ISE 6 In-Depth
Tutorial

S XILINX®

& XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketlO, SelectlO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-Il Pro, Virtex-1l EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

ISE 6 In-Depth Tutorial www.xilinx.com
1-800-255-7778

SXILINX®

Preface

About This Tutorial

About the In-Depth Tutorial

This tutorial gives a description of the features, tools and design flows in ISE 6. The
primary focus of this tutorial is to show the relationship among the Xilinx® and third-party
design entry, implementation and simulation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this page. You can also directly access some of
these resources using the provided URLSs.

Resource

Description/URL

Software
Manuals

The collection of software manuals is available from the software Help
menu (Help — Online Documentation) and at

http://support.xilinx.com/support/sw_manuals/xilinx6/

Tutorial

Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Forums

Discussion groups and chat rooms for Xilinx software users
http://toolbox.xilinx.com/cgi-bin/forum

ISE 6 In-Depth Tutorial

www.xilinx.com 3
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://toolbox.xilinx.com/cgi-bin/forum
http://support.xilinx.com
http://support.xilinx.com/support/sw_manuals/xilinx6/

$7 XILINX°

Preface: About This Tutorial

Resource Description/URL

Data Book Pages from The Programmable Logic Data Book, which describe device-

specific information on Xilinx® device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://support.xilinx.com/partinfo/databook.htm

Xcell Journals | Quarterly journals for Xilinx programmable logic users

http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design

environment
http://support.xilinx.com/xInx/xil _tt_home.jsp

Tutorial Contents

This guide covers the following topics.

Tutorial Flows

Chapter 1, “Overview of ISE and Synthesis Tools,” introduces you to the ISE primary
user interface, Project Navigator, and the synthesis tools available for your design.

Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch.

Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as StateCAD™, Project Navigator, CORE
Generator™, and ISE Text Editor.

Chapter 4, “Behavioral Simulation,” explains how to use the ModelSim Simulator to
simulate a design before design implementation and to verify that the logic that you
have created is correct.

Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route
(Fit for CPLDs), and generate a Bit file for designs.

Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the post-place & route simulation netlist and the block and routing delay information
to give an accurate assessment of the behavior of the circuit under worst-case
conditions.

This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

HDL Design Flow
Schematic Design Flow
Implementation-only Flow

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/xlnx/xil_tt_home.jsp

Tutorial Flows

$7XILINX°

HDL Design Flow

The HDL Design flow is as follows:

Chapter 2, “HDL-Based Design”

Chapter 4, “Behavioral Simulation”

Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Schematic Design Flow

The Schematic Design flow is as follows:

Chapter 3, “Schematic-Based Design”

Chapter 4, “Behavioral Simulation”

Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6,“Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Implementation-only Flow

The Implementation-only flow is as follows:

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

ISE 6 In-Depth Tutorial

www.xilinx.com 5
1-800-255-7778

S XILINX® Preface: About This Tutorial

6 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Table of Contents

Preface: About This Tutorial

About the In-Depth Tutorial 3
Additional RESOUICES 3
Tutorial Contents e 4
Tutorial FIOWS 4
HDL DeSign FIOW oo 5
Schematic Design FIOWo 5
Implementation-only FIOW 5

Chapter 1: Overview of ISE and Synthesis Tools

OVerview OF ISE o 13
Project Navigator Interface 13
Sources in ProjeCt WINAOW 14

Module View 14
SNAPSNOt VIBW . . o o e 15
Library ViewW. . .. 15
Processes for Current Source Window 15
PrOCESS Vi . . . oo 15
Console WINAOWo 16
Error Navigation to SOUNCEot 16
Error Navigation to Solution Record i 16
MDIWINAOW . .. e 16
TeXtEdIIOr . .o 16
HDL BENCNEI . . oot e e 16
USING SNaPShOtSo 17
Creating a Snapshot 17
Restoringa Snapshot 17
Viewing a Snapshot 17
Using Project Archives 17
Creatingan Archive 17
Restoring an Archive 18

Overview of Synthesis TOOoIS e 18

Xilinx Synthesis Technology (XST) e 18
SUPPOIEA DEVICES .« .+ v v v ottt ettt et et et e 18
PrOCESS PrOPEITIES . o ot vt ettt e 18

Synplify/ZSynplify Pro 18
SUPPOIEA DEVICES .« .+ v v v ottt ettt et et et e 18
PrOCESS PrOPEITIES . o ot vt ettt e 18

LeonardOoSPeCtrUM e 19
SUPPOIEA DEVICES .« . o v v ot ettt ettt et et 19
PrOCESS PrOPEITIES . « o ot vt ettt 19

Chapter 2: HDL-Based Design

Overview of HDL-Based Design.t 21
Getting Started. 22
ISE 6 In-Depth Tutorial www.xilinx.com

1-800-255-7778

$7 XILINX°

Required SOFtWaAre 22
Optional Software Requirements e 22
VHDL Or Verilog?o 22
Installing the Tutorial Project Files 22
Starting the ISE Software 23
Stopping the Tutorial. 24
Design DesCription 24
INDULS . . o 24
QUL PULS e e e 25
Functional BIOCKS o 25
DesSigN ENtrY 26
Adding Source Files. o e 26
Checking the Syntax 27
Correcting HDL €ITOSot e e e e e e e e 27
Creating an HDL-Based Module i e 27
Using the New Source Wizard and ISE TextEditor 27
Using the Language Templates.ov ittt e 29
Adding the Language Templateto YourFile 30
Creating a CORE Generator Module i 31
Creating the CORE Generator Module.ttt 31
Instantiating the CORE Generator Moduleinthe HDL Code. 33
Creatinga DCM Module. 36
USiNg DCM Wizardot e e 36
Instantiating the DCM1 Macro- VHDL Design 37
Instantiating the DCM1 Macro - Verilog.t e 38
Synthesizing the Design e 39
Synthesizing the Design using XST e 40
ENtering ConStraintS.o\ v et e 40
Entering Synthesis Options.o v vttt e 41
Synthesizing the DesigNot e 41

THE RTL VIBWET oot e e e e e e 41
Synthesizing the Design using Synplify/Synplify Pro 42
Examining Synthesis ReSUItS i e 43
Synthesizing the Design using LeonardoSpectrum 44
Modifying CONSLraiNtSottt e e 45
Entering Synthesis Options through ISE. i i i 46

The RTL/ZTecChnology VIBWET . . . oot v et e e e 47

Chapter 3: Schematic-Based Design

Overview of Schematic-based Design 51
Getting Started. 51
Required SOFtWaAre 51
Installing the Tutorial Project Files e 52
WEUE SC PFOJECE .« o v v ot ettt et et e e e e e 52

watch_SC SOIUtION ProjECt . . .o oot it 52

Copying the Tutorial Files (Optional) 52
Starting the ISE Software 53
Stopping the Tutorial. 53
Design DesCription 53
INDULS . . o 55

QUL PULS . e e e e 55
Functional BIOCKS oo 55

8 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

$7XILINX°

DesSigN ENtrY 56
Opening the Project File in the ECS Schematic Editor Tool 56
Manipulating the Window View e 57
Creating a Schematic-Based Macro i 57
Defining the CNT60 Schematic e s 58

Adding 70 Markers . .. vv e 58
Adding Components to CNTB0ottt et e e 59
Placing the Remaining ComMPOoNentS.ot ittt e e 61
Correcting Mistakes . . . o v vt 62
DraWING WS .« o ot ottt e e e e e 62
AAAING BUSES &« o v ottt et e 63
AAAING BUS TaPS « v v vttt it ettt e e 63
Adding Net NamMeS. . .ot e e e 64
Saving the Schematict 64
Creating and Placing the CNT60 Symbol.......... i, 65
Creatingthe CNT60Symbolo e 65
Placing the CNTB0 Symbolo e 65
Creating a CORE Generator Module i 66
Creatinga CORE Generator Modulec. it 66
Creating a State MachineModule i i i 68
Opening the State Eitor.t 69
Adding New States.o e 71
Adding aTransitiont 72
Adding aState ACtioN.t 72
Adding a State Machine Reset Condition.t 74
Creating the State Machine Symbol i 75
Creatinga DCM Module. 76
USiNg DCM Wizardot e 76
Creating the DCM1 Symbol e 78
Placing the STMACH, Tenths, DCM1, outs3, and decode symbols............... 78
Creating an HDL-Based Module i e 78
Using the New Source Wizard and ISE TextEditor 79
Using the Language Templates. v ittt e e 80
Adding the Language Templateto YourFile 81
Creating and Placing the HEX2LED Symbol i 82
Specifying Device INputs/OuUtputSot 82
Hierarchy PUSh/ZPOp.o e e 83
Adding INPUE PINS . ..o 84
Adding I/0 Markersand Net Names i, 84
ASSIgNING PN LOCAtIONSot 85
Completing the Schematic i 87

Chapter 4. Behavioral Simulation

Overview of Behavioral Simulation Flow. a1
MOdelSIM SEtUP a1
ModelSIm PE and SE 91

ModelSim XilinX Edition. 92

Getling Started. 92
Required Files o 92

Xilinx Simulation Libraries. 93

Updating the Xilinx Simulation Libraries. o it 93

Mapping Simulation Libraries in the Modelsim.iniFile......................... 93

ISE 6 In-Depth Tutorial www.xilinx.com 9

1-800-255-7778

$7 XILINX°

Addingan HDL TestBench 94
Adding Tutorial TestBench File 94
VHD L DESIgN v v vttt ettt e e e e 94

VErlOg DESIgN .« ottt 95

Creating a Test Bench Waveform Using HDL Bencher 95
Creating a Test Bench Waveform SoUrce, 95

ApPPIYING StMUIUS . . .o 96
Behavioral Simulation Using ModelSim................... 97
Locating the Simulation Processest 97
Specifying Simulation Properties i 98
Performing Simulation 99
Adding Signals 99
Torestartand re-runthe simulation: i 100

Saving the Simulation 101

Chapter 5. Designh Implementation

Overview of Design Implementation.................. 103
Getting Started. 104
Tutorial Option Lo 104
Tutorial Option 2o 104
Creating an Implementation Project i, 105
SPECITYING OPtiONS ...\ 106
Translating the Design 108
Creating and Editing Timing Constraints. ..., 108
Editing Constraints in the Constraints Editor 109
Editing Constraints in the Pinout Area Constraints Editor (PACE).............. 112
Mapping the Design 115
Using Timing Analysis to Evaluate Block Delays After Mapping............ 116
Estimating Timing Goals withthe 50/50Rule 116
Report Paths in Timing Constraints Option i, 116
Placing and Routingthe Design ... e 117
Using FPGA Editor to Verify the Placeand Route........................ ... 118
Evaluating Post-Layout Timing...............o e, 120
Creating Configuration Data, 120
Creatinga PROM File With IMPACT 122
Command Line Implementation., 124
Viewing The Command Line LogFile i i, 124
Creating Your Own Command Batch File 124
Command Line Reference Information 125

Chapter 6: Timing Simulation

Overview of Timing Simulation Flow 127
Getting Started. 127
Required SOftware oo 127

Required FIleS 127

Timing Simulation Using ModelSim 128
Specifying Simulation Process Properties 128

Simulation Model Propertiesov i e e 128

10 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

$7XILINX°

DiSPlay PrOPeItiES . .\ vttt e e 129
SIMUIAtioN Properties . . .ot e e 129
Performing Simulation 130
ISE 6 In-Depth Tutorial www.xilinx.com 11

1-800-255-7778

$7 XILINX°

12 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

e “Overview of ISE”
e “Overview of Synthesis Tools”

Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the various design entry and design implementation tools. You can also access
the files and documents associated with your project. Project Navigator maintains a flat
directory structure; therefore, you can maintain revision control through the use of
snapshots.

