
DMA
 Lab 3

 DMA
 The task
 (Bursts)

 MMU, soft CPUs

Guest lecture
Time: Friday 5/12 1515-1600.
Place: Nollstället
Image Processing on FPGAs.
Johan Pettersson, Sick IVP

1

Packed array

logic [11:0] tm1[0:7][0:7];

logic [0:7][0:7][11:0] tm2;

left to right, right first

tm1[0][0] // DC component
tm2[0][0] // -”-

tm2[0] // tm2[0:7][0] //

x

y
z

2

Comment: Array slicing
The size of the part select or slice must be constant, but
the position can be variable.

logic [31:0] b;
logic [7:0] a1, a2;

a1 = b[x -: 8]; // OK fixed width
a2 = b[y +: 8]; // OK fixed width
d = b[x:y]; // not OK

3

Lab 3 - DMA

W
B

PKMC

DCT

CPU

UART

ETH

Monitor

SDRAM

µClinux
(kernel + filesystem)

webserver
tftp
testbild.raw

tftp jpegtest
web page

0

1

2

32

6
6

1

0

0x9600_0000

0x9000_0000

0x4000_0000

0x9200_0000

-

Use DMA to fill the acc!

terminal

4

Proposed
architecture
 Design FSM
 Change here
 Modify jpegfiles

wbm

wbs FSM

5

Address generation

 We want to transfer
block by block (8x8)

 Address generator
must know format
(width,height) of image

testbild.raw

6

State diagram

In this state we wait until the
program tells us that it has read the
result of the transform by writing to
the control register.

The DMA accelerator has to
release the bus regularly so that
other components can access it.
Do it for every line you read.
When we finish the first block, we
start the DCT accelerator.

The DMA module is not
doing anything.

Same as WAITREADY except that we
go to the IDLE state when done.

The DMA module is fetching
an 8x8 block. Once the
block is fetched we go to
the WAITREADY state and
start the DCT transform.

7

A measurement make sim_jpeg
Copy 16 words
from SDRAM
to DCT (DMA)

DCT

Copy 32 words
from DCT
to SDRAM

8

A closer look at the DMA

Release bus for
m0, m1, m2

⇒ If CPU is waiting it will
get the bus

W
B

PKMC

DCT

CPU

UART

ETH

Monitor

SDRAM

µClinux
(kernel + filesystem)

webserver
tftp
testbild.raw

0

1

2

32

6
6

1

0 -

9

DCT => Mem (Software)

10

A hint

DMAN DCTQN

HuffmanN

DMAN+1 DCTQN+1

HuffmanN+1

DMAN DCTQN

HuffmanN

DMAN+1 DCTQN+1

HuffmanN+1

DMAN+2 DCTQN+2

readN readN+1

How long time do these blocks take?

readN readN+1

11

Burst Read

M S
cti

bte

12

burst – cycle types

cycle
type
identifier

burst
type
extension

13

Changes in the slave

wb_adr[3:2]

wb_adr[31:4]

local address counter

wb_dat_o[31:0]

+1

14

Do you really wanna burst?

WB

Mem
ctrl

Just muxes in here

Mem
ctrl MEMMEM

Image memory
on

the green board

15

Why not write? (acc->mem)

W
B

PKMC

DCT

CPU
UART

ETH

Monitor

SDRAM

0

1

2

32

6
6

1

0 -I$

D$

// This the main encoding loop
void encode_image(void)
{

int i;
int MCU_count = width*height/DCTSIZE2;
short MCU_block[DCTSIZE2];

for(i = 0; i < MCU_count; i++)
{

forward_DCT(MCU_block);
encode_mcu_huff(MCU_block);

}
}

1) I/O is on 0x90, 0x91, …, 0x99
other addr to PKMC

2) Noncacheable data mem addr >= 0x8000_0000,
SDRAM 0x0, SRAM 0x2000_0000 or 0xc000_0000

2) MCU_block must be in noncacheable area
3) Skip MCU_block, let encode_mcu_huff read from acc

SRAM
MCU_block

16

Ethernet controller
Serial 10 Mb/s

differential

tx

rx

2.5 MHz
4 bits

WBCPU

M

master wb

slave
wb

FIFOs 2 x 16*32

25 MHz

17

Ethernet controller

• Transmits and receives
Ethernet frames

• 10 Mbit/s and 100 Mbit/s
• Half duplex and full duplex

• Wishbone I/F ”similar” to our JPEG acc
• Up to 128 buffer descriptors (rx and tx) address to buffer in mem

length control & status

• Tx: automatically reads (DMA) and transmits length bytes
adds length to address

• Proceeds to next BD
18

or1200
Memory Management

CPU MMU MEM

MMU needed for
1) Address translation virtual -> physical
2) Memory protection

(OS protected from user processes, …)
3) ”each process runs in its own memory”

Physical
address

Virtual
address

19

Memory Management Unit

 Harvard model with split instruction and data
MMU

 Instruction/data TLB (translation lookaside
buffer)
size scalable from 16 to 256 entries

 TLB organized as a direct-mapped cache
 Page size 8KB with per-page attributes

 LS 13 address lines left untouched
 MS (32-13) = 19 address lines translated

TLB
vadr[31:13]

vadr[12:0]

padr[31:13]

padr[12:0] 20

A sketchy explanation

#include<stdio.h>
int main()
{

int *ptr, i;

ptr = (int *) malloc(4*2048*sizeof(int));

for (i=0; i<8192; i++)
*ptr++ = i;

…

free(ptr_one);
return 0;

}

* The OS administers a list of
page translations for each process.

