensional discrete cosine transform (DCT) for an 8 × 8 array a[x, y] is
defined as

A[u, v] = c[u]c[v] ·
7∑

x=0

7∑
y=0

a[x, y] cos
πu

8
(x+

1

2
) cos

πv

8
(y +

1

2
) (3.1)

where c[0] = 1/
√
8 and c[u] = 1/2 when u 6= 0.

The transform in (3.1) can be separated. First compute a one-dimensional DCT on
each row and then a one-dimensional DCT on each column.

A[u, v] = c[v] ·
7∑

y=0

{
c[u]

7∑
x=0

a[x, y] cos
2π

32
(2x+ 1)u

}
cos

2π

32
(2v + 1)y (3.2)

The innermost part of (3.1) is the 1-D DCT, which we repeat with slightly different
notation:

A[u] = c[u] ·
7∑

x=0

a[x] cos

(
2π

32
(2x+ 1)u

)
(3.3)

By using all possible symmetries of the cosine function it is not so difficult to figure
out a fast DCT, see Figure 3.7. This computation scheme is usually referred to as
Loeffler’s algorithm. It computes the 1-D DCT as defined in (3.2) multiplied with

√
8.
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Figure 3.7: Loeffler’s original algorithm for fast DCT. Black circles means addition,
dashed lines multiplication with -1 and white circles multiplication with

√
2. White

boxes marked cn denote rotation with nπ/16.

The white boxes in Figure 3.7 denote rotation with nπ/16 :{
xout = xin · cosnπ/16 + yin · sinnπ/16
yout = −xin · sinnπ/16 + yin · cosnπ/16

(3.4)
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Sofar we have presented three ways of computing the 2-D DCT. We compare the
computation complexity of the algorithms:

Algorithm MUL ADD
Eq (3.1) 4096 4032
Eq (3.2) 1024 892
Loeffler original 224 416

The post multiplication with c[u] has been left out of the table.
The OR1200 CPU has no floating point arithmetic, so the sin/cosine factors and

√
2

in Figure 3.7 must be mapped to integers. We have chosen to multiply with 213 and
rounding to the nearest integer. We have the following correspondences:

Real number Integer√
2 11585

cosπ/16 8035
sinπ/16 1598
cos 3π/16 6811
sin 3π/16 4551√
2 cos 6π/16 4433√
2 sin 6π/16 10703

The scheme in Figure 3.7 has a serious drawback. The outputs 3 and 5 pass through
two multipliers. There is, however, a modified version where this flaw has been re-
moved at the price of 1 extra multiplier and 3 extra adders. The last 3 stages on the
lower part of Figure 3.7 is replaced with the computation scheme in Figure 3.8. This
modification is not, in our opinion, so easy to figure out. The interested reader is
therefore directed to the original article, [4].
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Figure 3.8: Loeffler’s modified algorithm. Computation of the odd part with parallel
multiplications.

We conclude that Loeffler’s modified algorithm can be used with integer arith-
metic. After each run all outputs, except 0 and 4, must be arithmetic right shifted 13
steps. The 2-D DCT will be 8 · A[u, v] compared to (3.2), which can be compensated
for in later stages in the JPEG compression algorithm.
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Preparation task 5
Why do we go through all the trouble inserting the module in Figure 3.8? Why is it so
bad having 2 multipliers in series?

3.4.3 The Test Program dct_sw

For this lab you will get a test program dct_sw.c, written by us. It is a straightforward
implementation of Loeffler’s algorithm and computes the 2-D DCT of an 8× 8 image.
You will actually find two copies:

• in the directory hw/firmware/dct_sw for downloading and running on the tar-
get computer. You can also run it on the host computer.

• in the directory hw/monitor/firmware/src for simulation. A call to the DCT
program has been inserted in the beginning of the monitor program mon2.c.

3.4.4 A Test Example

a[x, y] =



1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64


(3.5)

Origo is shown in bold text.

8 ·DCT [a− 128] =



−6112 −152 0 −16 0 −8 0 −8
−1167 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
−122 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−37 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−10 0 0 0 0 0 0 0


(3.6)

3.5 Design a Performance Counter Module

As a last task in this lab you shall design a simple performance counter module, see
Figure 3.1. The module shall:

1. be connected to slave port 9 of the Wishbone bus.

2. have the port definition shown in Listing 3.2.

3. contain four 32 bit counters that can be read and written on the addresses 0x9900_0000
to 0x9900_000c.
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4. The counter on address 0x9900_0000 shall count the number of clock cycles that
m0.cyc and m0.stb are both asserted. The counter on address 0x9900_0004
shall count the number of clock cycles that m0.ack is asserted.

5. The counter on address 0x9900_0008 shall count the number of clock cycles that
m1.cyc and m1.stb are both asserted. The counter on address 0x9900_000c
shall count the number of clock cycles that m1.ack is asserted.

6. Be aware that you will add extra signals (and counters) to this module in later
labs to measure DMA activities.

7. You may optionally use the m?.we signals to gather even more statistics.

Listing 3.2: Performance counter module port definition. The definition of the wish-
bone SystemVerilog interface can be found in the appendix, section B.5.

module p e r f _ t o p ( wishbone . s l a v e wb , wishbone . m o n i t o r m0 , m1 ) ;

reg [ 3 1 : 0 ] c t r 0 , c t r 1 ; / / your c o u n t e r s

a s s i g n wb . ack = wb . s t b && wb . cyc ; / / how t o f i x t h e ack−s i g n a l

/ / your code goes here

endmodule / / p e r f _ t o p

Laboration task 1.2
Design the performance counter module and use these counters to measure the per-
formance of the dct_sw.c program. There is also a free running timer present in the
processor. You can access it on SPR register 0x5002. In this lab you may also use the
regular timer register in the processor since no operating system will modify it.
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3.6 Useful Commands

We have prepared a makefile based build system that is responsible for both building
the monitor firmware and synthesizing the hardware from the RTL source code. You
can use it on the Linux computers in Muxen 1. The following targets will be useful for
you:

• make lab1 Creates a bit file of the computer in this lab task.

• make sim_lab1 Launches Modelsim on the “lab1” system.

• make sim_uart Launches Modelsim on your UART.

• make dafk Creates a bit file of the complete system.

• make sim Launches Modelsim on the complete system.

• make simfiles Recompiles all source files for use with Modelsim but does
not launch Modelsim itself. This is mainly useful if you already have Modelsim
running and want to try out some changes to your source code. This way you
don’t need to close Modelsim, it is enough to issue a restart command in
Modelsim.

• make clean Removes intermediate files and backup files.

• make updatebit Compiles the monitor and updates dafk.bit, and lab1.bit
with the new monitor. This way you don’t need to resynthesize the design to test
changes in your monitor. The updated bit file is named updated_dafk.bit for
dafk.bit and so on.

We also have some utilities that you might be interested in. The first of these is
download.sh which you can use to download your design.Invoke it as in the following
example:

utils/download.sh dafk.bit

Another utility is designed to highlight the error and warning messages in the var-
ious reports that the Xilinx flow will output. Use it on (for example) the synthesis
report with the following command:

make dafk.bit | utils/checklogs.pl

3.6.1 Synthesis Reports

If you use make, the following files will be of special interest to you: (look in /tmp/<your
name>/synthdir

• precision.log: Synthesis report

• foo_map.mrp: Map report
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• foo.par: Place and Route report

• foo_timing.rep: Timing analyzer report

(Where foo is the name of the top level file you compiled, as in dafk or lab1).

3.7 How to get Started Writing/Executing C Programs

A good starting point is the program simpleprog situated in the directory firmware.
It can be compiled with make in Linux.

The executable file is simpleprog.hex which can be downloaded with the com-
mand l in the monitor and File->Send Raw File in gtkterm. You run the program
with g 2000 or just g.

The size of the DRAM is 64 MB, so there is plenty of room for your program.
You can check the length of the program by looking inside the file simpleprog.txt,
which is a disassembled version of simpleprog. The length of simpleprog is 2800
bytes.

3.7.1 A Note on Volatile

Normally, the compiler assumes that memory locations will not change unless the pro-
gram itself changes it. This assumption does not hold when the program tries to access
I/O memory. For example, in the following code shown in Listing 3.3, the programmer
wants the program to wait until pin 1 of the parallel port is set to 1. The problem is
that an optimizing compiler will generate assembler code doing approximately what is
shown in Listing 3.4.