Project Navigator Interface

The Project Navigator Interface is divided into four main subwindows, as seen in

Figure 1-1. On the top left is the Sources in Project window which hierarchically displays
the elements included in the project. Beneath the Sources in Project window is the
Processes for Current Source window which displays available processes. The third
window at the bottom of the Project Navigator is the Console window which displays
status messages, errors, and warnings, and which is updated during all project actions.
The fourth window to the right is a multi-document Interface (MDI) window for viewing
ascii text files and HDL Bencher™ Waveforms. Each window may be resized, undocked
from Project Navigator or moved to a new location within the main Project Navigator
window. The default layout can always be restored by selecting View — Restore Default
Layout. These windows are discussed in more detail in the following sections.

ISE 6 In-Depth Tutorial

www.xilinx.com 13
1-800-255-7778

$7 XILINX°

Chapter 1: Overview of ISE and Synthesis Tools

xilinx - Project Navigator - C:\Xilinx', ISEexamples'wtut_vhd'\wtut_vhd.npl - [stopwatch.xhd]

|)® File Edit Yiew Project Source Process Window Help

=10l x|
2| 18] x|

oo mwE DD @R 2|t we|o (@ Fll4R%A|Q

2l

N X 1 ibrary IEEE: -
SEEES [FEEEE | 2 Ellse IEEE.std_logic_ll6d.all;
i E witut_vhd 3 --synopsys translate off
EEE wc2vd0-5ig256 - <57 WHDL 4 library TNISIM:
E-[¥] stopwatch [stopwatch.vhd] & use unisim.vcomponents.all;
= @ cntB0 [chtE0. vhd) 5 --synopsys translate_on
[F] smallentr 7
@ decode [decode. vhd) 8 entity stopwatch is
hexZled a port { CLE : in 3TD_LOGIC;
[statmach [statmach.vhd) 1 FESET : in 5TD_LOGIC;
11 STRTSTOP : in 3TD_LOGIC:
B p 12 TENTH30UT : out 5TD_LOGIC_VECTOR(9 dowmto 0);
ke "'lnsnapsm”'] 1D Loy I 13 ONESOUT : out STD_LOGIC_VECTOR(E downto 0 ;
x| 14 TENS0UT : out 5TD_LOGIC_VECTOR(6 dowmto 0)):
15 end stopwatch;
Processes for Curent Source: | 18
Dresign Entry Utilities 17 architecture inside of stopwatch is
Uszer Constraints o
Sunthesize 18 cowponent DCM
Implement Design 20 —-zynopsys translate off
O Tranglate 2! generic (.
0 Map 22 TimingChecksOn : boolean := FALSE:
S Place & Route 23 DLL_FREQUENCY MODE : string := "LOW";
k[:enerate Pro X y 24 DUTY CYCLE CORRECTION : boolean := TRUE: l
gramming File . I I v
B prcess isw | [stopwatch.vhd
4 =
-
4 o
[A » M, Console £ Findin Files f
Far Help, press F1 [EFT==F =

Figure 1-1: Project Navigator

Sources in Project Window

This window consists of three tabs which provide information for the user. Each tab is
discussed in further detail below.

Module View

The Module View tab displays the project name, any user documents, the specified part
type and design flow/synthesis tool, and design source files. Each file in the Module View
has an associated icon. The icon indicates the file type (HDL file, schematic, core, or text
file, for example). For a complete list of possible source types and their associated icons, see
the Project Navigator online help. Select Help — ISE Help Contents, select the Index tab
and click Source / file types.

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files
have this + to show the entities (VHDL) or modules (Verilog) within the file. You can

expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

14

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

Overview of ISE

$7XILINX°

Snapshot View

The Snapshot View tab displays all snapshots associated with the project currently open in
Project Navigator. A snapshot is a copy of the project including all files in the working
directory, and synthesis and simulation subdirectories. A snapshot is stored with the
project for which is was taken, and can be viewed in the Snapshot View. You can view the
reports, user documents, and source files for all snapshots. All information displayed in
the Snapshot View is read-only. Using snapshots provides an excellent version control
system, enabling subteams to do simultaneous development on the same design.

Note: Remote sources are not copied with the snapshot. A reference is maintained in the snapshot.

Library View

The Library View tab displays all libraries associated with the project open in Project
Navigator.

Processes for Current Source Window

This window contains the Process View tab.

Process View

The Process View tab is context sensitive and changes based upon the source type selected
in the Sources for Project window. From the Process View tab, you can run the functions
necessary to define, run and view your design. The Process Window provides access to the
following functions:

e Design Entry Utilities

Provides access to symbol generation, instantiation templates, HDL Converter, View
Command Line Log File, Launch MTI, and simulation library compilation.

e User Constraints
Provides access to editing location and timing constraints.

e Synthesis

Provides access to Check Syntax, synthesis, View RTL Schematic, and synthesis
reports. This varies depending on the synthesis tools you use.

e Implement Design
Provides access to implementation tools, design flow reports, and point tools.

e Generate Programming File
Provides access to the configuration tools and bitstream generation.

The Processes for Current Source window incorporates automake technology. This enables
the user to select any process in the flow and the software automatically runs the processes
necessary to get to the desired step. For example, when you run the Implementation
process, Project Navigator also runs the synthesis process because implementation is
dependent on up-to-date synthesis results.

Note: To view a running log of command line arguments in the Console window, expand Design
Entry Utilities and select View Command Line Log File. See the Using Command Line section of
Chapter 5, “Design Implementation” for further details.

ISE 6 In-Depth Tutorial

www.xilinx.com 15
1-800-255-7778

S XILINX® Chapter 1: Overview of ISE and Synthesis Tools

Console Window

The Console window displays errors, warnings, and informational messages. Errors are
signified by a red box next to the message, while warnings have a yellow box. Warning and
Error messages may also be viewed separately from other console text messages by
selecting either the Warnings or Errors tab at the bottom of the console window.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Console window to the
location of the error in a source HDL file. To do so, select the error or warning message,
right-click the mouse, and from the menu select Goto Source. The HDL source file opens
and the cursor moves to the line with the error.

Error Navigation to Solution Record

You can navigate from an error or warning message in the Console window to the relevant
solution records on the support.xilinx.com website. These type of errors or warnings can
be identified by the web icon to the left of the error. To navigate to the solution record,
select the error or warning message, right-click the mouse, and from the menu select
Goto Solution Record. The default web browser opens and displays all solution records
applicable to this message.

MDI Window

In the multi-document interface (MDI) window, you can access the ISE Text Editor, the ISE
Language Templates, and HDL Bencher™.

Text Editor

Source files and other text documents can be opened in a user designated editor. The editor
is determined by the setting found by selecting Edit — Preferences, Editor tab. The
default editor is the ISE Text Editor. ISE Text Editor enables you to edit source files and to
access the ISE Language Templates, which is a catalog of ABEL, Verilog and VHDL
language and User Constraint File templates. You can use and modify these templates for
your own design

HDL Bencher

HDL Bencher is a PC-based test bench and test fixture creation tool integrated in the
Project Navigator framework. HDL Bencher can be used to graphically enter stimuli and
the expected response, then generate a VHDL test bench or Verilog test fixture. For future
details see the “Creating a Test Bench Waveform Using HDL Bencher” in Chapter 4.

16 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Overview of ISE i:X"JNX®

Using Snapshots

Snapshots enable you to maintain revision control over the design. A snapshot contains a
copy all of the files in the project directory. See also “Snapshot View.”

Creating a Snapshot

To create a snapshot:

1. Select Project —» Take Snapshot.

2. Inthe Take a Snapshot of the Project dialog box, enter the snapshot name and any
comments associated with the snapshot.

In the Snapshot View, the snapshot containing all of the files in the project directory along
with project settings is displayed.

Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work.
When you restore a snapshot, it replaces the project in your current session. To restore a
snapshot:

1. Inthe Snapshot View, select the snapshot.
2. Select Project - Make Snapshot Current.

Before the snapshot replaces the current project, you must place the current project in a
snapshot so that your work is not lost
Viewing a Snapshot

The Snapshot View contains a list of all the snapshots available in the current project. To
review a process report or verify process status within a snapshot:

1. Expand the snapshot source tree and select the desired source file.
2. Right-click the mouse over the desired process report.
3. From the menu, select Open Without Updating.

Using Project Archives

You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project — Archive.
2. Inthe Create Zip Archive dialog box, enter the archive name and location.

The archive contains all of the files in the project directory along with project settings.
Remote sources are not zipped up into the archive.

ISE 6 In-Depth Tutorial www.xilinx.com 17
1-800-255-7778

S XILINX® Chapter 1: Overview of ISE and Synthesis Tools

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

Overview of Synthesis Tools

You can synthesize your design using three synthesis tools. The following section lists the
devices supported by each synthesis tool and includes some process properties
information.

Xilinx Synthesis Technology (XST)

This synthesis tool is part of the ISE package and is available for both an HDL- or
Schematic-based design flow.

Supported Devices

o Virtex™/-E /-Il, Virtex -1l Pro™
e Spartan™-Il /-1IE/-3

e XC9500™ /XL/XV

e Coolrunner™ /XPLA3/-II

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used
properties are Optimization Goal and Optimization Effort. Using these properties you can
control the synthesis results for area or speed, and the amount of time the synthesizer runs.

For more information, see the XST User Guide. This Guide is available with the collection of
software manual and is accessible from ISE by selecting Help — Online Documentation,
or from the web at http://support.xilinx.com/support/sw_manuals/xilinx6/.

Synplify/Synplify Pro
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. This synthesis tool is not available for a schematic-based design.

Supported Devices

o Virtex™/-E /-Il, Virtex -Il Pro™
e Spartan™-Il /-1IE/-3

e XC9500™ /XL/XV

e Coolrunner™ /XPLA3/-II

Process Properties

Process properties enable you to control the synthesis results of Synplify/Synplify Pro.
Most of the commonly used synthesis options available in the Synplify/Synplify Pro
stand-alone version are available for Synplify/Synplify Pro synthesis through ISE.

18 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx6/

Overview of Synthesis Tools ST XILINX®

For more information about the specific synthesis options, see the Synplify/Synplify Pro
online help.

LeonardoSpectrum

This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. Using these properties you can control the synthesis results for area or speed and
the amount of time the synthesizer runs. This synthesis tool is available for both an HDL-
based and Schematic-based design flow.

