
TSEA44 - Design for FPGAs

Andreas Ehliar <ehliar@isy.liu.se>

2014-11-18

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Administrative issue

I Did the email regarding no lecture this Wednesday reach you?

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Outline

I What can go wrong?
I Design mistakes
I Synthesis errors
I Runtime errors

I Crossing clock domains
I Handshaking
I Asynchronous FIFOs

I FPGA architecture
I Adders
I Multiplexers
I Memories
I Multipliers

I Case study

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

A design bug

I Symptom: The boot sequence of uClinux hangs after a second
when the Icache is on.

I uClinux boots ok with Icache off

I No problems detected in the monitor when the icache is on

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

First try

I Modify the testbench so uClinux is present in SDRAM models

I Add interesting signals to the wave window

I Run the simulation over night

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Oops. . .

I In the morning the simulation was not running any longer
I The log files had filled up all free space on the fileserver. . .

I . . . which promptly crashed, causing all sorts of merriment

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Handling long simulation runtimes

I Use checkpointing to reduce/eliminate the need for logging
I Add no signals to wave window (and log for that matter)
I Modify UART so printouts are displayed in the transcript

window (using $display())
I run 100ms; checkpoint 100ms.chk
I run 100ms; checkpoint 200ms.chk
I run 100ms; checkpoint 300ms.chk
I . . .

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Handling long simulation runtimes

I Now you can pinpoint the time interval where the crash
happened

I Restore the checkpoint in Modelsim that occured closest
before the actual crash

I vsim -restore 600ms.chk
I Debug as usual (by adding signals to wave window/etc)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

So what was the bug?

Wrong content: AAAA AAAA CCCC DDDD
Correct content: AAAA BBBB CCCC DDDD

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

What if you can’t find a bug during simulation?

I Very likely you have some undefined behavior in your design
I Race condition in RTL code (blocking vs non-blocking

assignment)
I Incorrect use of “don’t cares”
I You are not crossing clock domains correctly
I etc

I Not so likely:
I You have triggered a bug in the CAD tools (more on this later)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Clock domain crossings

I Why do we need synchronous designs?
I Race conditions
I Metastability

I Crossing clock domains
I (Avoid it if possible)
I Using handshakes
I Using asynchronous FIFOs
I Your own solution

I (Only if you like debugging systems where bugs cannot be
deterministically reproduced. . .)

I Don’t forget that the reset signal has to be passed to each
clock domain!

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

An example of a synthesis bug

I RTL simulation works fine
I Real hardware dosen’t work
I (There are no clock domain crossings involved)

// Work around possible synthesis bug in an

// old version of synthesis tool

logic signed [27:0] foo;

logic signed [27:0] bar;

assign foo = x2[2] * S6;

assign bar = x2[3] * C6;

// ********* Third stage ************

always_ff @(posedge clk_i) begin

if (en) begin

x3_0 <= x2[0] + x2[1];

x3_1 <= x2[0] - x2[1];

x3_2 <= x2[2]*C6 + x2[3]*S6;

x3_3 <= bar - foo;

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Post synthesis simulation

I Synthesize the design

I Convert the synthesized design back to Verilog (netgen)

I The simulation is done using FPGA components like LUTs
instead of at the behavioral level

I Can even be done after place and route if you want to
simulate timing (very useful for power simulations!)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Writing testbenches for post synthesis netlists 1

// Original testbench code

initial begin // Test adder

@(posedge clk);

a <= 5;

b <= 3;

@(posedge clk);

if (result !== 8) begin

$display("Adder has funny ideas of addition");

$stop;

end

end

// This code will probably lead to unknown values all over

// the simulation.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Writing testbenches for post synthesis netlists 1

// Modified testbench

initial begin // Test adder

@(posedge clk);

#4; // (Use an appropriate delay so the setup/hold

// of flip-flops in the circuit are honored.)

a <= 5;

b <= 3;

@(posedge clk);

// However, we should still check the result on the

// clock edge!

if (result !== 8) begin

$display("Adder has funny ideas of addition");

$stop;

end

end

// See also: Clocking blocks in SystemVerilog
Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Dealing with bugs that you are unable to reproduce in
simulation

I Add extra debugging logic to the FPGA design
I Chipscope/SignalTap

I Logic analyzer that store samples to built in BlockRAMs
I Communicates with the host computer via JTAG

I Warning!
I Many people use ChipScope/SignalTap as a substitute for a

comprehensive self-checking testbench.
I Don’t! You will most likely waste time better spent writing

high quality testbenches.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Single event upset - SEU

I Very important in aerospace applications

I Can be important for ground based safety critical applications.

I (Fortunately not a problem in this course)
I Some (partial) solutions:

I Triplicate logic
I Reprogram FPGA often

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Now for something else...

I Adapting designs to FPGAs
I Why?