Listing 3.3: Volatile is not used for memory mapped I/O.
unsigned i n t ∗ p a r p o r t = 0 x91000000 ;
whi le ( ( ∗ p a r p o r t & 0x1 ) != 1 ) ; /∗ Busy w a i t ∗ /

Listing 3.4: Resulting assembler from code in Listing 3.3.
LOAD R0 , [ 0 x91000000 ] ; Load v a l u e from memory
AND R0 , R0 , 0 x1 ; And R0 w i t h 1
CMP R0 , 0 x1 ; Compare R0 w i t h 1

loop :
BNEQ loop ; Jump t o loop i f R0 was n o t e q u a l t o 1

This is certainly not what the programmer had in mind. This kind of error is even
more insidious because in some cases it might work ok and in some cases it will fail
sporadically and in some cases it might not work at all. It will also depend on the
optimization level of the compiler. The correct way to deal with this situation is to tell
the C compiler that the memory location can change at any time. This will force the
compiler to generate code that reloads the memory location every time it is referenced.
This can be done using the volatile keyword. We recommend that you use the
macros shown in Listing 3.5 to access memory mapped I/O. These macros are defined
in both the monitor (mon2.h) and in jpeglib.h but if you write a small test program
you might have to include them in your own source code as well. Using these macros1

1The macros assume that a long is 32 bits, a short is 16 bits and a char is 8 bits.
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the program from Listing 3.3 would look like whats shown in Listing 3.6.

Listing 3.5: Recommended macros for memory mapped I/O access.
# d e f i n e REG32 ( add ) ∗ ( ( v o l a t i l e unsigned long ∗ ) ( add ) )
# d e f i n e REG16 ( add ) ∗ ( ( v o l a t i l e unsigned s h o r t ∗ ) ( add ) )
# d e f i n e REG8( add ) ∗ ( ( v o l a t i l e unsigned char ∗ ) ( add ) )

Listing 3.6: Correct program, using volatile.
whi le ( ( REG32(0 x91000000 ) & 0x1 ) != 1 ) ; /∗ Busy w a i t ∗ /

3.7.2 What to Include in the Lab Report

The lab report should contain all source code that you have written. (The source code
should of course be commented.) We would also like you to include a block diagram
of your hardware. If you have written any FSM you should include a state diagram
graph of the FSM.

We would also like you to discuss the following questions:

• How did you verify that your computer hardware worked?

• What is the performance of the 2D DCT software? (Try it with and without
caches.)

• How much of the FPGA is used by our design?

And of course, the normal parts of a lab report such as a table of contents, an intro-
duction, a conclusion, etc. The source code that you have written should be included
in appendices and referred to from the main document.



Chapter 4

Lab task 2 - Design a JPEG
accelerator

4.1 The lab system

In this lab task you will learn how to build a hardware accelerator for the JPEG image
compression algorithm. In this lab you will use the build target dafk.bit. This is a
complete system with the following components:

• OR1200 CPU

• Boot monitor

• UART

• VGA controller

• Camera controller

• Ethernet controller

• SDRAM, SRAM, and flash memory controller

µClinux is programmed into the flash memory on the FPGA board and we will use
this operating system for the remainder of this course. Examples of how to compile
for Linux are included in the lab skeleton in the hello directory.

4.2 Proposed architecture

We propose the general architecture shown in Figure 4.1. It works in the following
way:

1. An 8× 8 bytes image is written from the Wishbone bus by the application pro-
gram to the in RAM in 16 write cycles. Pixels are 8-bit positive numbers and
packed in one 32-bit word. We recommend that you subtract 128 from each pixel
before it is written to the in RAM. The accelerator is then started by setting the
START bit in csr (Control/Status Register).

47
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Figure 4.1: Proposed architecture for the 2-D DCT-accelerator. csr is a Control/Status
register. Not all wires are shown.

2. A row of the image is read from the in RAM in 2 clock cycles. This is repeated
8 times.

3. The rows are transformed in DCT (12-bit signed numbers) and written to the
transpose memory in the same tempo

4. When all rows have been written to T, columns, 8 × 12 bits, can be read from
T and fed into the DCT again. A complete column can be read per clock cycle.
After the second DCT the values are 16-bit signed numbers.

5. Finally 2 × 16 bits per clock cycle are quantized in Q2 and written to the out
RAM. When all columns have been written, the RDY bit in csr is set.

You will receive a Verilog module, dct.v, that computes a 1-D DCT multiplied
with

√
8. This file is a straightforward implementation in Verilog of the computation

schemes (modified Loeffler) in Figures 3.7 and 3.8 in Chapter 3.

Preparation task 6
Open the file dct.v and have a look at what it does. What are the inputs, what are the
outputs? How many clock cycles does a computation take? Is it pipelined?

4.2.1 Block RAMs in VirtexII

The VirtexII-4000 FPGA contains 120 18 kbit block RAMs. They are dual ported with
two completely independent sets of synchronous read and write ports. The easiest way
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to use a block RAM is, in our opinion, to instantiate a library primitive. The code in
Listing 4.1 instantiates a block RAM shown in Figure 4.2.

SSR is a set/reset signal, that only affects the output latches, not the RAM mem-
ory cells. DIP and DOP can be used for additional data such as parity bits but we do
not use them in this lab. It is important to understand that both reads and writes are
synchronous as opposed to an ordinary RAM that you might have used in one of our
earlier courses such as Digital Konstruktion.

Listing 4.1: Instantiation of a block RAM as shown in Figure 4.2
wire [ 3 1 : 0 ] doa , d ia , dob , d i b ;
wire [ 8 : 0 ] addra , addrb ;
wire c lk , cea , wea , ceb , web ;

/ / dua l p o r t 512 x32 RAM
RAMB16_S36_S36 memory (
/ / p o r t A
.DOA( doa ) , .DOPA( ) , .ADDRA( a d d r a ) , . CLKA( c l k ) ,
. DIA ( d i a ) , . DIPA ( 4 ’ h0 ) , .ENA( cea ) , . SSRA( 1 ’ b0 ) , .WEA( wea ) ,
/ / p o r t B
.DOB( dob ) , .DOPB( ) , .ADDRB( addrb ) , . CLKB( c l k ) , . DIB ( d i b ) ,
. DIPB ( 4 ’ h0 ) , .ENB( ceb ) , . SSRB( 1 ’ b0 ) , .WEB( web ) ) ;

DIA DIB

DOA DOB

32 32

32 32

9 9

ADDRA

CLKA,ENA,

WEA

ADDRB

CLKB,ENB,

WEB

Figure 4.2: Dualported 512× 32 bit block RAM.

4.2.2 Distributed RAMs

Small RAMs can be designed using the LUTs in the FPGA. A LUT is a 16× 1 RAM.
Distributed RAM memory supports the following:

• Single-port RAM with one synchronous write and one combinatorial read port

• Dual-port RAM with one synchronous write port and two asynchronous read
ports

For instance a 16× 8 RAM can be designed in Verilog as shown in Listing 4.2.

Listing 4.2: Distributed RAM instantiaton in Verilog.
reg [ 7 : 0 ] mem [ 1 5 : 0 ] ;
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wire [ 7 : 0 ] d a t a _ i , d a t a _ o ;
wire [ 3 : 0 ] addr_a , addr_b ;

/ / 1 c o m b i n a t o r i a l read p o r t
a s s i g n d a t a _ o = mem[ a dd r _a ] ;

/ / 1 s y n c h r o n o u s w r i t e p o r t
always @( posedge c l k ) begin

i f ( we )
mem[ addr_b ] <= d a t a _ i ;

end

4.2.3 The transpose memory

The transpose memory shall:

• be designed as a Verilog module, with the interface shown in Listing 4.3.

• hold an 8× 8× 12 bit image.

• allow writes of rows and reads of columns in one clock cycle.

• have no address inputs.

Listing 4.3: Transpose memory interface
module t r a n s p o s e ( input c lk , r s t , wr , rd ,

input [ 9 5 : 0 ] in , output [ 9 5 : 0 ] u t ) ;

We leave it to the designer to decide how the signals wr, rd exactly work.