Supported Devices

Virtex™/-E /-Il, Virtex -1l Pro™
Spartan™-Il /-11E/-3

XC9500™ /XL/XV
Coolrunner™ /XPLA3/-II

Process Properties

Process properties enable you to control the synthesis results of LeonardoSpectrum. Most
of the commonly used synthesis options available for the LeonardoSpectrum stand-alone
version are available for LeonardoSpectrum synthesis through ISE.

For more information, see the LeonardoSpectrum online help.

ISE 6 In-Depth Tutorial

www.xilinx.com 19
1-800-255-7778

S XILINX® Chapter 1: Overview of ISE and Synthesis Tools

20 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

2 XILINX®
Chapter 2

HDL-Based Design

This chapter includes the following sections:

e “Overview of HDL-Based Design”
e “Getting Started”

e “Design Description”

e “Design Entry”

e “Synthesizing the Design”

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of
arunner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Virtex™-11 device; however, all of the principles and flows taught are
applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and a CORE Generator™ macro. You can
synthesize the design using Xilinx Synthesis Technology (XST), LeonardoSpectrum, or

Synplify.

This chapter is the first in the “HDL Design Flow.” It is followed by Chapter 4, “Behavioral
Simulation”, in which you simulate the HDL code using the ModelSim Simulator. In
Chapter 5, “Design Implementation”, you will implement the design using the Xilinx
Implementation Tools, and generate a bitstream.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http://support.xilinx.com/support/techsup/tutorials/index.htm.

ISE 6 In-Depth Tutorial www.xilinx.com 21
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/index.htm

$7 XILINX°

Chapter 2: HDL-Based Design

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

To perform this tutorial, you must have the following software and software components
installed:

e Xilinx® Series ISE 6.x
e ModelSim (necessary for Behavioral and Timing Simulation)
e Virtex™-]l libraries and device files

Note: For detailed software installation instructions, refer to the ISE Installation Guide and Release
Notes. This Guide is available with the collection of software manual and is accessible from ISE by
selecting Help — Online Documentation, or from the web at
http://support.xilinx.com/support/sw_manuals/xilinx6/.

This tutorial assumes that the software is installed in the default location c:\xilinx. If you
have installed the software in a different location, substitute c¢:\xilinx with your installation
path.

Optional Software Requirements

The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of the XST synthesis tool:

o Synplify/Synplify PRO 7.3 (or above)
e LeonardoSpectrum 2003.a (or above)

VHDL or Verilog?

This tutorial supports both VHDL and Verilog designs, and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files accordingly. Starting with the 6.1i release, XST can now synthesize a mixed-language
design. However, this tutorial does not go over the mixed language feature.

Installing the Tutorial Project Files

The Stopwatch tutorial projects can be downloaded from
http://support.xilinx.com/support/techsup/tutorials/tutorials6.htm. Download either
the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projects in the c:\xilinx directory, and replace any existing files.

After you unzip the tutorial project files in c:\xilinx, the directory wtut_vhd (for a VHDL
design flow) or wtut_ver (for a Verilog design flow) is created within c:\xilinx\ISExamples,
and the tutorial files are copied into the directories.

22

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/tutorials6.htm
http://support.xilinx.com/support/sw_manuals/xilinx6/

Getting Started ST XILINX®

The following table lists the locations of both the complete and incomplete projects.

Note: The runner’s stopwatch design is referred to a Watch for brevity.

Table 2-1: Tutorial Project Directories

Directory Description
wtut_vhd Incomplete Watch Tutorial - VHDL
wtut_ver Incomplete Watch Tutorial - Verilog
watchvhd Solution for Watch - VHDL
watchver Solution for Watch - Verilog

Note: Do not overwrite any files in the solutions directories.

The watchvhd and watchver solution projects contain the design files for the completed
tutorials, including HDL files and the bitstream file. To conserve disk space, some
intermediate files are not provided.

Starting the ISE Software

Once the tutorial files are downloaded and unzipped, start the ISE software and open the
design project file.

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start —
Programs — Xilinx ISE — Project Navigator.

Froject
M awvigator

Figure 2-1: Project Navigator Desktop Icon

ISE 6 In-Depth Tutorial www.xilinx.com
1-800-255-7778

23

S XILINX® Chapter 2: HDL-Based Design

2. From Project Navigator, select File — Open Project. The Open Project dialog box
appears.

DOpen Project

Look jr: I:_ﬂ wtut_vhd j gl

File: narme: I“.npl Open I
Files of tupe: IPmiect Files [*.npl) j Cancel |

Figure 2-2: Getting Started Dialog Box

3. Inthe Directories list, browse to c:\xilinx\1SEexamples\wtut_vhd or
c:\xilinx\ISEexamples\wtut_ver.

4. Double-click wtut_vhd.npl (VHDL design entry) or wtut_ver.npl (Merilog design entry).

Stopping the Tutorial

You may stop the tutorial at any time and save your work by selecting File —» Save All.

Design Description

The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or CORE Generator™ modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, simulate it to verify the design’s functionality.

The tutorial design is a simple runner’s stopwatch. There are three external inputs and
three external output buses in the completed design. The system clock is an externally
generated signal. The following list summarizes the input lines and output buses.

Note: Throughout this tutorial, the runner’s stopwatch design that you are working on is
referred to as Watch.

Inputs
The following are input signals for the tutorial Watch design.
e STRTSTOP
Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.
24 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

Design Description

$7XILINX°

Outputs

RESET
Resets the stopwatch to 00.0 after it has been stopped.

CLK
Externally generated system clock.

The following are outputs signals for the design.

TENSOUTI[6:0]

7-bit bus which represents the tens digit of the stopwatch value. This bus is in 7-
segment display format viewable on the 7-segment LED display.

ONESOUT[6:0]
Similar to TENSOUT bus above, but represents the ones digit of the stopwatch value.
TENTHSOUTI[9:0]

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks

The completed design consists of the following functional blocks.

STATMACH
State Machine module defined and implemented in StateCAD™.
CNT60

HDL-based module which counts from 0 to 59, decimal. This macro has two 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

TENTHS

CORE Generator™ 4-bit binary encoded counter. This macro outputs a 4-bit code
which is decoded to represent the tenths digit of the watch value as a 10-bit one-hot
encoded value.

HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

SMALLCNTR
A simple Counter.

DECODE
Decodes the CORE Generator output from 4-bit binary to a 10-bit one-hot output.

DCM1
Clocking Wizard macro with internal feedback and duty-cycle correction.

ISE 6 In-Depth Tutorial

www.xilinx.com 25
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

Design Entry

For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator™ module, and you will create and use each type
of design macro. All procedures used in the tutorial can be used later for your own designs.

With the wtut_vhd.npl or wtut_ver.npl project open in Project Navigator, the Sources in
Project window displays all of the source files currently added to the project, with the
associated entity or module names (see Figure 2-3). In the current project, smallcntr and
hex2led are instantiated, but the associated entity or module is not defined in the project.
Instantiated components with no entity or module declaration are displayed with a red
guestion-mark.

Su:uurEes i Project; Ii
o [B] watut_vhd

= £ wc2vd-5fg256-+5T wHDL

E| E stopwatch [ztopwatch, vhd]
] testhench.vhd

E@ chtBl [crtB0. vhd)

C L[smallentr [smalleatr vhd)
- [#] decode [decode.vhd)

o [#] hexlled [hex2led vhd)
t[#] statmach [statmach.vhd) i
|'_—'||E terths [tenths, vhd) =]

N IS Wodule Yiew l DX Snapshat Wiew I TD Libirary Wiew I

Figure 2-3: Sources in Project Window

Adding Source Files

HDL files must be added to the project before they can be synthesized. Four HDL files have
already been added to this project. One file must still be added.

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the Processes for Current Source window displays all
processes available for this file.

Next, add the remaining HDL file to the project.

2. Select Project — Add Source.

3. Select smallcntr.vhd or smallentr.v from the project directory.

4. Inthe Choose Source Type dialog box, select Verilog/VHDL Module.
5. Click OK.

The red question-mark (?) for smallcntr should change to a V.

|E| zmallchtr [zrmallcntr. whd)

Figure 2-4: smallcntr.vhd file in Sources in Project window

26

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

Checking the Syntax

To check the syntax of source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the Processes for Current Sources in Project window
displays all processes available for this file.

2. Double-click Check Syntax in the Synthesize hierarchy.
Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL errors

The SMALLCNTR design contains a syntax error that must be corrected. The red “x”
beside the Check Syntax process indicates an error was found during analysis. Project
Navigator reports errors in red and warnings in yellow in the Console window.

To display the error in the source file:

1. Double-click on the error message in the console window.

2. Correct any errors in the HDL source file. The comments next to the error explain this
simple fix.

Select File — Save to save the file.

Re-analyze the file by selecting the HDL file and double-clicking Check Syntax in the
Synthesize hierarchy.

Creating an HDL-Based Module

Next, create a module from HDL code. With ISE, you can easily create modules from HDL
code using the ISE Text Editor tool. The HDL code is then connected to your top-level HDL
design through instantiation and is compiled with the rest of the design.

Now, you will author a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

Using the New Source Wizard and ISE Text Editor

In order to create the module, in the New Source Wizard, create a file and specify the name
and ports of the component. The resulting “skeleton” HDL file is then modified further in
the ISE Text Editor.

To create the source file:
1. Select Project - New Source.
A dialog box opens in which you specify the type of source you want to create.
2. Select VHDL Module or Verilog Module.
3. Inthe File Name field, type ‘hex2led’.
4. Click Next.

The hex2led component has a 4-bit input port named hex and a 7-bit output port named led.
To enter these ports:

1. Click in the Port Name field and type HEX.
2. Click in the Direction field and set the direction to in.

ISE 6 In-Depth Tutorial

www.xilinx.com 27
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

3.

5.

In the MSB field enter 3, and in the LSB field enter 0. Refer to Figure 2-5.

Define YHDL Source E3

Entity Mame IhE:-:2|El:|

Architecture Mame Il:uehavicural

Port Hame Direction MsE LSB ﬂ
HEX in 0
LED: out 0
| in
in
in
in
in
in
in
in
in
in ;I
Cancel | Help |

Figure 2-5: New Source Wizard for VHDL

Repeat the previous steps for the LED[6:0] output bus. Be sure that the direction is set

to out.

Click Next to complete the Wizard session.

A description of the module displays.

Click Finish to open the empty HDL file in the ISE Text Editor.

28

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

Design Entry

$7XILINX°

The VHDL file is found in Figure 2-6. The Verilog HDL file is found in Figure 2-7.

0~ @t koW k=

I M = = = = 4o = = w
o= O Do~ ®mth kW= D00

Bibrary IEEE:

use IEEE.STD LOGIC 1164.ALL:
use IEEE.STD LOGIC ARITH.ALL:
use IEEE.STD LOGIC UNSIGNED.ALL:

-- Tmnmcomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM:
--use UNIZIM.VComponents.all:
entity hexzled iz

Fort [HEX : in std logic_wector(3 downmtao 0);

LED : in std logic wector (6 dowmto 0));

end hexzZled;

architecture Behawioral of hexZled iz

begin
end EBehawvioral:

Figure 2-6: Skeleton VHDL File in the ISE Text Editor

hodule HEXZLED (HEX,LED)
input [3:0] HEX;
input [5:0] LED;

endmnadule

0~ @t koW k=

Figure 2-7: Skeleton Verilog File in the ISE Text Editor

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, data types in red,
comments in green, and values in black. This color-coding enhances readability and
recognition of typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the HEX2LED Converter template for this exercise. This
template provides source code to convert a 4-bit value to 7-segment LED display format.