I Clock frequency
I Area
I Power

I Target FPGA architecture: Xilinx FPGAs with 4 input LUTs
(such as Virtex-II)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Determining the maximum frequency of a design

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

FPGA architecture

I Knowing the FPGA architecture makes it much easier to
optimize your code

I FPGA editor, floorplanner, Planahead, datasheets, timing
reports, XDL

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

FPGA components

I Slices

I CLBs

I Hard blocks (memories, multipliers, I/O, etc)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Combinatorics using a Lookup Table (LUT))

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Adders and carrychains in Xilinx FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Add/subtract using one LUT/bit in Xilinx FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Rule of thumb for efficient adders in 4 input LUT based
FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Summary: Adders in 4-input LUT based architectures

I Plain adder

I Adder/subtracter

I 2-to-1 mux and adder
I Some more esoteric versions:

I result = (opa | opb | opc) + opd;
I result = (opa & opb) + (opc & opd); (Using

MULT AND)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Using the carry chain for other purposes: Comparators

I Comparing 2 bits per LUT
I Comparing 4 bits per LUT if one value is constant!

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Carry chain drawbacks

I The carry chain itself is extremely fast

I Getting on the carry chain is not very fast

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Multiplexers in FPGAs

I A big difference between ASIC and FPGAs: Multiplexers are
cheap in ASIC and expensive in FPGAs

I 4-input LUT: One 2-to-1 mux

I Specialized multiplexers in the slices are used to combine
LUTs into larger multiplexers

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Multiplexers in Xilinx FPGAs

I Possible uses for spare input:
I Invert output, set output to one or zero
I Tricky variants based on a, b, and s[0]

I Trivia question: How many 4-input LUTs do you need to
create a 4-to-1 mux (without MUXFx components)?

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Avoiding multiplexers in pipelined designs

Execution
unit 3

unit 1
Execution

unit 2
Execution

F
ro
m
ot
he
r
pi
pe
li
ne
st
ag
es

R

R

R

Select active unit

I Multiplexers are costly in FPGAs

I Alternative 1: Use or gates and make sure unused inputs are
set to 0 using reset input of flip-flops

I Alternative 2: Use and gates and make sure unused inputs are
set to 1. (See MULT AND as well!)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Types of memories

I Flip-flops

I Distributed memories

I BlockRAMs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Distributed memories

I A LUT (or a combination of LUTs) can be used for small
memories

I Synchronous write
I Asynchronous read

I Possible configurations
I 16x1 bit wide, 1 read/write port: 1 LUT
I 32x1 bit wide, 1 read/write port: 2 LUT
I 16x1 bit wide, 1 read port, 1 write port: 2 LUTs

I Other combinations of note:
I 16x1 bit wide, 2 read ports, 1 write port: 4 LUTs
I A LUT can also be used as a shift register with (up to) 16 bits

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Block RAMs

I Features:
I 18 kbit memory
I True dual port memory with independent clock domains for

each port
I Configurable bit width (1, 2, 4, 9, 18, or 36 bits)
I Read before write, read after write

I Requirements:
I Synchronous read and write

I For an example: See mon prog bram.sv

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Multipliers

I The Virtex-II FPGA also contains numerous multipliers
I Features:

I Combinational 18x18 bit two’s complement multiplier

I (Newer FPGAs have more advanced “DSP blocks” where the
multiplier is combined with adders and registers)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Memory guidelines

I Standard rule: Large memories should be synchronous

I For high frequency designs you want to register the output of
the memory as well.

I For power reasons you shouldn’t enable the memory unless
necessary

I Double check that your enables work when inferring a memory!

I Smaller memories may be asynchronous if necessary
I You shouldn’t have a reset signal for your memory array

I Easy to forget for shift registers!

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Memories larger than one BlockRAM

I Why use the right variant? Reduced power consumption!

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

A case study: A divider for a RISC processor

I Used in a 32 bit RISC processor

I Target frequency: Over 320 MHz in a Virtex-4 (speedgrade
-12)

I Uses restoring division algorithm (basic operations are shift,
subtract, and select)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Issues

I Can’t combine subtracter and 2-to-1 mux!

I Solution: Preprocess divisor and use an adder instead.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Other Issues

I Synthesis tool was too clever

I Manually instantiating the components worked

I Alternatively a complete rewrite of the module worked as well

I Improves clock frequency to 377 MHz (from 300 MHz)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Dealing with negative numbers

I Idea: Take absolute value of dividend and divisor

I Negate quotient and remainder if necessary

I For a 32 bit divider this seems to require around 128 extra
LUTs...

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Absolute value for divisor

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Absolute value for dividend

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Quotient negator - Reuse negator for dividend

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Remainder negator

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Tricky to do in practice

I Required signals for shift register:
I 1. Load enable/shift enable
I 2. Invert enable
I 3. Input data of new dividend
I 4. Input data of new dividend (MSB bit)
I 5. Current value of register

I 5 inputs to a 4 input LUT?