4.2.4 WB memory map

The accelerator shall have the memory map shown in Table 4.1. csr is the Control/Status
register. The accelerator is started by setting (from WB) bit 0, the START bit. When
the accelerator is ready bit 7, the RDY bit, is set. The START bit is cleared by the DCT2
Control Unit and the RDY bit by software.

mem Base Address Size Read/Write
in 0x9600_0000 512× 32 WO 32 bit

out 0x9600_0800 512× 32 RO
csr 0x9600_1000 1× 8 RW 8 bits
dma 0x9600_1800 For use in lab 3

Table 4.1: Accelerator memory map

Preparation task 7
Draw a block diagram of the transpose memory. Rows can be written and columns can
be read in 1 clock cycle.
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Laboration task 2.1
Design and implement the DCT accelerator with a WB interface.

Laboration task 2.2
Write a testbench for your DCT accelerator.

4.3 Introduction to µClinux

In the remaining labs we are going to run µClinux on the openrisc system. The
most important difference between µClinux and Linux is that µClinux works with-
out an MMU. This means that there is no memory protection for programs running
on µClinux. Therefore, extra care must be taken during development since a bug in a
program may cause the entire operating system to crash.

You can start µClinux on the openrisc system by using the u command in the
monitor. This will copy a µClinux image from the flash memory to the SDRAM and
boot µClinux. If everything worked you will get a prompt and you should also be able
to browse a web page on the µClinux machine. The IP address of the µClinux machine
is printed by the boot script.

On the µClinux machine, most directories are read only but /mnt and /var is
writable. /mnt is a good directory to download programs to. The base directory for
the web server documents is in /mnt/htdocs.

Laboration task 2.3
Boot µClinux and familiarize yourself with it.

4.3.1 Compiling an application to µClinux

In the hello directory of the lab skeleton there is a sample hello world application.
This has to be cross compiled on one of the Linux machines in the lab. The cross
compiler has access to a C library so you can use all standard functions like printf,
fopen, fread, etc. If you are interested in how the cross compiler is invoked, you can
take a look at the Makefile. Just type make in the hello directory to compile it.

4.3.2 Starting the TFTP server

In order to download applications via tftp we first need to start a TFTP server on one
of the Linux computers in the lab. In Linux, this can be started with the following
command:

/usr/sbin/uftpd -n -o ftp=5051,tftp=5050 ~/tftp

This will start a TFTP server listening on UDP port 50501. Files will be served from
the tftp directory in your home directory. The options --daemon --no-fork are
used so that the tftp client can be interrupted with ctrl c. (We don’t want any TFTP

1Port 69 is actually the standardized TFTP port but non privileged users in Linux are not permitted to
open ports below 1024 so we decided to use port 5050 instead.
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servers to be left after you log out since this would prohibit other lab groups from
starting a TFTP server.) The ip-number of the tftp server is found by giving the linux
command:

/sbin/ifconfig | grep 192

This asks for information about all connected networks, and only prints the ip-number
of the network starting with 192. The local network between the µClinux and the
Linux computer are all use a 192.168.0.xx number.

4.3.3 Downloading applications via TFTP

In order to download and run the hello application we must use tftp. First, hello
has to be copied to the tftp directory in your home directory. After that you can
write the following commands in µClinux (remember to replace 192.168.0.62 with the
ip-number of the current Linux computer):

/> cd /mnt
/mnt> tftp 192.168.0.62
tftp> get hello
Received 28664 bytes in 0.8 seconds
tftp> quit
/mnt> chmod 755 hello
/mnt> hello
3
2
1
Hello uClinux!
/mnt>

Laboration task 2.4
Download and test hello.

It can be noted that tftp sometimes says “Not a typewriter” and aborts the transfer.
This has not been fully debugged yet unfortunately. If it happens to you, just try again,
it rarely happens twice in a row.

4.4 Introduction to jpegfiles

In this lab series we will be using and enhancing a library written originally by the
Independent JPEG Group. (IJG)

The software package has been somewhat modified by us for the TSEA44 course.
First of all, we have removed a lot of files that are not needed for a µClinux target
(configuration files and Makefiles for other platforms, etc). Some of the more interest-
ing functions have been instrumented with performance counters in order to measure
how much of the CPU time is spent in these functions. Finally, we have modified the
DCT handling code to correspond to the verilog source code for the 1D DCT which is
used in the lab skeleton.
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4.4.1 Important files in the lab skeleton

In this section we describe a number of important files that you will need to look at in
this lab.

• Makefile Contains the build instructions. If you need to modify the compilation
flags, this is the file to look inside.

• jpegtest.c contains the test program we will use

• testbild.raw is a grayscale image in raw format.

• perfctr.c,perfctr.h This is the place to look if you want to add a new per-
formance counter

• jcdctmgr.c Contains the main computation loop and definitions of static vari-
ables. Also contains the forward_DCT function which calls the 2D DCT kernel
and does the quantization.

• jdct.c Contains the 2D DCT kernel

• jchuff.c Contains the Huffman and RLE encoder.

• webcam.c Another test application we will use

Below is a call graph of the important functions called by jpegtest:

main() (jpegtest.c)
+-- draw_image() (jpegtest.c)
+-- init_encoder() (jcdctmgr.c)
+-- encode_image() (jcdctmgr.c)
| +-- forward_DCT() (jcdctmgr.c)
| | +-- jpeg_fdct_islow() (jdct.c)
| +-- encode_mcu_huff() (jchuff.c)
| +-- emit_bits() (jchuff.c)
+-- finish_pass_huff (jchuff.c)

• encode_image() - Creates a buffer for an 8× 8 block and calls forward_dct(8x8
buffer), the returned buffer is sent to encode_mcu_huff(8x8 buffer). This will
encode the first block of the image and save it in memory. The procedure is
then repeated until every block is encoded and then finish_pass_huff() is called
to write the memory buffer to file.

• forward_dct() - Extracts the first 8 × 8 block from the image and then runs the
DCT on this block. The result is returned to encode_image().

• encode_mcu_huff() - Uses a predefined Huffman code to compress the data re-
turned from forward_dct() and sends the Huffman codes to emit_bits().

• emit_bits() - Recieves Huffman codes and save them until enough bits to write a
byte are received, then a byte is written to buffer[].
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• buffer[] - Storage for the encoded image memory during operation.

• finish_pass_huff() - Calls emit_bits() to write leftover bits to buffer[] and then
calls write_data().

• write_data() - Writes the contents of buffer[] to file.

Preparation task 8
Take a look at the file containing the 2D DCT kernel and figure out how to change it
to use your 2D DCT hardware.

4.4.2 The jpegtest application

This is the main test application we are going to use in the lab series. It will first read a
raw picture from a file named testbild.raw, encode it to JPEG format and write it to
an output file which you specify on the command line. It will also output performance
data on how many clock cycles some important functions consumed. In order to see
the encoded image you can place it in the /mnt/htdocs directory and download it to
your computer via the web server on the µClinux machine.

Laboration task 2.5
Download and test the jpegtest application. Both with and without the testbild.raw
program.

4.4.3 The webcam application

The lab skeleton also includes a simple webcam application. You can download
webcam.cgi to /mnt/htdocs/cgi-bin and look at the webcam via the web browser.

Laboration task 2.6
Modify jpegfiles to use your 2D DCT hardware and test it by using jpegtest and
webcam.cgi. The results should be exactly the same as if you were using the software
only version.

4.5 Timestamps

The size of the test image wunderbart.jpg is 512 × 400 pixels, or 64 × 50 8 × 8-
blocks. The Figure 4.3 shows the result of collecting timestamps in the beginning of
block row 50.

The order of the operations is

1. read a block from DRAM (w/o DMA)

2. calculate DCT on the block (w/o HW DCT)

3. quantize the block (w/o HW Quantization)

4. readout of the block
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Figure 4.3: Timestamps for JPEG compression pipeline. Each color coded patch rep-
resents the processing of an 8× 8-block. Colorcodes: DMA+DCT red, readout green,
quantization blue and Huffman encoding yellow.

5. Huffman encoding of the block (w/o special instruction)

In Figure 4.3 we have implemented all the HW accelerators except the quantization
step. It is evident that the design will gain a lot from the acceleration of the quantization
step. Putting more work into the DCT-accelerator is wasted hardware. The DCT-
accelerator will always be overlapped by (typically) the Huffman encoding.

Timestamps can be collected by using

timestamp = gettimer();

gettimer is a macro defined in perfctr.h in jpegfiles.
The completion of the HW DCT operation can not be determined by software.

Instead you can include a 10-bit counter (for instance) in the accelerator. The counter
can be mapped into the free bits of the control register.