Note: You can add your own templates to the Language Templates for components or constructs
you use often.

ISE 6 In-Depth Tutorial

www.xilinx.com 29
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit - Language Templates.

Each HDL language in the Language Templates is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template contents in the right-hand pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Templates
hierarchy and select the template called HEX2LED Converter. Use the appropriate
template for the language you are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

| B | &
Templates: =5
=7 ABEL
l:l UCF --HEX-to-seven-sequent decoder
-] Verlog -- HEX: in 3TD_LOGIC_VECTOR (3 dowmto 0);
ED WHDL -- LED: out 3TD_LOGIC_VECTOR (6 dowmto 0 ;
l:l Componet [nstantiation :: seqment. encoding
l:l Language Templates _ i
EII:l Synthesiz Templates __ o
----- Barrel Shifter — 5| | 1
----- Comparator - —— #- 5
----- Counter —— 4| | 2
----- Debounce circuit - -——=
----- Decoder - 3
----- Encoder
EEI---I:I Flip Flops with HEX 3ELect
_____ v —— LED<= "1111001" when "0001", --1
i Latches "0100100" when "0010°, --Z
El"'l:l Multiplesers 0110000 when 00117, --3
_____ Pulidaien "0011001" when "0l007, --4 —
_____ Pullup TooLoolo™ when TOlO17, --5
ToooooloT when 01107, --6
SE chit Fegites g e e]
-2 State Machines rrgg?ggggrr EE:E nigg?n‘ ::g
-0 Tristate Buffers "O00L000T when "ll:lll:l": ——i =
----- {273 Uszer Templates LLI el e e T R I PR S N LI B 1 _’I—I

Q Language T...
—
Figure 2-8: Language Templates

Adding the Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. A copy
and paste function is also available from the Language Templates Edit Menu and the right-
click menu.

30

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

To add the template to your HDL file using the drag and drop method:

1. Inthe Language Templates, click and drag the HEX2LED Converter name into the
hex2led.vhd file under the architecture statement, or the hex2led.v file under the module
declaration.

Close the Language Templates window.

(\Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment:

reg [6:0] LED;
You now have complete and functional HDL code.
Save the file by selecting File —» Save.

Select hex2led in the Sources in Project window and double-click Check Syntax under
Synthesize in the Processes for Current Source window.

6. Exit the ISE Text Editor.

Creating a CORE Generator Module

CORE Generator™ is a graphical interactive design tool used to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Create the CORE Generator module using the New Source Wizard in Project Navigator.
This invokes CORE Generator in which you can select and define the type of module you
want.

To create the module:

In Project Navigator, select Project — New Source.

Select IP (CoreGen & Architecture Wizard) as the source type.
Enter ‘tenths’ in the File Name field.

Click Basic Elements — Counters — Binary Counters.

Click Next and then Finish.

Fill in the Binary Counter dialog with the following settings:

o g b~ w b

¢+ Component Name: tenths

Defines the name of the module.
¢ Output Width: 4

Defines the width of the output bus.
¢ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

ISE 6 In-Depth Tutorial

www.xilinx.com 31
1-800-255-7778

& XILINX®

Chapter 2: HDL-Based Design

¢ Count Style: Count by Constant
Allows counting by a constant or a user supplied variable.
¢ Count Restrictions: Enable and Count To Value A (HEX)
This dictates the maximum count value.
xl
Parameters | Bl core ovenview| Bl contact| Bl web Links |
WCE%RE Binary Counter
Compaonent Mame: |tenths
Qutput Width: |4_ Walid Range: 2..256
— Operation
— * Up " Down " UpiDown
: — Count Style
: i Count by Constant Count by Variahle

— Count Restrictions

Count By Value: |1 (Hexwalue, M5B first)
¥ Restrict Count

Count To Value: IA ('MAK or Hexvalue, MSB first)

<

Fage 1 of 2

Generate Dismiss | Data Sheet... | Wersion Info... | [™ Display Core Footprint

10.

11.
12.

Figure 2-9: CORE Generator Module Selector

Select the Next button.
Continue to fill in the Binary Counter dialog with the following settings:

L4

*

Threshold Options: Threshold 0 setto A
Signal goes high when the value specified has been reached.

Threshold Options: Registered

Click the Register Options button to open the Register Options dialog box.

In the Register Options dialog box, enter the following settings:

¢ Clock Enable: Selected

¢ Asynchronous Settings: Init with a value of 1

¢ Synchronous Settings: None

Click OK.

Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the CORE Generator™ window):
¢ AINIT

¢+ CE

¢+ Q

¢ Q_THRESHO

¢+ CLK

32

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

13. Click Generate.

The module is created and automatically added to the project library.

A number of other files are added to the project directory. These files are:

*

tenths.sym

This is a schematic symbol file.

tenths.edn

This file is the netlist that is used during the Translate phase of implementation.

tenths.vho or tenths.veo

This is the instantiation template that is used to incorporate the CORE Generator™
module in your source HDL.

tenths.vhd or tenths.v
These are simulation-only files.
tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

coregen.prj
This file stores the CORE Generator configuration for the project.

14. Click Dismiss.

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow
or a Verilog flow.

VHDL Flow
To instantiate the CORE Generator module using a VHDL flow:

1. In Project Navigator, double-click stopwatch.vhd to open the file in ISE Text Editor.

2. Place your cursor after the line that states:

“-- Insert Coregen Counter Conponent Declaration”

3. Select Edit — Insert File and choose Tenths.vho.
The VHDL template file for the CORE Generator instantiation is inserted.

ISE 6 In-Depth Tutorial

www.xilinx.com 33
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

Note: The Component Declaration does not need to be modified.

B2 Begin Cut here for COMPONEMT Declaration ————-— COMFP_TAaG
53 component tcenths

54 port

55 2: OUT std logic WECTOR(3 downto 0):
55 CLE: IN std logic;

57 Q THRESHO: OUT =std logic:

52 CE: IN std logic:

54 ATNIT: IN std logic):;

7a end component;

71

72 —— FPGL Express EBElack Eox declaration

72 attribute fpga dont touch: string:

T4 attribute fpga dont touch of tenths: component i=s "true"™;

75 - -

75 —-— Svnplicity black hox declaration

T7 sattribute syn_black box @ boolean;

TE attribute svh black hox of tenths: component is true:;

74 - -

20 -— CONP_TAG END ----—- End CONPONENT Declaration -----—-----—--—
21

Figure 2-10: VHDL Component Declaration of CORE Generator Module

&

Highlight the inserted code from
“-- Begin Cut here for |NSTANTI ATI ON Tenpl at e”
to
“AINIT=>AINIT) ;"
Select Edit — Cut.
6. Place the cursor after the line that states:
“--Insert Coregen Counter Instantiation”
Select Edit — Paste to place the instantiation here.
Change “your_instance_name” to XCOUNTER.

34 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

9.

Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the CORE Generator™ module as shown in Figure 2-11.

164 MACHINE:statmach port map(CLE=>clk_dcwm,
165 FESET=-REZET,

166 STRTSTOP=rstrtatopinw,
167 CLEEN=>clkenahle,
168 R3T=>rstint):

169

170 —- Insert Coregen Counter Instantiation.
171 xoounter : tenths

172 port map |

173 n=x 10,

174 CLE =» CLE dcm,

175 0_THRESHOD = xtermcnt,

176 CE => clkenable,

177 ATINIT =+ rstint);

178

179

120

181 decoder: decode port map |

182 binary => Q,

183 one_hot =» xoountout) ;

Figure 2-11: VHDL Component Instantiation of the CORE Generator Module

10. Save the design using File — Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1.

2
3.
4.
5

In Project Navigator, double-click stopwatch.v to open the file in the ISE Text Editor.
Select File — Open and open the tenths.veo file.
Changes the Files of Type from Source Files to All Files.
Select tenths.veo.
Highlight the inserted code in tenths.veo from
A Begin cut here for | NSTANTI ATI ON TEMPLATE ---//"
to
“/'l I NST_TAG END ------ End | NSTANTI ATI ON Tenpl at e”
Select Edit — Copy.

Place the cursor after the line in stopwatch.v that states:

“/l Place the Coregen Conponent Instantiation for Tenths here.”
Select Edit — Paste to place the instantiation here.
Change “YourlnstanceName” to XCOUNTER.

ISE 6 In-Depth Tutorial

www.xilinx.com 35
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

10.

6
7
o5
pef
=0
=1
et
=3
34
=5
36
37
<k
=0
Kty
14
15
13
1
5
16
17
e
1
S0

Edit this code to connect the signals in the Stopwatch design to the ports of the CORE
Generator™ module as shown in Figure 2-12.

gtatmach MACHINE (.CLE(clk_dcm),
.FEESET(RE3ET) ,
LSTRTATOP (strtstopinw) ,

LCLEEN(clkenahle) ,
LEAT (rstinti)
FS#Place the CORE Generator Component Instantiation for Tenths here
fi—m———————— Begin Cut here for INITANTIATION Template ---/7 IN3T_TAG
tenths xcounter |
L2y,

.CLE(clk_dcm),
.I_THREE3HO (xtermcnt) ,
.CE[clkenahle),
LAINIT (rstint));

Sf INAT_TAG END ------ End INATANTIATION Template --—---—---
decode one_decode (.BINARY((Q), .0ONE_HOT (xcountout)]:

cntel zixty(.CE(cntelenable) ,
.CLE(clk_dcm),
LCLE(r=stint),
.LABSEC {1sbecnt),
LMABSEC (msbent)) ;

Figure 2-12: Verilog Component Instantiation of the CORE Generator Module

11.

Save the design using File — Save and close stopwatch.v in the ISE Text Editor.

Creating a DCM Module

The

Clocking Wizard, a Xilinx® Architecture Wizard, enables you to graphically select

Digital Clock Manager (DCM) features that you wish to use. In this section, create a basic
DCM module with CLKO feedback and duty-cycle correction.

Using DCM Wizard
To create the DCM1 module:

1.
2.

N o o~

In Project Navigator, select Project — New Source.

In the New Source dialog box, select IP (CoreGen & Architecture Wizard) and type
‘dem1’ for the File Name.

Click Next.

In the Select Core Type window, select Clocking — Single DCM.
Click Next, then Finish. The Clocking Wizard is launched

Verify that RST, CLKO and LOCKED are selected.

Type 50 for the Input Clock Frequency.

36

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

8. \Verify the following settings:
¢ CLKIN Source: External
¢ Feedback Source: Internal
¢ Feedback Value: 1X
+ Phase Shift: None
¢ Duty Cycle Correction: Yes
9. Select the Advanced button.
10. Select Wait for DCM lock before DONE signal goes high.
11. Select OK and Next.
An informational message displays the locked signal and the STARTUP_WAIT option.