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Tricky to do in practice - Solution

I Solution: Skip MSB of dividend input for ABS operation
I Always invert the dividend, only add 1 as a carry in if

appropriate
I This can be implemented by adding a few extra LSB bits
I If we had a positive value we can compensate for the inversion

at shift out
I We can even add a control bit to select between

signed/unsigned division

I Manual instantiation was necessary to actually implement this

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Results for Virtex-4, speedgrade 12

I Unoptimized, unsigned: 300 MHz, 107 LUTs

I Retimed, unsigned: 377 MHz, 140 LUTs

I Retimed, signed: 361 MHz, 151 LUTs

I Retimed, signed or unsigned: 363 MHz, 153 LUTs

I Interested? Download the code at
http://www.da.isy.liu.se/~ehliar/ae_instlib/

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

http://www.da.isy.liu.se/~ehliar/ae_instlib/

Manual instatiation

I Last resort when synthesis attributes and rewriting the RTL
code doesn’t work

I Not portable between FPGA vendors
I Surprisingly portable to ASIC however

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

4-to-1 mux with two LUT4

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Manual instantiation of flip-flops

I Allows you to ensure that the correct signals are corrected to
the D, CE, and SR inputs

I XST often seem to select the wrong input for SR
I Background: SR input is quite slow compared to D input

I Can sometimes be avoided by rewriting the code or using
synthesis attributes

I Often easier to just instantiate flip-flop primitives directly

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Manual instantiation of LUTs

I Often much harder than to rewrite the code or using synthesis
attributes

I A good idea to hide instantiation details in a library if possible
I Carry chain instantiation (MUXCY, XORCY, generate loop,

etc)
I Large multiplexers (MUXF5, MUXF6, MUXF7, etc)

I See http://www.da.isy.liu.se/~ehliar/ae_instlib/

for the library I’m using.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

http://www.da.isy.liu.se/~ehliar/ae_instlib/

Manual instantiation of Memories and DSP blocks

I Well documented in various app-notes

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Synthesis attributes

I A convenient way to force the synthesis tool to do what you
mean

I In VHDL:
I attribute keep : string;
I attribute keep of mysignal: signal is "TRUE"

I In Verilog:
I (* KEEP = ”TRUE” *) wire mysignal;

I Note: Synthesis attributes discussed here are for XST, not
Precision!

I (Read the Precision manual)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Synthesis attribute KEEP

I Preserves the selected signal
I Use case:

I The synthesis tool makes a bad optimization decision.
I By using KEEP you can ensure that a certain signal is not

hidden inside a LUT and hence guide the optimization process.

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

KEEP example from a display controller

wire inimagey = (yctr > 31) && (yctr < 192);

wire inimagex = (xctr > 15) && (xctr < 26);

...

always @(posedge clk) begin

if (inimagey && (xctr == 15)) begin

...

end else if(inimagey && (xctr == 26)) begin

...

if (inimagey && (xctr == 15)) begin

...

end else if(inimagey && (yctr[2:0] == 7)) begin

...

I Problem: Synthesis tool merged inimagey test with other tests
in suboptimal way

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Solution: force inimagey and inimagex to be separate
signals

(* KEEP = "TRUE" *) wire inimagey;

(* KEEP = "TRUE" *) wire inimagex;

assign inimagey = (yctr > 31) && (yctr < 192);

assign inimagex = (xctr > 15) && (xctr < 26);

I Allowed me to save area in an area constrained situation
I Especially important when targetting both CPLD and FPGAs

with a single IP core

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

SIGNAL ENCODING attribute

I Allows you to select encoding for state machines

I Useful when synthesis tool make suboptimal state machine
encoding choices

I (Alternatively: You can disable FSM optimization if you really
want to)

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Example: Memory byte select in a processor

I Signal encoding specified 2 FF, 4 states.

I Two signals into mux control signal

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Example: Memory byte select in a processor

I Heuristics in synthesis tool selected one-hot coding for FSM...

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

EQUIVALENT REGISTER REMOVAL attribute

I Allows you to specify that certain registers should not be
optimized away.

I Perfect when you don’t want the synthesis tool to touch your
carefully optimized (duplicated) flip-flops

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Example: Operand bus in a processor

I Problem: Manual register duplication in read operand stage is
removed by synthesis tool

I Solution: Disable optimization locally by setting
EQUIVALENT REGISTER REMOVAL to ”no”

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

Conclusions

I By mapping your design to the FPGA in an efficient manner
you can significantly improve the performance of your design

I Keep this in mind early in the design phase.

I (However, don’t optimize unless you really need to.)
I Looking for master’s thesis projects?

I Talk to me if you are interested in for example FPGA related
projects

Andreas Ehliar <ehliar@isy.liu.se> TSEA44 - Design for FPGAs