4.6 Quantization

4.6.1 General

The standard JPEG quantization table for the luminance channel is given by

QL[u, v] =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (4.1)
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To get higher image quality this table is divided by 2. Reciprocals are then computed
by the formula

R[u, v] =
214

QL[u, v]/2
, (4.2)

which is the table in the file jcdctmgr.c.
As an example we use A[u, v] from (3.6). Before quantizing A[u, v] we subtract

64× 128 = 8192 from the DC value A[0, 0], which corresponds to taking the DCT of
a[x, y] − 128. This procedure is meant to give a smaller value on the average, which
however is false in this particular case.

Finally we compensate for the scale factor 8 introduced in the DCT2 step by right-
shifting 17 steps:

Y [u, v] = round
[
(A[u, v]− 8192 · δ[u, v]) ·R[u, v] · 2−17

]

=



−96 −3 0 0 0 0 0 0
−24 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (4.3)

which left only four non zero coefficients.

4.6.2 Design of a hardware accelerator for quantization

The following piece of code in jcdctmgr.c in jpegfiles calculates the quantization
of one block. Instead of division multiplication with the reciprocal is used.

Listing 4.4: C code for quantization in jcdctmgr.c.

i n t r e c i p r o c a l s [ ] = {2048 , 2979 , 3277 , 2048 , 1365 , 819 , 643 , 537 ,
2731 , 2731 , 2341 , 1725 , 1260 , 565 , 546 , 596 ,
2341 , 2521 , 2048 , 1365 , 819 , 575 , 475 , 585 ,
2341 , 1928 , 1489 , 1130 , 643 , 377 , 410 , 529 ,
1820 , 1489 , 886 , 585 , 482 , 301 , 318 , 426 ,
1365 , 936 , 596 , 512 , 405 , 315 , 290 , 356 ,

669 , 512 , 420 , 377 , 318 , 271 , 273 , 324 ,
455 , 356 , 345 , 334 , 293 , 328 , 318 , 331} ;

. . .

f o r ( i = 0 ; i < DCTSIZE2 ; i ++) {
r v a l = r e c i p r o c a l s [ i ] ; / / 16 b i t
s i gne d temp = workspace [ i ] ; / / 16 b i t s i g n e d

temp = temp∗ r v a l ;
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i f ( temp & 0 x10000 ) {
temp = temp >> 1 7 ;
temp += 1 ; }

e l s e
temp = temp >> 1 7 ;

c o e f _ b l o c k [ i ] = ( s h o r t ) temp ; / / 16 b i t s i g n e d }
. . .

Preparation task 9
Design a HW Quantization unit (Q2 in Figure 4.1), that calculates exactly the same
values as the code in Listing 4.4. Instantiate your Q2 unit and modify the code in
listing 4.4. We propose that Q2 should be able to quantize 2 numbers per clock cycle.

4.7 Tips and tricks

In this section we have collected some notes that you might find useful.

• If you want to simulate the 2D DCT accelerator together with the rest of the
system, you will have to modify the monitor to run your testcode right after the
system has started. See the directions in section 3.3.3 on how to modify the
monitor.

• In order to improve the performance of the code you can remove some of the
performance counters. But the performance counters in jpegtest has to re-
main!

• If you encounter some weird problems with the hardware you can try to turn
the power off to the FPGA system before configuring it. We have had some
problems with the FPGA board which can be solved in this manner.

4.8 What to include in the lab report

The lab report should contain all source code that you have written. (The source code
should of course be commented.) We would also like you to include a block diagram
of your hardware. If you have written any FSM you should include a state diagram
graph of the FSM.

We would also like you to discuss the following questions in detail somewhere in
your lab report.

• How does your 2D DCT hardware work?

• How did you verify that your 2D DCT hardware works correctly?

• What is the performance with and without the 2D DCT hardware? This should
include measurements of both the 2D DCT kernel and the entire application.

• A timestamp diagram.



58 CHAPTER 4. LAB TASK 2 - DESIGN A JPEG ACCELERATOR

• How much of the FPGA is used by the 2D DCT hardware?

• How much is the 2D DCT hardware used while encoding an image in jpegtest?

• Is the size of the 2D DCT hardware justified by the performance improvements?

• What would be required in order to implement more functionality like zigzag
addressing in the 2D DCT hardware module? Would it be difficult to modify
jpegfiles to take advantage of such optimizations?

And of course, the normal parts of a lab report such as a table of contents, an intro-
duction, a conclusion, etc. The source code that you have written should be included
in appendices and referred to from the main document.
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Lab task 3

5.1 DMA in the DCT Accelerator

In this lab we will improve the DCT accelerator by using DMA. You can find a speci-
fication on how to do DMA in wishbone in appendix B.

5.1.1 Proposed architecture

In this lab we will modify the DCT accelerator created in lab 2 to use DMA. In this
case the idea is that the DMA module will feed the DCT accelerator with data from
the system memory but the CPU is still responsible for reading the data from the DCT
accelerator. This means that the changes in jpegfiles will be kept to a minimum.
The only changes will be to initialize the DMA as early as possible and to change
jpegfiles to not write data to the DCT accelerator.

There are of course a wide variety of ways to do this but we propose that the
accelerator should use the following interface:

0x9600_1800: SRCADDR, the address of the grayscale image we want to convert.

0x9600_1804: PITCH, the width of the image in bytes.

0x9600_1808: ENDBLOCK_X, the width of the image in macroblocks minus one.

0x9600_180c: ENDBLOCK_Y, the height of the image in macroblocks minus one.

0x9600_1810: CONTROL (When reading) Bit 0 indicates that the DMA is not idling,
bit 1 indicates that a DCT operation for one block has been finished.

0x9600_1810: CONTROL (When writing) Writing a 1 to bit 0 starts the DMA FSM
whereas writing a 1 to bit 1 tells the accelerator that the processor has read the
result of one block and the DMA accelerator may proceed with the next block.

59
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IDLE

WAITREADY

GETBLOCK

WAITREADY_LAST RELEASEBUS

Figure 5.1: The proposed state diagram for the DMA accelerator.

In Figure 5.1 there is a state diagram which is suitable for the DMA accelerator. The
states are described below:

• IDLE:
The DMA module is not doing anything.

• GETBLOCK:
The DMA module is fetching an 8x8 block. Once the block is fetched we go to
the WAITREADY state and starts the DCT transform.

• RELEASEBUS:
The DMA accelerator has to release the bus regularly so that other components
can access it. You should do this for every line of a macroblock that you read.

• WAITREADY:
In this state we wait until the program tells us that it has read the result of the
transform by writing to the control register.

• WAITREADY_LAST:
Same as WAITREADY except that we go to the IDLE state when done.

5.1.2 jpeg_dma.sv

The interface to the jpeg_dma module consists of a wishbone master interface, a sim-
plified wishbone slave port and some control signals that are connected to the DCT
accelerator in the jpeg_top module. A simplified view of the proposed architecture is
shown in figure 5.2. Some of the most important signals are described below:
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• dma_bram_data:
The data we want to write to inmem in jpeg_top.

• dma_bram_addr:
The address we want to write the data to.

• dma_bram_we:
The write enable signal for inmem.

• dma_start_dct:
When this clock signal is high for one clock cycle, the DMA accelerator will
start to transform the current block in inmem.

• dct_busy:
This input signal is high from one clock cycle after dma_start_dct has been
activated to the moment all results have been written to outmem. (You have to
make sure that your DCT accelerator busy signal actually works like this.)

The interface to the address generator is as follows:

• resetaddr_i:
The address generator sets the address to the start address specified in dma_srcaddr.

• incaddr_i:
The address generator will increase the address to the next word we need to read.

• address_o:
The current address of the image.

• endframe_o:
This signal is active when the current address is the last address of the image.

• endblock_o:
This signal is active when the current address is the last address of an 8x8 block.

• endline_o:
This signal is active when the current address is the last address of a line of an
8x8 block.

• dma_srcaddr, dma_pitch, dma_endblock_x,dma_endblock_y:
As described above.

There are also some other important signals that are available such as:

• startfsm:
This signal is active when the CPU has written a 1 to bit 0 of the CONTROL
register.

• startnextblock:
This signal is one when the CPU writes a 1 to bit 1 of the CONTROL register.
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It is important to note that the DCT accelerator should still work as before if DMA
is not in use. But you are (of course) allowed to assume that the accelerator will be used
either in DMA mode or regular mode at one time. This means that the results when
both the DMA module and a wishbone master tries to write to inmem in jpeg_top at
the same time are allowed to be undefined.