12. Select Finish.

deml.xaw is added to the list of project source files in the Sources in Project window.

Instantiating the DCM1 Macro - VHDL Design

Next, instantiate the DCM1 macro for your VHDL or Verilog design. To instantiate the
DCM1 macro for the VHDL design:
1. InProject Navigator, in the Sources in the Project window, select dcm1.xaw.

2. Double-click View HDL Instantiation Template under the Design Entry Utilities in the
Processes for Source window.

3. From the newly opened HDL Instantiation Template copy the component declaration
template:

COVPONENT dcml

PORT (
RST_IN : IN std_| ogic;
CLKIN_IN : IN std_l ogi c;
LOCKED QUT : QUT std_| ogi c;
CLKO_QUT : QUT std_l ogic;
CLKI N_I BUFG_QUT : QUT std_|l ogic
)

END COVPONENT;

4. Paste the component declaration into the section in stopwatch.vhd labeled
-- Insert DCML conponent decl aration here.

5. Copy the instantiation template from the newly opened HDL Instantiation Template:
I nst _dcml: dcml PORT MAP(
RST_IN => |
CLKIN IN => |
LOCKED_QUT => |,
CLKO_OUT => ,
CLKI N_I BUFG_QUT =>
)
6. Paste the instantiation template into the section in stopwatch.vhd labeled
-- Insert DCML instantiation here.

ISE 6 In-Depth Tutorial www.xilinx.com 37
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

7.

Make the necessary changes as shown in the figure below.

1432 —— Insert DCHM1l instantiation here.
144 Inst deml: deml FORT MAP |
145 RE3T_IN =» reset,

146 CLEIN IN => clk,

147 LOCEED OUT => decm lock,
142 CLEO_oOUT => clk dcm,

149 CLEIN IBUFG OUT => open
150 1 B h

151

Figure 2-13: VHDL Instantiation for dcm1

Instantiating the DCM1 Macro - Verilog

To instantiate the DCM1 macro for your Verilog design:

1.
2.

In Project Navigator, in the Sources in the Project window, select dem1.xaw.

Double-click View HDL Instantiation Template under Design Entry Utilities in the
Processes for Source window.

From the newly opened HDL Instantiation Template, copy the instantiation template:
denl i nstance_nane (
.RST_IN(RST_IN),
. LOCKED_OUT(LOCKED_OUT) ,
.CLKIN_IN(CLKIN_IN),
. CLKO_OUT(CLKO_QUT) ,
. CLKI N_I BUFG_OUT(CLKI N_I BUFG_QUT)
)
Paste the instantiation template into the section in stopwatch.v labeled
/llnsert DCML instantiation here.

Make the necessary changes as shown in the figure below.

=4 SfInzert DCM instantiation here
25 deml Inst deml |

5 .RST_IN(RESET),

27 .LOCKED OUT (dcw_lock),

=) .CLEIN IN(CLE),

=) .CLEO_OUT(elk dem),

=0 .CLEIN TEBUFG _OUT()

=1 1

Figure 2-14: Verilog Instantiation for dcm1

38

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design i:X"JNX®

Synthesizing the Design

So far you have used XST for verifying syntax. Next, you will synthesize the design. The
synthesis tool uses the design’s HDL code and generates a supported netlist type (EDIF or
NGC for the Xilinx® implementation tools).

The synthesis tools perform three general steps (although all synthesis tools further break
down these general steps) to create the netlist:

e Analyze / Check Syntax
Checks the syntax of the source code.
e Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

e Map

Translates the components from the compile stage into the target technology’s
primitive components.

The synthesis tool of the Watch design project is XST; however, you can change the tool at
any time during the design flow. Changing the design flow results in the deletion of
implementation data. You have not yet created any implementation data.

For projects that contain implementation data, Xilinx recommends that you take a
snapshot of the project before changing the synthesis tool to preserve this data. For more
information about taking a snapshot, see “Creating a Snapshot” in Chapter 1.

A summary of available synthesis tools is available in “Overview of Synthesis Tools” in
Chapter 1.

To change the synthesis tool:

1. Select the targeted part in the Sources in Project window.
2. Select Source — Properties.

3. Inthe Project Properties dialog box, click the Synthesis Tool value and use the pull-
down arrow to select the desired synthesis tool from the list.

Project Properties ﬂ

Project Properties |

Property Hame Yalue
Device Family Wirkes
Device wovdl
Fackage fg2he
Speed Grade 5
Top-Level Module Type HOL
Synthesiz Tool #ST MWHDLA ernilog)
Sirnulator Other
Generated Simulation Language Yerilog

k. I Cancel [refault Help

Figure 2-15: Specifying Synthesis Tool

ISE 6 In-Depth Tutorial

www.xilinx.com 39
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

Next, perform design synthesis using one of the following tools:

o “Synthesizing the Design using XST”
o “Synthesizing the Design using Synplify/Synplify Pro”
e “Synthesizing the Design using LeonardoSpectrum”

Synthesizing the Design using XST

Now that you have created and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for synthesis using XST are as follows:

e View Synthesis Report

Gives a mapping and timing summary as well as synthesis optimizations that took
place.

e View RTL Schematic

Generates a schematic of your HDL code and is accessible from the synthesis tool
process hierarchy.

e Analyze Hierarchy
Sets up the HDL in its hierarchical order.

e Check Syntax
Verifies that the HDL code is entered properly.

Entering Constraints

XST supports a User Constraint File (UCF) style syntax to define synthesis and timing
constraints. Xilinx strongly suggests that you use this syntax style for your new designs.

Note: ISE supports the old constraint syntax without any further enhancements for this release of
XST. In future, support will be dropped.

This syntax style format is called the Xilinx Constraint File (XCF). The XCF must have an
xcf file extension. XST uses this extension to determine if the syntax is related to the new
or old style. Please note that if the extension is not .xcf, XST will interpret it as the old
constraint style.

To create a new Xilinx Constraint File:

1. Select Project - New Source.

2. Inthe New Source dialog box, select User Document as the source type, and enter the
file name ‘stopwatch.xcf’.

3. Select Next, and Finish.
The new XCF file launches in the ISE Text Editor.

4. Inthe new XCF document, type in the following:
NET “CLK" TNM_NET = “CLK_GROUP";
TI MESPEC “TS_01”"=PERI CD “ CLK_GROUP" 50 Mz;
BEG N MODEL st opwat ch
NET RESET LOC = A5;
END;

40

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design i:X"JNX®

5. Select File —» Save.

NET "CLE"™ THNM_NET = "CLE_GROTP™:
TIMESPEC "T&_01"=FERIOD "CLE_GROUP™ 50 MH=z;

BEGIN MODEL stopwatch
NET REZET LOC=45:
END:

Sl m ot koW M=

Figure 2-16: Contents of stopwatch.xcf

Note: For more constraint options in the implementation tools, see “Editing Constraints in the
Constraints Editor” and “Editing Constraints in the Pinout Area Constraints Editor (PACE)” in Chapter
5, “Design Implementation.”

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

To enter synthesis options:

1. Select stopwatch.vhd (or stopwatch.v) in the Sources in Project window.
2. Right-click on the Synthesize process and select Properties.

3. Under the Synthesis Options tab click in the Synthesis Constraints File property
field and select stopwatch.xcf.

4. Check the Write Timing Constraints box.
Click OK.

Synthesizing the Design

Now, you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist;

1. Select stopwatch.vhd (or stopwatch.v).
2. Double-click the Synthesize process in the Processes for Current Source window.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process — Run.

The RTL Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code is helpful for analyzing your design to see a graphical
connection between the various components that XST has inferred. To view a schematic
representation of your RTL code:

1. InProject Navigator, click + next to Synthesize to expand the process hierarchy.
2. Double-click View RTL Schematic.

ISE 6 In-Depth Tutorial www.xilinx.com 41
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

B Fle Edit View Window Help

The RTL Viewer (part of Engineering Capture System (ECS) tool) displays the schematic.
Right-click on the schematic to view various options for the schematic viewer.

=10l x|
=&]

K= S

[#E@ocB||aaxxnm

IEEEE =

x| HEH A LS

-

=l

Options]Symhols Design I

| RTL Dezign Hierarchy

[stopwatch

o Inst_demil
~lsbled
~ MACHIME
~msbled
~ one_decode
""" ity

Instance Contents

stopwateh.hgr I

Ready

[1813,352] | 4

Figure 2-17: ECS RTL Viewer

You have completed XST synthesis. At this point, an NGC file exists for the Stopwatch
design. Go to:

e Chapter 4, “Behavioral Simulation” to perform a pre-synthesis simulation of this
design.

e Chapter 5, “Design Implementation” to place and route the design.

e Chapter 6, “Timing Simulation” for post-place and route simulation.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide. This Guide is available with the collection of software
manual and is accessible from ISE by selecting Help — Online Documentation, or from the web at
http://support.xilinx.com/support/sw_manuals/xilinx6/.

Synthesizing the Design using Synplify/Synplify Pro

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. If you are following the Verilog flow, add the following to the top of stopwatch.v:
“include "c:\<path_to_synp>\<synp_ver>\ ib\xilinx\virtex2.v"
Right-click Synthesize in the Processes for Current Source window.

4. From the menu, select Properties.

Set the Default Frequency to 50MHz, and check the Write Vendor Constraint File box.

42

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

http://support.xilinx.com/support/sw_manuals/xilinx6/

Synthesizing the Design

$7XILINX°

Click OK to accept these values.

Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process to run
synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process — Run.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following three sections:

e “Compiler Summary”
e “Timing Report”
e “Mapping Report”

Compiler Summary

The compiler summary gives a brief report on the analysis, compile and mapping stages
run by Synplify on the HDL design. Each of the summary reports provide the errors and
warnings that are associated with each file.

Note: Black boxes (modules not read into Synplify’s design environment) are always noted as
Unbound in the Synplify reports. As long as the underlying netlist (NGO, NGC or EDN) for a black box
exists in the project directory, the Implementation tools merge the netlist into the design during the
Translate phase. Since the Tenths module was built using CORE Generator™ called from the project,

the tenths EDN file is found.

0010l
00102
00103
00104
00105
00106
00107
00108
oo1o9
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
oo1z0
00121
00122
00123
00124
00125
00lz6
00127
001z2g
00129
00130
00131
00132
00133
00134
00135
00136
001357
00138
00139
00140
00141

####4 START TIMING FEPORT ##4## ZI
Timing Feport written on Wed Jul 09 14:44:38 2003
#

Top wiew: stopwatch
Paths requested: 5
Constraint File(s): C:hvtutorialiworking iseexamplesiwtut verstopwatch,. sdc

EN| This timing report estimates place and route data. Please look at the place and route timing report for final timing.
[@N| Clock constraints cover all FF-to-FF, FF-to-output, input-to-FF and input-to-output paths associated with a particular clo

Performance SUNMAry
R REREE R RRRRERS
Worst zlack in desigm: 10.617

Estimated
Frequency

Estimated Clock
Period Slack Type

Requested
Frequency

Requested

Starting Clock Period

stopwatch|Inst doml.CLEQD_EUF derived clock
System

50,0 Miz
50,0 Miz

106.6 MHz
160.4 M=z

20.000 9,383
20.000 6,233

10,617
13.767

derived
systemn

Clock Relationships
AR R AR

Clocks | rise to rise | fall to

Starting Ending | constraint =slack | rconstraint

stopwatch|Inst_denl.CLED_BUF_deriwved clock stopwatch|Inst_deml.CLEO_BUF deriwved clock | 20.000 10.617 | HNo paths

Note: 'No paths' indicates there are no paths in the design for that pair of clock edges
'Diff grp' indicates that paths exist but the starting clock and ending clock are in different clock groups.