* These are kept in memory, page tables
* The translations are automatically loaded

into the TLB when the process executes. 1

1

2

2 3
43

4

Virtual address space

Physical address space

21

I/D-TLB = Translation Lookaside buffer

1313 6

1319

K

Implemented as a direct mapped cache, 64 entries

22

Does the MMU need an extra pipeline stage?

comp

Physical tag flags cache line 4W

913 6

comp

VPN PPN

2 2

19

MMU Cache

NO, the cache is physical and works in parallel with the MMU!

23

What about DMA and MMU?

W
B

PKMC

DCT

CPU
UART

ETH

Monitor

SDRAM0

1

2

32

6
6

1

0 -IMMU
IC

DMMU
DC

• µCLinux does not use the MMUs
• Real Linux must use MMUs
• System call to find the P addr

for a V addr

• DMA ctrl must handle
scatter/gather

• DMA ctrl typically executes
a linked list of commands

1

2

3
4

Src addr
Dst addr

Nr of bytes

Src addr
Dst addr

Nr of bytes

24

other soft CPUs
Open RISC Leon Nios Micro-

Blaze
who opencores gaisler altera Xilinx

what verilog VHDL netlist netlist

CPU
stages

RISC
5

RISC
5

RISC
6/5/1

RISC
3

cache Direct IC/DC IC/DC IC/DC IC/DC

MMU Split IMMU
DMMU

bus Wishbone
simple/Xbar

AMBA
(AHP/APB)

LMB/OPB/
FSL

25

leon – open source processor
www.gaisler.com

•The full source code is available under the GNU LGPL license
•LEON2 is a synthesisable VHDL model of a 32-bit processor

compliant with the SPARC V8 architecture
• SPARC V8 compliant integer unit with 5-stage pipeline
•Hardware multiply, divide and MAC units
•Separate instruction and data cache (Hardvard architecture)
•Set-associative caches: 1 - 4 sets, 1 - 64 kbytes/set.

Random, LRR or LRU replacement
•Data cache snooping
•AMBA-2.0 AHB and APB on-chip buse
•8/16/32-bits memory controller for external PROM and SRAM
•32-bits PC133 SDRAM controller
•On-chip peripherals such as uarts, timers, interrupt controller
and 16-bit I/O port 26

http://www.gnu.org/
http://www.gaisler.com/doc/lgpl.txt
http://www.gaisler.com/images/leoncert.gif
http://www.arm.com/sitearchitek/armtech.ns4/html/amba?OpenDocument&style=SoC_Customization

leon

27

leon has virtual caches!

leon
IC

DC

AHB

DRAM
64 MB

+ Address translation only at cache miss!
- Cache flush needed at task switch

MMU

or1200
IC

DC

WB

DRAM
64 MB

IMMU

DMMU

Physical tags

Virtual tags

28

A 4-way 8kb instruction cache
21 7 4

A replacement policy is needed like:
* LRU = least recently used
* LRR = least recently replaced

komp

tag flags cache line

komp

tag flags cache line 16B

komp

tag flags cache line

komp

tag flags ctr cache line 16B

29

leon instruction
pipeline

30

 Thirty-two 32-bit general purpose registers
 32-bit instruction word with three operands and two addressing

modes
 Separate 32-bit instruction and data buses that conform to

IBM’s OPB (On-chip Peripheral Bus) specification
 Separate 32-bit instruction and data buses with direct

connection to on-chip block
 RAM through a LMB (Local Memory Bus)
 32-bit address bus
 Single issue pipeline
 Instruction and data cache
 Hardware debug logic
 FSL (Fast Simplex Link) support
 Hardware multiplier (in Virtex-II and subsequent device

31

MicroBlaze

32

MicroBlaze Pipeline

ALU

- Execute stage will dominate
the pipeline

+ No data hazards

- Delay slot still needed

33

Nios (Altera)

34

Custom Instructions

35

HW Accelerator

36

Zynq – a programmable SOC
PS = processing system

PS = programmable logic
37

PS = processing system

MEM

SCU keeps cachelines in the two L1(D) synchronised
(if they refer to the same mem position)

38

Snoop Control Unit
For each cacheline we keep track of:
Modified : Unique & Dirty (only in this cache, has been changed)
Owned : Shared & Dirty
Exclusive : Unique & Clean
Shared : Shared & Clean
Invalid : Nothing here yet

E X Y Z Wtag Iindex:

S X Y Z Wtag S tagindex: X Y Z W

The SCU listens to the bus, has a copy of the tag RAMs, …
39

PL = programmable logic

40

Performance Soft vs Hard

41

ACP = accelerator coherency port

MEMyour
ACC

ACP

Acc connected like a CPU to mem
On a read hit data is read from
one of the caches

42

	DMA
	Packed array
	Comment: Array slicing
	Lab 3 - DMA
	Proposed�architecture
	Address generation
	State diagram
	A measurement make sim_jpeg
	A closer look at the DMA
	DCT => Mem (Software)
	A hint
	Burst Read
	burst – cycle types
	Changes in the slave
	Do you really wanna burst?
	Why not write? (acc->mem)
	Ethernet controller
	Ethernet controller
	or1200�Memory Management
	Memory Management Unit
	A sketchy explanation
	I/D-TLB = Translation Lookaside buffer
	Does the MMU need an extra pipeline stage?
	What about DMA and MMU?
	Bildnummer 25
	leon – open source processor�www.gaisler.com
	leon
	Bildnummer 28
	A 4-way 8kb instruction cache
	leon instruction�pipeline
	Bildnummer 31
	MicroBlaze
	MicroBlaze Pipeline
	Nios (Altera)
	Custom Instructions
	HW Accelerator
	Zynq – a programmable SOC
	PS = processing system
	Snoop Control Unit
	PL = programmable logic
	Bildnummer 41
	ACP = accelerator coherency port