You should mainly modify jpeg_dma.sv in this lab but you will also have to mod-
ify jpeg_top.sv to account for the dma_bram_ signals. In jpeg_dma.sv some code
already exists, for example, an address generator capable of generating the addresses
required to read in the frame in 8×8 blocks is already instantiated. The writing and
reading of control registers and status registers are also complete. Your main task is to
complete the finite state machine.

In order to simplify debugging of your DMA accelerator it is useful to make sure
that you can change the DMA accelerator state to IDLE by writing to a control register
in the accelerator. This means that you don’t have to reset your system if jpegtest
aborts in the middle of a frame.

Preparation task 10
Complete as much as possible of the FSM in Figure 5.1 by filling in the conditions
for the state transitions. (Hint: The lab skeleton already has code for some of the state
transitions.)

Laboration task 3.1
Modify the DCT accelerator in lab 2 to use DMA.

Laboration task 3.2
Test your DCT accelerator in modelsim by modifying the monitor to
use your accelerator. Some initial code is available in dma_dct_hw() in
hw/monitor/firmware/src/dct2.c.

5.1.3 How to use DMA in jpegfiles

You will have to make a few changes to jpegfiles in this lab. You should modify
both jdct.c and jcdctmgr.c so that no values are copied from memory to your
DCT accelerator. You should also note that there is a level conversion of the indata in
jcdctmgr.c, that is the pixels are modified by subtracting 128 from them. You will
have to take this into account by modifying your hardware.

5.1.4 Cache coherency issue

Normally, once DMA is involved in a system it is very important to take cache co-
herency issues into account. Especially if the processor has no bus snooping facility
to update the caches automatically. However, since the OR1200 has write through
caches and the DMA accelerator only reads from memory we will not have any cache
coherency issues.

Laboration task 3.3
Modify jpegfiles to use the DMA enabled DCT accelerator.
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5.2 What to Include in the Lab Report

The lab report should contain all source code that you have written. (The source code
should of course be commented.) We would also like you to include a block diagram
of your hardware. If you have written any FSM you should include a state diagram
graph of the FSM.

We would also like you to discuss the following questions in detail somewhere in
your lab report1:

• How does your hardware work?

• How did you verify that your hardware worked?

• How did you modify the software?

• A timing diagram.

• What is the utilization of your accelerator?

• What is the performance of jpegtest with DMA enabled?

• How long does it take (on average) to read a macroblock into the DCT acceler-
ator via DMA?

• How much is the wishbone bus used by the DMA unit and how much is the bus
used by the CPU?

And of course, the normal parts of a lab report such as a table of contents, an intro-
duction, a conclusion, etc. The source code that you have written should be included
in appendices and referred to from the main document.

1In order to answer some of these questions you will probably have to modify the performance coun-
ters you added in lab 1 and add support for (at least) the DMA bus master to it.
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Figure 5.2: The proposed architecture for the DMA based DCT accelerator.
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Lab task 4 - Custom Instructions

6.1 Introduction

In this lab task you will learn how to design and integrate a new instruction into the
processor. This part will target the bit alignment problem arising when trying to write
bit streams to the memory. A bit stream is here defined as a stream of bits with no
particular memory alignment. In accordance with jpegfiles the bit pattern to write
to the stream will be called the code and the number of bits to write the size of the
code. The extension you will make to the instruction set is called a Variable Length
eXtension, or VLX for short.

6.1.1 Huffman Coding

First a short review of the principles of Huffman encoding. Huffman encoding works
by encoding the most frequently occurring item with the fewest number of bits and
then using more bits for items occurring less frequently. For instance take the sequence
ABAACDAAAB, the letter’s frequencies are calculated and listed in 6.1

Four different values imply that we at least need two bits per value thus we would
need 10 · 2 = 20 bits to encode the string. If we were to use the Huffman codes in 6.1
we would need only 6 · 1 + 2 · 2 + 3 + 3 = 16 bits, thus saving four bits. How the
Huffman codes are calculated is not in the scope of this course, for further information
about Huffman coding see for example [14].

When the Huffman tables are calculated the encoding process is simple, just do a
lookup and replace, e.g. simply replace the data with its corresponding code.

In our case jpegfiles uses already pre calculated Huffman tables, the JPEG standard

Letter Frequency Huffman code
A 6 0
B 2 10
C 1 110
D 1 111

Table 6.1: Letter frequencies and Huffman codes

65



66 CHAPTER 6. LAB TASK 4 - CUSTOM INSTRUCTIONS

suggests four Huffman tables. Two for the luminance, one for the DC values and one
for the AC values. And two for the chrominance channel one for the DC values and
one for the AC values. the size of the Huffman codes in a JPEG stream varies from 1
to 16 bit.

6.1.2 The Problem

Although the lookup and replace is an easy operation the problem arises when we want
to write the bit stream to the memory. A consecutive stream of codes varying in length
from one 1 to 16 bits has to be written to memory.

In this lab your task is to design and add new hardware to the processor that can be
used by an instruction to ease the bit stream writing, the idea is that it can be used as
a normal store operation where the length of the data to be stored can be specified and
the data stream will be packed in memory, i.e. each Huffman code will follow directly
after the previous Huffman code.

Preparation task 11
Suggest a method to handle the bit field writing in software. Hint, look into the
jchuff.c file in jpegfiles.

Preparation task 12
Suggest a method to handle the bit field writing in hardware.

6.2 Adding a New Instruction

In order to add a new instruction we first need to find a suitable instruction to use for
our purpose. Looking through the open RISC instruction set we find that there are
some instructions used for storing double words (64-bits) and we can thus “kidnap”
one of these instructions, l.sd is a suitable instruction to use. Of course if you feel like
recoding the assembler you can name your instruction whatever you feel like. How
you use this instruction is up to you, remember that for one vlx operation you have to
specify the code and the size of the code.

6.2.1 Making the Processor Understand

In order to add a new instruction we need to make the processor aware of the instruction
we intend to add. The first stage is to make some modifications to the instruction de-
coder. In the file or1200_ctrl.sv you will find a number of ‘ifdef OR1200_SBIT_IMPL
preprocessor directives. Inside some of these you will find a comment asking you to
write some code there. Find these places and add the missing code. Once this is
done correctly you should be able to use the l.sd instruction without causing an illegal
instruction exception but it will behave as a nop instruction.

6.2.2 Adding Special Purpose Registers

The hardware you are going to construct will use a number of special purpose reg-
isters to maintain observability and make it possible to handle some unusual situa-
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tions in software. We will add a new group of special purpose registers to the pro-
cessor, therefore we must make some changes in the or1200_sprs module. In the file
or1200_sprs.sv you will find a ‘ifdef OR1200_SBIT_IMPL preprocessor directive.
Add the missing code inside this directive. Once this is done you should be able to use
the special purpose registers since they have already been implemented for you.

6.2.3 Adding the Required Hardware

Finally you must add the hardware using your instruction. The main part of the work
is to extend the load and store unit described in the or1200_lsu module. In the file
or1200_lsu.sv you will find a number of ‘ifdef OR1200_SBIT_IMPL preprocessor
directives. Inside some of these you will find a comment asking you to write some code
there. Find these places and add the missing code. In addition to this you will find the
or1200_vlx_top module instantiated. This is the top module for the hardware handling
the stream writing. The code for this module can be found in the or1200_vlx_top.sv
file. Further instructions on how this module should be implemented can be found in
section 6.3 and section 6.4.

6.3 Proposed Architecture

We propose the general architecture shown in figure 6.1. Gray arrows represent control
signals and black arrows represent data.

CONTROL OUT

DATA OUT

ADDRESS OUT

CODE

SIZE

CONTROL

DATA PATH

STORE

UNIT

Figure 6.1: Proposed architecture for the set bit instruction.

6.3.1 Control Unit

The control unit should be defined in the or1200_vlx_ctrl module, a stub can be found
in file or1200_vlx_ctrl.sv. The control unit’s purpose is, as it sounds, to control
the other units. This unit might include a simple FSM or this unit might not even be
needed. All depending on your design.
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6.3.2 Data Path

The data path unit should defined in the or1200_vlx_dp module, a stub can be found in
file or1200_vlx_dp.sv. The data path unit should contain all logic relevant for the
data manipulation needed. This unit will be responsible for aligning and merging the
incoming bits with the bits previously stored. Different solutions are possible, either
taking one or several clock cycles. This is basically a trade off between speed and
hardware. It is your task to implement this module of course in conjunction with how
you implemented the control unit.