Figure 2-18: Synplify’s Estimated Timing Data

ISE 6 In-Depth Tutorial

www.xilinx.com
1-800-255-7778

43

S XILINX® Chapter 2: HDL-Based Design

Timing Report

The timing report section details information on the constraints that you entered and on
delays on parts of the design that had no constraints. The delay values are based on
wireload models, and therefore, are considered preliminary. Consult the post-place and
route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Mapping Report

The mapping report lists all of the components used for the design, such as LUTs, flip-
flops, and block RAMs.

You have now completed Synplify synthesis. At this point, an netlist EDN file exists for the
Stopwatch design.

e To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation.”

e To place and route the design, see Chapter 5, “Design Implementation.”
e To perform post-place and route simulation, see Chapter 6, “Timing Simulation.”

Synthesizing the Design using LeonardoSpectrum

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available in LeonardoSpectrum synthesis include:

e Check Syntax
Checks the syntax of the HDL code.

e Modify Constraints
Launches the LeonardoSpectrum tool to enable you to enter constraints.

¢ View Synthesis Report
Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

¢ View Synthesis Summary
Gives a detailed map and timing report with no information on the synthesis
optimizations.

e View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code.

e View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code mapped to the primitives associated
with the target technology.

44

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design i:X"JNX®

e View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of the critical path of your HDL code mapped to the
primitives associated with the target technology.

Modifying Constraints

LeonardoSpectrum enables you to enter constraints to control optimization options and
pass timing specifications to the implementation tools. All timing specifications are stored
in the netlist constraints file (NCF) which is used by the implementation tools. Some of the
timing constraints are used by the synthesis engine to produce better synthesis results for
the place and route tools.

To modify constraints;

1. Expand the Synthesize process hierarchy.
2. Double-click on the Modify Constraints process.

LeonardoSpectrum displays. First time users of the LeonardoSpectrum tool launch
LeonardoSpectrum in 'Quick Setup’ mode.

3. Click on the Advanced Flow icon as shown below.

B4l

&)

Figure 2-19: LeonardoSpectrum Advanced Flow Icon

4. Click the Constraints tab.

i Ilnputl Co traintsl Opti
s or FPGA to e:-:teE-:I device br
Figure 2-20: LeonardoSpectrum Constraints Tab

The constraints sub-tabs are as follows.

e Global

Enables you to enter constraints that affect all of your design: PERIOD, OFFSETs and
pad-to-pad type constraints. The constraints entered here modify LeonardoSpectrum’s
run script only. A constraints file is not generated.

e Clock

Enables you to enter a more detailed clock constraint accounting for pulse width and
duty cycle as well as the period. The constraints entered here modify
LeonardoSpectrum’s run script only. A constraints file is not generated.

e Input

Enables you to specify constraints that affect the input ports such as arrival time,
fanout, pin location, and pad type.

ISE 6 In-Depth Tutorial www.xilinx.com 45
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

e Output

Enables you to specify constraints that affect the output ports such as required time,
pin location, and pad type.

e Signal

Enables you to specify individual signal constraints such as preserve signal, a low
skew constraint, and a max fanout constraint.

e Module

Enables you to instruct the synthesis tool to synthesize a module differently then the
rest of the design.

e Path
Enables you to create false and multicycle paths.
e Report
Enables you to generate a current report of constraints that have been entered.
For this tutorial, in the Constraints tab enter the following constraints:
Select the Input sub-tab.
Select the Reset input pad.
In the Pin Location field, enter A5.
Click Apply.
Select the Report sub-tab, and check that the constraints were applied.

o g s~ w b

In order to get LeonardoSpectrum to write out a constraints file (.ctr), select any tab
(the Technology tab for example).

TechnE!ng_l,l l Input Cane

Figure 2-21: LeonardoSpectrum Technology Tab

7. Save the constraints file to the default name stopwatch.ctr.
8. Exit LeonardoSpectrum.

Note: For more constraint options in the implementation tools, see “Editing Constraints in the
Constraints Editor” and “Editing Constraints in the Pinout Area Constraints Editor (PACE)” in Chapter
5, “Design Implementation.”

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. One option is to control synthesis by optimizing
based on area or speed. Other options include controlling the maximum fanout of a signal
from a flip-flop or setting the desired frequency of the design.

For this tutorial, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).
2. Right-click the Synthesis process.
3. From the menu, select Properties.

46

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design

$7XILINX°

Figure 2-22:

Click OK to accept these values.

Click the Synthesis Options tab, and set the Default Frequency to 50MHz.
Click the Netlist Options tab, and ensure that the Do Not Write NCF box is unchecked.

Click the Constraint File Options tab, and select the stopwatch.ctr file created in
LeonardoSpectrum, in the “Modifying Constraints” section above.

Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process in the
Processes for Source window.

=

Proceszes for Source: “'stopwatch

-] AddExisting Source

"""" 8 Create Mew Source
----- W Drezign Entry Utilities
""" E |1zer Constraints

Check Syntax
b odify Constraintz
Wiew Sunthesiz Report

El ----- W Launch Tools

-4 Implernent Design
-4 Generate Programming File

Wiew Sunthesiz Summary

B View RTL Schematic
-0 View Technology Schematic
] Wiew Critical Path Schematic

B Process View I

The RTL/Technology Viewer

LeonardoSpectrum Synthesis Processes

LeonardoSpectrum can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code is helpful for analyzing your design to see a
graphical connection between the various components that LeonardoSpectrum has
inferred. To launch the design in LeonardoSpectrum’s RTL viewer, double-click the View
RTL Schematic process. The following figure displays the design in an RTL view.

ISE 6 In-Depth Tutorial

www.xilinx.com
1-800-255-7778

47

$7 XILINX°

Chapter 2: HDL-Based Design

~ Object Query = —

Shiow Hierarchn: T

» MultiPage Schematics

Reload Schematic
Wiewy Trace Schematic

Update Schematic =

Zoom L4
Cpen Lp T
Goko Page 3
al—d
[
[-
" a
: L—F |
— s a b_msheoe
LUT# _||z—|
LT3
Ve rahie
. o e P
=
— o=
1 T L
L al—
1 al— |
== = LuT

FOCE

FOCE

FOCE [Ty

Figure 2-23: Stopwatch Design in LeonardoSpectrum RTL Viewer

LeonardoSpectrum also has the capability of generating a technology-specific view of the
design after synthesis called the Technology Viewer. This schematic representation is
useful for verifying that the inferred elements are what were intended to be for the design.

To launch the design in LeonardoSpectrum’s Technology Schematic viewer, double-click
the View Technology Schematic process.

Note: Viewing the technology schematic will most likely result in a multi-page schematic. To view a
different page, right-click inside the schematic and select the appropriate option from the menu.

To view the path with the worst timing delay (the critical path) of the design, launch
LeonardoSpectrum’s Technology Viewer with LeonardoSpectrum’s timing engine by
double-clicking View Critical Path Schematic. Click the View Trace button in
LeonardoSpectrum to display the critical path of the design.

View Trace

LeonardoSpectrum View Trace Button

Figure 2-24:

48

www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

Synthesizing the Design i:X"JNX®

—n 0 I o —— > TENSOUT(0)

—c — i OBUF
— CE Q 13
—er LUT4
— 1D
FDCE

X10080

Figure 2-25: LeonardoSpectrum Critical Path Schematic

Double-click View Synthesis Report and View Synthesis Summary to see the details of
the synthesis. The Synthesis Report summarizes the compilation, mapping and timing of
the design. The Synthesis Summary provides more detail on the mapping and timing of
the design.

ISE 6 In-Depth Tutorial

www.xilinx.com 49
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

50 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 3

Schematic-Based Design

This chapter includes the following sections.

e “Overview of Schematic-based Design”
“Getting Started”
“Design Description”

“Design Entry”

Overview of Schematic-based Design

This chapter guides you through a typical FPGA schematic-based design procedure using
a design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The Watch design targets a Virtex™-Il device; however, all of the
principles and flows taught are applicable to any Xilinx® device family, unless otherwise
noted.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http://support.xilinx.com/support/techsup/tutorials/index.htm.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE design entry tools to complete the design. The design is composed of
schematic elements, a state machine, a CORE Generator™ component, and an HDL macro.
After the design is successfully entered in the Schematic Editor, you will perform a
behavioral simulation with ModelSim (Chapter 4, “Behavioral Simulation™),
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), and timing simulation with ModelSim (Chapter 6, “Timing
Simulation.”

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

You must have Xilinx ISE 6.x to perform this tutorial. For this design you must install the
Virtex-Il libraries and device files.

The Schematic Design Flow is supported on Windows and Linux platforms.

ISE 6 In-Depth Tutorial

www.xilinx.com 51
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/index.htm

$7 XILINX°

Chapter 3: Schematic-Based Design

This tutorial assumes that the software is installed in the default location, c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx with your installation
path.

Note: For detailed instructions about installing the software, refer to the ISE 6.1i Installation Guide
and Release Notes. This Guide is available with the collection of software manual and is accessible
from ISE by selecting Help — Online Documentation, or from the web at
http://support.xilinx.com/support/sw_manuals/xilinx6/.

Installing the Tutorial Project Files

The tutorial project files can be downloaded to your local machine from
http://support.xilinx.com/support/techsup/tutorials/tutorials6.htm.

Download the wtut_sch.zip file which contains two projects.

e \ | SEexanpl es\w ut_sc
(incomplete schematic tutorial)

e \ | SEexampl es\wat ch_sc
(complete schematic tutorial)

Unzip the tutorial projects in the c:\xilinx directory (or any directory with Read/Write
permissions), and replace any existing files. The files downloaded from the web have the
most recent updates. The schematic tutorial files are copied into the directories when you
unzip the project files.

wtut_sc project

The wtut_sc project contains an incomplete copy of the tutorial design. You will create the
remaining files when you perform the tutorial. As described in a later step, you can copy
this project to another area and perform the tutorial in this new area if desired.

watch_sc solution project

The watch_sc solution project contains the design files for the completed tutorial including
schematics and the bitstream file. To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

Copying the Tutorial Files (Optional)

You can either work within the project directory where the tutorial files were downloaded,
or you can make a copy of them to work on. To make a working copy of the tutorial files,
use Windows Explorer to copy the wtut_sc directory to another location. The wtut_sc
project directory contains all of the necessary project files.

