
TSEA44 - Potential pitfalls

Andreas Ehliar <ehliar@isy.liu.se>

2015-11-17

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Outline

I What can go wrong?
I Design mistakes
I Synthesis errors
I Runtime errors

I Crossing clock domains
I Handshaking
I Asynchronous FIFOs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

A design bug

I Symptom: The boot sequence of uClinux hangs after a second
when the Icache is on.

I uClinux boots ok with Icache off

I No problems detected in the monitor when the icache is on

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

First try

I Modify the testbench so uClinux is present in SDRAM models

I Add interesting signals to the wave window

I Run the simulation over night

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Oops. . .

I In the morning the simulation was not running any longer
I The log files had filled up all free space on the fileserver. . .

I . . . which promptly crashed, causing all sorts of merriment

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Handling long simulation runtimes

I Use checkpointing to reduce/eliminate the need for logging
I Add no signals to wave window (and log for that matter)
I Modify UART so printouts are displayed in the transcript

window (using $display())
I run 100ms; checkpoint 100ms.chk
I run 100ms; checkpoint 200ms.chk
I run 100ms; checkpoint 300ms.chk
I . . .

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Handling long simulation runtimes

I Now you can pinpoint the time interval where the crash
happened

I Restore the checkpoint in Modelsim that occured closest
before the actual crash

I vsim -restore 600ms.chk
I Debug as usual (by adding signals to wave window/etc)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

So what was the bug?

Wrong content: AAAA AAAA CCCC DDDD
Correct content: AAAA BBBB CCCC DDDD

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

What if you can’t find a bug during simulation?

I Very likely you have some undefined behavior in your design
I Race condition in RTL code (blocking vs non-blocking

assignment)
I Incorrect use of “don’t cares”
I You are not crossing clock domains correctly
I etc

I Not so likely:
I You have triggered a bug in the CAD tools (more on this later)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Clock domain crossings

I Why do we need synchronous designs?
I Race conditions
I Metastability

I Crossing clock domains
I (Avoid it if possible)
I Using handshakes
I Using asynchronous FIFOs
I Your own solution

I (Only if you like debugging systems where bugs cannot be
deterministically reproduced. . .)

I Don’t forget that the reset signal has to be passed to each
clock domain!

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

An example of a synthesis bug

I RTL simulation works fine
I Real hardware dosen’t work
I (There are no clock domain crossings involved)

// Work around possible synthesis bug in an

// old version of synthesis tool

logic signed [27:0] foo;

logic signed [27:0] bar;

assign foo = x2[2] * S6;

assign bar = x2[3] * C6;

// ********* Third stage ************

always_ff @(posedge clk_i) begin

if (en) begin

x3_0 <= x2[0] + x2[1];

x3_1 <= x2[0] - x2[1];

x3_2 <= x2[2]*C6 + x2[3]*S6;

x3_3 <= bar - foo;

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Post synthesis simulation

I Synthesize the design

I Convert the synthesized design back to Verilog (netgen)

I The simulation is done using FPGA components like LUTs
instead of at the behavioral level

I Can even be done after place and route if you want to
simulate timing (very useful for power simulations!)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Writing testbenches for post synthesis netlists 1

// Original testbench code

initial begin // Test adder

@(posedge clk);

a <= 5;

b <= 3;

@(posedge clk);

if (result !== 8) begin

$display("Adder has funny ideas of addition");

$stop;

end

end

// This code will probably lead to unknown values all over

// the simulation.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Writing testbenches for post synthesis netlists 1

// Modified testbench

initial begin // Test adder

@(posedge clk);

#4; // (Use an appropriate delay so the setup/hold

// of flip-flops in the circuit are honored.)

a <= 5;

b <= 3;

@(posedge clk);

// However, we should still check the result on the

// clock edge!

if (result !== 8) begin

$display("Adder has funny ideas of addition");

$stop;

end

end

// See also: Clocking blocks in SystemVerilog
Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Dealing with bugs that you are unable to reproduce in
simulation

I Add extra debugging logic to the FPGA design
I Chipscope/SignalTap

I Logic analyzer that store samples to built in BlockRAMs
I Communicates with the host computer via JTAG

I Warning!
I Many people use ChipScope/SignalTap as a substitute for a

comprehensive self-checking testbench.
I Don’t! You will most likely waste time better spent writing

high quality testbenches.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

Single event upset - SEU

I Very important in aerospace applications

I Can be important for ground based safety critical applications.

I (Fortunately not a problem in this course)
I Some (partial) solutions:

I Triplicate logic
I Reprogram FPGA often

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Potential pitfalls