6.3.3 Store Unit

The store unit should be defined in the or1200_vlx_su module, a stub can be found in
file or1200_vlx_su.sv. The store unit is responsible for storing a full bit vector to
memory. A suggested solution is to take a 32 bit word and store it to main memory
one byte at a time, doing the zero stuffing if necessary. Remember that a 0xFF byte
has to be stored as two bytes 0xFF 0x00.

It is of course faster to store the data to the memory 32 bits at a time but keep in
mind that nothing more than byte alignment is ensured by jpegfiles.

Important!
This is worth repeating, jpegfiles only ensures byte aligned data.
If you do not understand the implications of this, consult some one in the
course staff before starting to implement your VLX unit.

6.3.4 Multi Cycle Instructions

Some instructions might be multicycle instructions, your solution will need to stall
the processor at certain points, at least when the bit buffer is stored to memory. This
is done by setting the stall_cpu_o signal high in the or1200_vlx_top module. When
high it will stop the cpu from fetching new instructions. This is useful, and so used,
when executing an instruction with indeterminable execution time, such as writing or
reading from memory.

6.3.5 Instruction Details

Although a lot of information about how the instruction is supposed to work is given
in this lab manual you have to work out the finer details yourself. A good place to start
is to look into the jchuff.c file. Also all other place in the code surrounded by the
#ifdef HW_INST (grep is a good tool) can be of interest. Also remember to design for
test, the more status you can view of your hardware when it is running for real, the
easier it will be for you to debug it if something fails.

6.4 Hardware Implementation

In this lab task you are supposed to construct much of the hardware yourself. You
have to modify a small part of the or1200_lsu module (Load Store Unit). Three special
purpose registers are already present in the VLX hardware, the bit_reg register, the
bit_reg_wr_pos register, and the vlx_add_o register. They are all mapped to the special
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purpose register space in group 24 (the group is selected with bit 15 - 11 of a special
purpose register address), the three addresses for the three special purpose registers in
the vlx unit is shown in table 6.2. If you feel like adding more special purpose registers
you are free to do so, you are also free to remap the special purpose registers, e.g. if
you want to use a 64 bit buffer instead of intended 32 bit version. Although if you
remap the special purpose registers you have to specify the new mapping in your lab
report. In case you do a remapping of the special purpose registers, you have to map
your new registers to group 24 (or any other group free for custom use see [6], but this
requires more extensive modifications in other modules of the processor).

Register Name Register Function SPR address
bit_reg_wr_pos next free bit position in the bit buffer 0xc000
bit_reg buffers 32 bit, written to memory when full 0xc001
vlx_addr_o next address to write a full buffer to 0xc002

Table 6.2: VLX register specification

Write your RTL code inside the ‘ifdef OR1200_SBIT_IMPL ... ‘endif regions, this
makes it easy for you to identify your code and you can also easily remove your hard-
ware from the design.

6.4.1 Constructing the Hardware

Some general advise, worth repeating, when building the hardware is to always know
what you are building when writing the Verilog code. In general, you should have a
clear picture of the RTL design, before you start writing the HDL code.

A good design methodology is to do hierarchical design, i.e. create and instantiate
a number of modules. Each module can then be tested with a separate test bench before
integrating them. You are encouraged to use the suggested architecture discussed in
section 6.3 but of course you are free to come up with an architecture of your own.

6.5 Software Implementation

When you think that your hardware works it is time to put the new instruction to use.

6.5.1 Running the Instruction

If you have built the hardware correctly it should now be possible to use the new
instruction in your program. However the compiler does not know anything about the
new instruction. So either you have to modify the compiler or you can use in-line
assembler in your C program.

The in-line assembler directive allows you to insert assembly code verbatim into
the object file. A short example is shown in Listing 6.1. This and the rest of the text
will show you what you need to know for this task.
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Listing 6.1: Inline assembler example.
asm v o l a t i l e ( a s s e m b l e r t e m p l a t e

: o u t p u t o p e r a n d s
: i n p u t o p e r a n d s
: l i s t o f c l o b b e r e d r e g i s t e r s

) ;

The asm volatile keyword instructs the compiler to insert exactly this assembler
instruction at exactly this position into the compiled code.

The first part of the construct is an assembler template string, e.g. "l.sd 0x0(%0),%1" .
The output operands is a comma separated list of output operands, the one you

most probably are going to use is "=r"(var) meaning that the output from the assembly
instruction is a write only to a register operation and that the the variable var in the C
code is assigned the output value.

The input operand list is a comma separated list of input operands. The format you
most probably are going to use is the "r"(var_in) . This means that the variable var_in
is assigned to a register used in the assembly instruction.

The input and output operands are mapped, by order of appearance, to the "assem-
bler template" string. E.g. "l.or %0,%1,%2" : "=r"(res) : "r"(in_a), "r"(in_b) will
map the res to be the destination (%0), in_a source one (%1), and in_b source two
(%2).

The list of clobbered registers is a comma separated list of registers that have been
modified by the assembly and not assigned by the compiler with the % notation. I.e.
if you have written asm volatile("l.ori r20,r10,r11") r20 has to be listed as a clobbered
register like this asm volatile("l.ori r20,r10,r11"::"r20") . This since the compiler must
be informed if we modify some registers in the inline assembly instruction, otherwise
it will happily assume that the value of a register is the same after the inline assembly
block as it was before the section in question.

If you want to write a consecutive block of assembler code this is done as shown
in Listing 6.2.

Listing 6.2: Consecutive block of inline assembler.
asm v o l a t i l e ( "l.instr␣%0,␣%2,␣%3" "\n\t"
"l.bnf␣label_1" "\n\t"
"l.nop␣0x0" "\n\t"
"l.movhi␣%1,␣%4" "\n\t"
"l.j␣label_2" "\n\t"
"l.nop␣0x0" "\n\t"
"label_1:" "\n\t"
"l.movhi␣%1,␣%5" "\n\t"
"label_2:" "\n\t"
: "=r" ( r e s 1 ) , "=r" ( r e s 2 )
: "r" ( a rg1 ) , "r" ( a rg2 ) , "i" (0 x1 ) , "i" (0 x0 ) ) ;

To omit the "\n\t" is not a syntactic error, but if not used the disassembled object
file will look messed up. We can also see from Listing 6.2 that it is possible to use
labels in inline assembler constructs.

For a more detailed description of the gcc in-line assembly see [15]
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6.5.2 Integration into jpegfiles

When you find that the hardware is working and you have written some test programs
to verify that the the processor can execute your instruction. You are ready for the
next step, to get the instruction to work for you in jpegfiles. You need to add code
for three phases of operation, as described below. The only file you need to modify is
jchuff.c, look for the #ifdef HW_INST blocks.

Phase 1: VLX Initialization

This, the first, phase is executed before processing of the bit stream starts. In this phase
you must ensure that your hardware is properly initialized. It is important to set the
address where your hardware shall start writing the bit stream to memory.

Phase 2: VLX Operation

This, the second, phase is executed as long as there is new data to encode. This phase
is rather simple, just use your hardware to write the incoming bit stream to memory.

Phase 3: VLX Finalization

This, the third and final, phase is executed when there are no more data to encode. In
this phase you must ensure that data not yet written to memory, still residing in your
hardware, is correctly put in the memory. Also you must ensure that you make a clean
hand off to jpegfiles so it can take care of some finalization operations, like writing
the JPEG end marker. Take note of the next_buffer variable and think about what you
have to do with it.

6.5.3 JPEG Markers

There are a number of bit strings called markers in the JFIF binary file. A marker is
always byte aligned and starts with the byte 0xFF , the next byte specifies what marker
it is. For this reason if 0xFF is encountered in the scan data, 0xFF must be written
as 0xFF00. Some markers are stand alone markers, meaning that the marker has no
additional information associated with it. Otherwise the marker has a two byte code
immediately following the marker specifying the length in byte of extra data associated
with the marker. A marker followed by data is referred to as a marker segment. Table
6.3 list a few important markers, see [17] for more information about markers and [18]
for some specific restriction of markers in JFIF.

Laboration task 4.1
Implement the new instruction in hardware and show that you can use the new instruc-
tion using inline assembler in C-code.

Laboration task 4.2
Modify the jpegfiles code to use your new instruction.
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Code Name Explanation Stands Alone
0xFFC0 SOF0 Start of frame for baseline coded pictures. No

0xFFE0 APP0 Application specific data used by JFIF. No

0xFFDA SOS Start of scan. The image data starts after
this marker segment.