52

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx6/
http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm

Design Description

$7XILINX°

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start —
Programs — Xilinx ISE — Project Navigator.

Froject
M avigator

Figure 3-1: Project Navigator Desktop Icon

2. From Project Navigator, select File —» Open Project.

Loak in: |El wihut_sc j El

File name: thut_sc.npl Open I
Files of twpe: IF'n:uieu:t Filez [*.npl] j Cancel |

Figure 3-2: Open Project Dialog Box

3. Browse to the directory c:\xilinx\1SEexamples\wtut_sc.

4. Double-click the project file, wtut_sc.npl. If you cannot see this file, change the file type
to Project Files (*.npl).

Stopping the Tutorial

If you need to stop the tutorial at any time, save your work by selecting File — Save.

Design Description

The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that references several other lower-level
macros. The lower-level macros are a variety of different types of modules, including a
schematic-based module, a CORE Generator™ module, a state machine module, an
Architecture Wizard module, and an HDL module.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by creating some of the modules and by completing some others from existing files.
A schematic of the completed Watch design is shown in the following figure. Through the
course of this chapter, you will create these modules, instantiate and connect them

ISE 6 In-Depth Tutorial

www.xilinx.com 53
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

Note: Throughout this tutorial, the runner’s stopwatch design that you are working on is referred to

as Watch.
stmach_v
LOC=A5 decmil . —
clk_int .
| CLK clk_en — clk_int
I RST_IN LOCKED_OUT locked
IBUF
DCM_lock

CLKO_OuT

CLKIN_IN eset

CLKIN_IBUFG_OUT [—

r strtstop rst |— rst_int
IBUF {>IN\/C>

| strtstop »

Q_THRESHO [—
decode outs3
q(3:0) one_hot(9:0)
clken_int —{ ce Q(3:0) |' binary(3:0) one_hot(9:0) — inputs(9:0) outs(9:0)
clk_int — clk
AINIT
rst_int
g_thres
hex2led
cnt60 ones(3:0)
HEX(3:0) LED(6:0) onesout(6:0)
ce Isbsec(3:0)
clken_int
AND2 clk_int — clk msbsec(3:0) ,'
rst_int —{ clr hex2led
tens(3:0)
,' HEX(3:0) LED(6:0)
X10086
Figure 3-3: Completed Watch Schematic

54 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

Design Description

$7XILINX°

Inputs

Outputs

There are three external inputs and three external outputs in the completed design. The
following list summarizes the inputs and outputs, and their respective functions.

The following are input signals for the Watch design:

STRTSTOP

Starts and stops the stopwatch. This is an active-low signal that acts like the start/stop
button on a runner’s stopwatch.

RESET
Resets the stopwatch to 00.0 after it has stopped.

CLK
System clock for the Watch design.

The following are output signals for the design:

TENSOUT(6:0)

7-bit bus that represents the tens digit of the stopwatch value. This bus is in 7-segment
display format to be viewable on the 7-segment LED display.

ONESOUT(6:0)

Similar to the TENSOUT bus above, but represents the ones digit of the stopwatch
value.

TENTHSOUT(9:0)

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks

The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the tutorial project until after you create and add them
to the schematic in this tutorial.

STMACH_V
State Machine macro defined and implemented in StateCAD™.
CNT60

Schematic-based module which counts from 0 to 59 decimal. This macro has two 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

TENTHS

CORE Generator™ 4-bit, binary encoded counter. This macro outputs a 4-bit code that
is decoded to represent the tenths digit of the watch value as a 10-bit one-hot encoded
value.

HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

ISE 6 In-Depth Tutorial

www.xilinx.com 55
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

e OUTS3

Schematic-based macro containing inverters.
e DECODE

Decodes the CORE Generator™ output from 4-bit binary to a 10-bit one-hot output.
e DCM1

Clocking Wizard macro with internal feedback and duty-cycle correction.

Design Entry

In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, state machine macros, and CORE Generator™ macros.
You will learn the process for creating each of these types of macros, and connect them
together to create the completed Watch design. All procedures used in the tutorial can be
used later for your own designs.

Opening the Project File in the ECS Schematic Editor Tool

The Watch schematic available in the wtut_sc project is incomplete, and in this tutorial, will
be updated in the Engineering Capture System (ECS) schematic editor tool. After you have
opened the project in ISE, you can now open the stopwatch.sch file in the ECS tool. To do so,
double-click the file stopwatch.sch in the Sources in Project window.

The Watch schematic diagram opens in ECS. You will see the unfinished design as shown
in the figure below.

56

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

E.m Xilinx ECS - [stopwatch.sch] =S
ﬁﬁlem View Add Tools Window Help ;Iilll
DEEHFER [t 2Ro-|F||@aaxxap|85228m

X [vw =280 \NOA[DC 4 n|/]

2=l
Tt | Symbolsl ﬂ

[Select Options

‘when pou click on a branch
% Select the entire branch
" Select the line segment

. o [terthsout(3:.00%
‘when you move an object enthsol
% Keep the connections to ather ’ : : . : : . : : . . : . . - . .
objects
" Break the connections to other
objects

When vou uze the area select tool,
select the objects that

% Are enclosed by the area

€ Intersect the area

when you use the area select tool,
select
% Objects excluding attibute
windows
" Attribute windows only _ -tensom &

! o

stopwatch.sch I

Ready [742,1149]

Figure 3-4: Incomplete Watch Schematic in Engineering Capture System (ECS)

Manipulating the Window View

The View menu commands enable you to manipulate how the schematic is displayed.
Select View —» Zoom — In until you can comfortably view the schematic.

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying schematic. You can
create either the underlying schematic or the symbol first. ECS then generates the
corresponding symbol or schematic file.

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created, and you can define in
ECS with the appropriate logic. The created macro is then automatically added to the
project’s library.

The macro you will create is called CNT60. CNT60 is a binary counter with two 4-bit
outputs, which represent the Ones and Tens values of the stopwatch. The counter counts
from 0 to 59, in decimals.

ISE 6 In-Depth Tutorial www.xilinx.com 57
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

To create a schematic-based macro:

1. In Project Navigator, select Project — New Source. The New Source dialog opens.

e x|

EMM File

[d) Implementation Constraints File
:ﬁ: IP [CoreGen & Architecture wizard)

File: Mame:
[m] MEM File = R
[2) schematic I':NTEq
EI State Diagram
Test Bench ' aveform Locatian;
[) User Document Ic::\:-:ilin:-:\lSEe:-:ampIes\.wtut_sc

Werilag Module
“erlog Test Fikture
[Ty vHDL Library

[+ ¥HDL Madule

[WHDL Package
A wHDL Test Bench

W Add to project

< Back I Meut = I Cancel | Help

Figure 3-5: New Source Dialog Box

The New Source dialog provides a list of all available source types.

2. Select Schematic as the source type.
3. Enter CNT60 as the file name.
4. Click Next and click Finish.

This creates a new schematic named CNT60 and adds the schematic file to the project.

Defining the CNT60 Schematic

You have now created an empty schematic for CNT60. The next step is to add the
components that make up the CNT60 macro. You can then reference this macro symbol by
placing it on a schematic sheet.

Adding I/O Markers

1/0 markers are used to determine the ports on a macro or the top level schematic. The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add 170 markers to the CNT60 schematic to determine the macro ports.

To add the 170 markers:

1. Select Tools — Create I/O Markers.
The Create 1/0 Markers Options window opens.

2. Inthe Inputs box type: ce,clk,clr.

58

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

3. Inthe Outputs box type: Isbsec(3:0),msbsec(3:0).

i Create I/0 Markers x|

Inpuits

Iu:e,n:lk,n:lr

Outputs
I|S|:ISEC[32|:|],I'I'|S|:ISEC[32|:|]

Bidirection

k. Cancel

Figure 3-6: Creating I/0O Markers

4. Click OK and the five pins are added to the schematic sheet.

Note: The Create I/O Marker function is available only for an empty schematic sheet. However, I/O
markers may be added to nets at any time by selecting Add — 1/O Marker and selecting the desired
net.

Adding Components to CNT60

Components from the device and project libraries for the given project are available from
the Symbol Libraries toolbox, and the component symbol can be placed on the schematic.
The available components listed in this toolbox are arranged alphabetically within each

library.
1. From the menu bar, select Add — Symbol or click the Add Symbol icon from the Tools
toolbar.
-
==}
"
Figure 3-7: Add Symbol Icon
ISE 6 In-Depth Tutorial www.xilinx.com 59

1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

This opens the Symbol Browser dialog box to the left of the schematic editor, which
displays the libraries and their corresponding components.

==

Options Symbols I
%ategories

<cdrilingdizeewampleswatch_so
Arithrnetic
Buffer

Clock Divider
Comparator
Counter
Decoder
Flip_Flop
General

10

Latch

Logic

b
Shift_FReqister
Shifter

TTL

4] | =

Symbols

acclB g

accd
accdus
acch
accx
addl
add1E
add16:1
add16-2
addixl
addi=2

addd =l
Spmbol Mame Filter

Orientation

IHotate 0 ;I

Figure 3-8: Symbol Browser Dialog Box

The first component you will place is an AND2, a 2-input AND gate.

Select the AND2 component using one of two ways:

+ Highlight the Logic category from the Symbol Browser dialog box and select the
component AND2 from the symbols list.

or

¢ Select All Symbols and type AND2 in the Symbol Name Filter at the bottom of
the Symbol Browser window.

Move the mouse back into the schematic window.

You will notice that the cursor has changed to represent the AND2 symbol.

Move the symbol outline to the location shown in Figure 3-9 and click the left mouse

button to place the object.

Note: You can rotate new components being added to a schematic by selecting CTRL+R. You
can rotate existing components by selecting the move mode, selecting the component, and then
selecting CTRL+R.

60

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

5. Place the second AND2 symbol on the schematic by moving the cursor with attached
symbol outline to the desired location, and click the left mouse button. See Figure 3-9.

CD4CE
Q0 Isbsec(0)
o1 Isbsec(1)
02 Isbsec(2)
03 Isbsec(3)
@ CE CEO I Isbsec(3:0) »
C TC |—
CLR
]
. CB4CE
Q0 msbsec(0)
o1 mshsec(1)
Q2 msbsec(2)
AND2 03 msbsec(3)
msb_en CE ceo l—
C TCI—
CLR
[
) >—
OR2
10— o
AND2
INV AND4

X10072

Figure 3-9: Completed CNT60 Schematic

Placing the Remaining Components

Follow the steps above in “Adding Components to CNT60” to place the CD4CE, OR2,
CBA4CE, INV, and AND4 components on the schematic sheet. Refer to Figure 3-9 for
placement of all components.

www.xilinx.com 61
1-800-255-7778

ISE 6 In-Depth Tutorial

$7 XILINX°

Chapter 3: Schematic-Based Design

To exit the Symbols Mode, press the Esc key on the keyboard.

For a detailed description of the functionality of each of these components, right-click on
the component and select Object Properties. In the Object Properties window, select
Symbol Information. Symbol information is also available in the Libraries Guide which is
found in the collection of software manuals. To access the software manuals, select Help —
Online Documentation.