No

0xFFDn RSTn Restart marker n(n = 0, 1...7), restart de-
coding after this marker.

Yes

0xFFD9 EOI End of image, data after this marker is ig-
nored.

Yes

Table 6.3: Important JFIF markers

6.6 Important Files For this lab task

In addition to the files listed in section 4.4.1 also the following files are important.

• or1200_lsu.sv: Load Store Unit, the module used by the or1200 processor to
load/store from/to memory.

• or1200_defines.v: Defines for the or1200 RTL code, look for ‘ifdef OR1200_SBIT_IMPL .

• or1200_vlx_top.sv: A skeleton top level module for the set bit instruction.

• or1200_ctrl.sv: The instruction decoder.

• or1200_sprs.sv: Special purpose register control.

• jchuff.c: Code dealing with the Huffman-encoding.

6.7 Tips and tricks

In this section we have collected some notes that you might find useful.

• If you want to simulate the set bit instruction together with the rest of the system,
you will have to modify the monitor to run your test code right after the system
has started. See the directions in section 3.3.3 on how to modify the monitor.

• In order to improve the performance of the code you can remove some of the
performance counters. But all performance counters in jpegtest.c has to re-
main!

• How to write to a special purpose registers with address 0xC000 in C-code:
asm volatile("l.mtspr %0,%1,0x0" : : "r"(0xc000),"r"(value))
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• How to read from a special purpose registers with address 0xC000 in C-code:
asm volatile("l.mfspr %0,%1,0x0" : "=r"(result) : "r"(0xc000))

• If you are writing inline assembler with more than one instruction you should
read the following paragraph for information about input and output operands[16]:

Unless an output operand has the & constraint modifier, GCC
may allocate it in the same register as an unrelated input operand, on
the assumption the inputs are consumed before the outputs are pro-
duced. This assumption may be false if the assembler code actually
consists of more than one instruction. In such a case, use & for each
output operand that may not overlap an input.

6.8 What to Include in the Lab Report

The lab report should contain all source code that you have written. (The source code
should of course be commented.) We would also like you to include a block diagram
of your hardware. If you have written any FSM you should include a state graph of the
FSM.

We would also like you to discuss the following questions in detail somewhere in
your lab report:

• How does your hardware work?

• How did you verify that your set bit hardware worked?

• What is the performance with and without the set bit hardware? This should
include measurements of both the entire application and the set bit instruction
by itself, assuming good code in a software implementation (take a look at how
the software solution in jpegfiles).

• How much of the FPGA does your hardware use?

• How would your design change if you had to achieve even higher speed using
more hardware?

• How would your design change if you had to use less hardware at the cost of a
slower solution?

• What are the problems with using your new hardware in a multitasking operating
system? How can the problem(s) be solved?

• What is the performance of your final system?

• What was the hardest problems you encountered during the entire lab course?

And if you want to, we would appreciate some comments on the following ques-
tions, either in the lab report or by some other means of communications:

• What did you think of the TSEA44 course?

• What was good?
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• What was bad?

• What can we improve for the next year?

• Do you have any other ideas for this course?

• Did you feel that you learned anything of value?

• Any other comments you may have.

• A rough estimation of time spent on the lab tasks.

And of course, the normal parts of a lab report such as a table of contents, an intro-
duction, a conclusion, etc. The source code that you have written should be included
in appendices and referred to from the main document.

6.9 Beyond tsea44

If you found this course fun and interesting you can probably find an interesting master
thesis project with us. We have master thesis projects in the following areas:

• Application, Algorithm and Architecture

– Wireless Baseband Processing

– Internetworking (Network Processor and Security Issues)

– Multimedia (Audio, Image and Video Processing)

– Computer Graphics

• Processor and Circuit Design

– General DSP Processor

– Mulit-core SoC Platform

– Network-on-chip (NoC)

– High Performance Circuit

• SW/HW Codesign of Embedded System

– Scheduling

– RTOS for Embedded SoC

– IDE and other toolkit for DSP

– Design Methodology etc.

If any of this sounds interesting, or if you have a proposal for a master thesis project
which might fit into our research areas, feel free to contact us to get more information.
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Appendix A

Open RISC Reference Platform

This is the ORP standard memory map. The actual memory map for our system is in
section 1.4.1.

A.1 Address map

Start End Cache Size Description
F0000000 FFFFFFFF Y 256 MB ROM
C0000000 EFFFFFFF Y 768 MB Reserved
B8000000 BFFFFFFF N 128 MB Reserved for custom devices
A6000000 B7FFFFFF N 288 MB Reserved
A5000000 A5FFFFFF N 16 MB Debug 0-15
A4000000 A4FFFFFF N 16 MB Digital Camera Controller 0-15
A3000000 A3FFFFFF N 16 MB I2C Controller 0-15
A2000000 A2FFFFFF N 16 MB TDM Controller 0-15
A1000000 A1FFFFFF N 16 MB HDLC Controller 0-15
A0000000 A0FFFFFF N 16 MB Real-Time Clock 0-15
9F000000 9FFFFFFF N 16 MB Firewire Controller 0-15
9E000000 9EFFFFFF N 16 MB IDE Controller 0-15
9D000000 9DFFFFFF N 16 MB Audio Controller 0-15
9C000000 9CFFFFFF N 16 MB USB Host Controller 0-15
9B000000 9BFFFFFF N 16 MB USB Func Controller 0-15
9A000000 9AFFFFFF N 16 MB General-Purpose DMA 0-15
99000000 99FFFFFF N 16 MB PCI Controller 0-15
98000000 98FFFFFF N 16 MB IrDA Controller 0-15
97000000 97FFFFFF N 16 MB Graphics Controller 0-15
96000000 96FFFFFF N 16 MB PWM/Timer/Counter Contr 0-15
95000000 95FFFFFF N 16 MB Traffic COP 0-15
94000000 94FFFFFF N 16 MB PS/2 Controller 0-15
93000000 93FFFFFF N 16 MB Memory Controller 0-15
92000000 92FFFFFF N 16 MB Ethernet Controller 0-15
91000000 91FFFFFF N 16 MB General-Purpose I/O 0-15
90000000 90FFFFFF N 16 MB UART16550 Controller 0-15
80000000 8FFFFFFF N 256 MB PCI I/O
40000000 7FFFFFFF N 1 GB Reserved
00000000 3FFFFFFF Y 1 GB RAM
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A.2 Interrupts
Number Peripheral

0 Reserved
1 Reserved
2 UART16550 Controller
3 General-Purpose I/O
4 Ethernet Controller
5 PS/2 Controller
6 Traffic COP , Real-Time Clock
7 PWM/Timer/Counter Controller
8 Graphics Controller
9 IrDA Controller

10 PCI Controller
11 General-Purpose DMA
12 USB Func Controller
13 USB Host Controller
14 Audio Controller
15 IDE Controller
16 Firewire Controller
17 HDLC Controller
18 TDM Controller
19 I2C Controller, Digital Camera Controller



Appendix B

The Wishbone specification

B.1 Introduction

The Wishbone specification basically dictates the interfaces and how they should behave. The
method of connecting the interfaces to each other is very much up to the designer. This chapter
contains a brief explanation of the Wishbone specification (which consists of approximately
140 pages). More information can be found in the official specification [9]. Some rules from
the specification are cited in the following text.
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Figure B.1: Direct connection of Wishbone master and slave.

The interface specification can be used for connecting two cores directly just as well as it
can be used for connecting several cores through some kind of bus. Fig. B.1 shows a direct
connection of a master and a slave. This is the typical connection referred to in the timing
diagrams later.
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Table B.1: Wishbone signals (named from the master side).

Name Direction Width Description
adr M->S 32 Address bus
dat_o M->S 32 Data bus out
dat_i M<-S 32 Data bus in
we M->S 1 Write enable
sel M->S 4 Byte selects
stb M->S 1 Strobe signal
cyc M->S 1 Valid bus cycle
ack M<-S 1 Bus cycle acknowledgment
cti M->S 3 Cycle type identifier
bte M->S 2 Burst type extension
err M<-S 1 Bus cycle error

B.2 Interface signals

The Wishbone signals all use active-high logic (rule 2.30). Table B.1 shows a summary of the
signals in the Wishbone interface. The following subsections will describe each signal in more
detail. All signal names correspond to the master side.

B.2.1 adr

The adr signal is used to pass a binary address from the master to the slave. Note that the
address granularity is on byte level.

B.2.2 dat_o and dat_i

The dat_o signal is used to pass a binary data from the master to the slave. The dat_i signal
is used to pass a binary data from the (selected) slave to the master. The minimum granularity
of the data is byte level as selected with the sel signal.

B.2.3 we

This signal indicated whether the current bus cycles is a write or a read. The signal is asserted
for write cycles and negated for read cycles.

B.2.4 sel

The sel signal indicates where valid data is present/expected on the dat_* signals during the
current bus cycle. With byte (8-bit) granularity on a 32-bit bus this signal will have four wires.
Each wire will indicate that the corresponding byte is/should be valid.

B.2.5 stb

This signal indicates a valid data transfer cycle. The slave will assert either ack or err in
response to every assertion of this signal.
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B.2.6 cyc

This signal indicates that a valid bus cycle is in progress. This signal should be asserted for the
duration of all (consecutive) bus cycles.

B.2.7 ack

This acknowledgment input indicates the normal termination of a bus cycle. Abnormal termi-
nation is indicated through the err signal.

B.2.8 cti

The cti signal indicates the current bus cycle type. This signal is described in more detail in
the section on incrementing burst cycles, see section B.4.

B.2.9 bte

The cti signal indicates the current bus cycle burst type. This signal is described in more
detail in the section on incrementing burst cycles, see section B.4.

B.2.10 err

This error signal indicates the abnormal termination of a bus cycle. The behavior of the master
and slave in response to the err signal is not defined in the standard.

B.3 Wishbone classical cycles
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Figure B.2: Wishbone classical single read cycle.

A Wishbone classical bus cycle is signaled by asserting cyc and stb to the slave. These
signals are acknowledged by the ack signal from the slave. Whether to read or write can then
be selected by setting the other interface signals to appropriate levels. Fig. B.2 shows a timing
diagram for a Wishbone classical single read bus cycle. The WSS (wait state slave) signifies
that the slave can insert any number of wait states by keeping the ack signal low. Fig. B.3
shows a Wishbone classical single write.

The Wishbone classical bus cycles require the entire bus cycle to finish before starting
a new cycle. This disallows bursty accesses from occupying a minimum of time since no
overlapping is allowed. This has been addressed in revision B.3 of the Wishbone standard, see
section B.4.
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Figure B.3: Wishbone classical single write cycle.
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Figure B.4: Wishbone classical block cycles.

Burst-style accesses can be done through the classical bus cycles. This will (almost al-
ways) require wait-states to be inserted at various points during the access. Fig. B.4 shows
a simplified timing diagram for a block (burst) access. The cyc signal indicates that a valid
bus cycle is in progress. During the bus cycle the master can respond to the acknowledgment
signal by either negating or asserting the stb signal in order to insert wait states or start new
transactions respectively.

Just as with a single read/write, the slave can keep the acknowledgment signal negated to
insert wait states if needed.

B.4 Wishbone incrementing burst cycles
So called Wishbone registered feedback bus cycles were introduced with revision B.3 of the
standard. Of these bus cycles, the Wishbone incrementing burst cycles are most useful. This
bus cycle can be used for doing burst read accesses with high throughput because the start of a
new transaction is allowed to happen before the current transaction has finished.

The cti and bte signals indicate the type of burst cycle in progress. Table B.2 shows the
meaning of these signals1.

In order to keep compatibility between revisions of the standard, slaves can ignore these
signals and revert to classical bus cycles. This should give the same behavior as if the exten-
sions were not used at all.

Fig. B.5 shows a linear address burst read of four data. As can be seen the address from the
master is held constant until an acknowledgment has been received. This ensures compatibility
with the Wishbone classical cycles. After the first data has been read the acknowledgment is
kept asserted and the data is delivered at a rate of one per cycle. This continues until the master

1The 4-beat, 8-beat, and 16-beat wrap bursts mean that a set of 4, 8, or 16 addresses are repeated and
is not very useful in this lab.
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Table B.2: cti and bte signal values

Signal group Value Description
cti 000 Classic cycle

001 Constant address burst cycle
010 Incrementing burst cycle

011-110 Reserved
111 End of burst

bte 00 Linear burst
01 4-beat wrap burst
10 8-beat wrap burst
11 16-beat wrap burst
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Figure B.5: Wishbone linear increment burst.

signals the end of the burst by setting the cti signal to 111.
The slave will not get a new address until the last transfer is completed as is obvious from

the figure. This means that the slave will have to generate the following addresses internally
according to the cti and bte signals. In the case of a linear increment this implies that the
slave must contain a counter that increments the address.

B.5 System Verilog Interface
This is the System Verilog interface declaration used in the lab course.

Listing B.1: System Verilog Interface for the Wishbone bus
i n t e r f a c e wishbone ( input l o g i c c lk , r s t ) ;

t y p e d e f l o g i c [ 3 1 : 0 ] a d r _ t ;
t y p e d e f l o g i c [ 3 1 : 0 ] d a t _ t ;

a d r _ t a d r ; / / a d d r e s s bus
d a t _ t d a t _ o ; / / w r i t e da ta bus
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d a t _ t d a t _ i ; / / read da ta bus
l o g i c s t b ; / / s t r o b e
l o g i c cyc ; / / c y c l e v a l i d
l o g i c we ; / / i n d i c a t e s w r i t e t r a n s f e r
l o g i c [ 3 : 0 ] s e l ; / / b y t e s e l e c t
l o g i c ack ; / / normal t e r m i n a t i o n
l o g i c e r r ; / / t e r m i n a t i o n w / e r r o r
l o g i c r t y ; / / t e r m i n a t i o n w / r e t r y
l o g i c cab ; / /
l o g i c [ 2 : 0 ] c t i ; / / c y c l e t y p e i d e n t i f i e r
l o g i c [ 1 : 0 ] b t e ; / / b u r s t t y p e e x t e n s i o n

modport m a s t e r (
output adr , da t_o , s t b , cyc , we , s e l , cab , c t i , b te ,
input c lk , r s t , d a t _ i , ack , e r r , r t y ) ;

modport s l a v e (
input c lk , r s t , adr , da t_o , s t b , cyc , we , s e l , cab , c t i , b te ,
output d a t _ i , ack , e r r , r t y ) ;

modport m o n i t o r (
input c lk , r s t , adr , da t_o , s t b , cyc , we , s e l , cab , c t i , b te ,

d a t _ i , ack , e r r , r t y ) ;

e n d i n t e r f a c e : wishbone



Appendix C

Tips & Trix

In this appendix we have collected a number of tips and trix that you might find useful.

• If you encounter some weird problems with the hardware you can try to turn the power
off to the FPGA system before configuring it. We have had some problems with the
FPGA board which can be solved in this manner.

• You do not have to restart Modelsim or recompile all files to get new changes included in
the simulation. Just recompile the file you changed and type restart -f in Modelsim.
Now your new changes is included.

• If you use emacs you can compile your Verilog file from emacs.
M-x compile
vlog -work {work directory} +incdir+{include directory} {file}

• To log more signals than you want to display in the wave window you can use the log
command.
To log all signals under e.g. dafk_tb/dafk_top/cpu you can use
log -r dafk_tb/dafk_top/cpu/* .

• To make backspace work in µClinux when using Teraterm. Under Setup->Keyboard...
make sure that the check box for how the backspace key is sent is set.

• If you haven’t setup the backspace key to work correctly in µClinux, you can still use
some other standard unix key combinations: control-w will erase the previous word.
control-u will erase the entire line.

• If you find it hard to see if a signal is a 1 or a 0 in modelsim when many 1 bit signals are
next to each other in the wave window you might want to change the colors for 1 and 0
respectively. This can be done by using Tools -> Edit preferences.. menu selection on
the modelsim main window. In the window that opens up, select WaveWindows.

• If you use verilog-mode in emacs, you can press control-c control-d to go to another
module. (The default module name is taken from the location of the cursor in the buffer.)

• If you use the command show_dafk_window in modelsim you will get a window that
allows you to add a number of different signals to your modelsim window. You can look
at the file modelsim.tcl in the simulator directory to see how this is implemented.
You may also press the button named Show dafk window in the wave window to open
this window (the button is only visible if the wave window is removed from the main
modelsim window).

• If you use some of the virtual signals declared by us, make sure to use the restart script
restart-f.do instead of restarting Modelsim the normal way.
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• If you cannot find certain commands, make sure that the TSEA44 module is loaded:

module load TSEA44