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.
Delete a placed component in one of two ways:

e Click the component and press the Delete key on your keyboard.
or

¢ Right-click the component and select Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Signals can be logically connected by naming multiple segments identically. In this case,
the nets do not need to be physically connected on the schematic to make the logical
connection. In the CNT60 schematic, draw wires to connect the components together. The
nets for the LSBSEC and MSBSEC buses are drawn in the next section.

Perform the following steps to draw a net between the AND2 and CB4CE components on
the CNT60 schematic.

1. Select Add — Wire or click the Add Wires icon in the Tools toolbar.

(==

Figure 3-10: Add Wires Icon

2. Click the output pin of the AND2 and then click the destination pin, CE on the CBACE
component. ECS draws a net between the two pins.

Draw the nets to connect the remaining components as shown in the Figure 3-9. To specify
the shape of the net:

1. Move the mouse in the direction you want to draw the net.
2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

You should now have all the nets drawn except those connected to the LSBSEC and
MSBSEC buses. You will draw these in the next section. Net names will be added in a later
section.

62

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

Adding Buses

In ECS, a bus is simply a wire which has been given a multi-bit name. To add a bus, use the
methodology for adding wires and then add a multi-bit name. Once a bus has been
created, you have the option of “tapping” this bus off to use each signal individually.

In this CNT60 schematic, create two buses called LSBSEC(3:0) and MSBSEC(3:0), each
consisting of the 4 output bits of each counter by connecting a wire to each of the output
I/0 markers. The results can be found in the completed schematic.

To add the buses LSBSEC(3:0) and MSBSEC(3:0) to the schematic, perform the following
steps:
1. Select Add — Wire or click the Add Wires icon in the Tools toolbar.

2. Click to the right of the CB4CE and then click again on pin of the mshsec(3:0) I/0
marker. The wire should automatically be drawn as a bus with the name matching that
of the 1/0 marker.

3. To verify this, zoom in. The bus is represented visually by a thicker wire.

CB4CE

Qo —

QL [—

Q2 —

Q3 [—

— | CE CEO [

- pcC TC [

CLR

1

msbsec(3:0)

X10076

Figure 3-11: Adding a Bus

4. Repeat Steps 1 through 3 for the Isbsec(3:0) bus, referring to Figure 3-9 for placement of
the wire and the bus name.

5. After adding the two buses, press esc or right-click to exit the Add Wire mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4CE and CD4CE counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic will enable greater precision when drawing the nets.
To tap off a single bit of each bus:
1. Select Add — Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

EEED

Figure 3-12: Add Bus Tap Icon

The cursor changes, indicating that you are now in Draw Bus Tap mode.

ISE 6 In-Depth Tutorial www.xilinx.com 63
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

From the options window to the left of the schematic, choose the correct orientation for
the bus.

Place the tap on the bus so that the wire side of the bus tap is pointing to an
unconnected pin.

Repeat steps 1 to 3 to tap off the other three bits of the bus.

To connect each of the tap off bits:

N

o

Select Add — Wire or click the Add Wire icon in the Tools toolbar.

Draw a wire from the other end of the bus taps to the corresponding pins.
Select Add — Net Name or click the Add Net Name icon in the Tools toolbar.
Type msbsec(0) in the Name field of the options toolbar.

The net name is now at the end of your cursor.

Select Increment the Name in the Add Net Names options dialog box.

With the Increment the Name option selected, start at the top net and continue clicking
down until you have named the fourth and final net msbsec(3). This option appends a
higher number to the net name for each pin you click.

Note: ECS names the bus taps incrementally as they are drawn. Alternatively, you can click
Decrement the Name option, name the bottom net msbsec(3) and continue clicking to decrement
the nets names.

Repeat Steps 1 through 6 for the Isbsec(3:0) bus.

Press Esc to exit the Add Net Name mode.

Draw the nets to connect the mshsec bus taps to the INV and AND4 components. If
necessary, refer to “Drawing Wires” for guidance.

Compare your CNT60 schematic again with Figure 3-9 to ensure that all connections
are made properly.

Note: If the nets appear disconnected, select View — Refresh to refresh the screen.

Adding Net Names

Next, add net names to the msb_en net (wire).

1.
2.

Select Add — Net Name or click the Add Net Name icon in the Tools toolbar.
Type msh_en in the Name box of the Add Net Name options dialog box.

Note: The Options window changes depending on which tool you have selected in the Tools toolbar.

The net name msb_en is now attached to the cursor.

Click the msh_en net.

The name is then attached to the net. The net name will appear above the net if you do
not place the name at an end point.

Saving the Schematic

The CNT60 schematic is now complete.

1.

Save the schematic by selecting File — Save or by clicking the Save icon in the toolbar.

=]

Figure 3-13: Save Icon

64

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

When you save a macro, the ECS schematic editor checks the 1/0 markers against the
corresponding symbol. If there is a discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. You should use I/0 markers to
connect signals between levels of hierarchy and to specify the ports on top-level schematic
sheets.

2. ExitECS.

Creating and Placing the CNT60 Symbol

The next step is to create a “symbol” that represents the CNT60 macro. The symbol is an
instantiation of the macro. After you create a symbol for CNT60, you will place (or add) the
symbol to a top-level schematic of the Watch design. In the top-level schematic, the symbol
of the CNT60 macro will be connected to other components in a later section in this
chapter.

Creating the CNT60 symbol

You can create a symbol in either Project Navigator or ECS. For this tutorial, you can follow
either method.

In Project Navigator, create a symbol that represents the CNT60 schematic as follows.

1. Inthe Sources in Project window, select cnt60.sch.

2. Inthe Processes for Current Source window, click the + beside Design Entry Utilities
to expand the hierarchy.

3. Double-click Create Schematic Symbol.
In ECS, create a symbol that represents the CNT60 schematic as follows.

1. Select Tools — Symbol Wizard.

2. Inthe Symbol wizard, select Using Schematic and select CNT60 in the schematic
value field.

3. Click Next, click Next, click Next, and click Finish to use the wizard defaults.

Placing the CNT60 symbol

Next, place the symbol that represents the macro on the top-level Watch schematic sheet
(stopwatch.sch).

1. In Project Navigator, double-click stopwatch.sch in the Sources in Project window to
open the Watch schematic sheet.

2. Select the Add Symbol icon to open the Symbol Browser dialog box.

—

Figure 3-14: Add Symbol Icon

3. Select the Local Symbols library (c:/xilinx/ISEexamples/wtut_sc), and locate and select
the newly created CNT60 symbol from this list.

ISE 6 In-Depth Tutorial

www.xilinx.com 65
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

4. Place the CNT60 symbol in the schematic as shown below.

tenthsout(9:0) >

cnt60

ce Isbsec(3:0) ——

clk onesout(6:0) >

msbsec(3:0) ——

clr

tensout(6:0) >

X10077

Figure 3-15: Placing the CNT60 Symbol in the Top-Level Schematic

Note: Do not worry about connecting nets to the pins of the CNT60 symbol. You will do this after you
have added other components to the Watch schematic.

5. Save changes and exit ECS.

Creating a CORE Generator Module

CORE Generator™ is a graphical interactive design tool you use to create high-level
modules such as counters, shift registers, RAM and multiplexers. You can customize and
pre-optimize the modules to take advantage of the inherent architectural features of the
Xilinx FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip
RAM for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is then decoded to count the tenths digit of the
stopwatch’s time value.

Creating a CORE Generator Module

Create the CORE Generator module using the New Source Wizard in Project Navigator.
This invokes CORE Generator in which you can select and define the type of module you
want.

To create the module:

In Project Navigator, select Project - New Source.
Select IP(Coregen & Architecture Wizard).

Type tenths in the File Name field.

Click Next.

Double-click Basic Elements - Counters.

o g b~ w b e

Select Binary Counter, click Next and click Finish to open the Binary Counter dialog
box. This dialog box enables you to customize the counter to the design specifications.

7. Fill in the Binary Counter dialog box with the following settings:
¢+ Component Name: tenths
Defines the name of the module.

¢ Output Width: 4
Defines the width of the output bus.

66

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry ST XILINX®

¢ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

¢ Count Style: Count by Constant

Allows counting by a constant or a user-supplied variable.
¢ Count Restrictions:

- Count by value: 1

- Selectrestricted count

- Counttovalue: A

This dictates the maximum count value.

X
B Parameters | B core overview| B8 contact| B web Links |
WC@RE Binary Counter

Component Marme: Itenths

Outgut Width: |4_ Valid Range: 2..256

— Operation
* Up " Down " UpiDown

— Count Style
¥ Count by Constant {" Count by Variable

— Count Restrictions
Count By Value: |1 {Hexvalue, M5B first)
[Restrict Count
Count Ta Yalug: IA (AR or Hesx valug, M3E first)

Page 1 of 2

Generate Dismiss [Diata Sheet.. Yearsion Infa... | [” Display Core Footprint

Figure 3-16: CORE Generator Module Selector

8. Click Next.
+ Threshold Options: Enable Threshold 0 and set to A
Signal goes high when the value specified has been reached.
¢ Select Registered
+ Click the Register Options button to open the Register Options dialog box.

ISE 6 In-Depth Tutorial www.xilinx.com 67
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

10.

11.

12.

Enter the following settings and then click OK.

¢ Clock Enable: Selected

¢ Asynchronous Settings: Init with a value of 1
+ Synchronous Settings: None

Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the CORE Generator™ window):

¢ AINIT
¢« CE
¢+ Q
¢ Q _THRESHO
¢ CLK
Click Generate.
The module is created and automatically added to the project library.
Note: A number of other files are added to the project directory. These files are:
¢ tenths.sym
This is a schematic symbol file.
¢ tenths.edn
This file is the netlist that is used during the Translate phase of implementation.
+ tenths.vho or tenths.veo

This is the instantiation template that is used to incorporate the CORE Generator
module in your source HDL.

¢ tenths.vhd or tenths.v
These are simulation-only files.
¢ tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

¢ coregen.prj
This file stores the CORE Generator configuration for the project.

Click Dismiss to exit CORE Generator.

Creating a State Machine Module

With Xilinx StateCAD™, you can graphically create finite state machines—states,

inputs/outputs, and state transition conditions. Transition conditions and state actions are

typed into the diagram using language independent syntax. The State Editor then exports
the diagram to either VHDL, Verilog or ABEL code. The resulting HDL file is finally
synthesized to create a netlist and/or macro for you to place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is provided. In the next

section, you will complete the diagram and synthesize the module into a macro to place on
the Watch schematic. A completed VHDL State Machine diagram has been provided for
you in the watch_sc directory.

68

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

Opening the State Editor

You can invoke StateCAD™ from Project Navigator. The tutorial utilizes an existing
diagram which you will complete.

To open the diagram, double-click stmach_v.dia in the Sources in Project window. The state
machine file is launched in StateCAD.

In the incomplete state machine diagram below:

e The circles represent the various states.

e The black expressions are the transition conditions, defining how you move between
states.

e The output expressions for each state are contained in the circle representing the state.

In the state machine diagrams, the transition conditions and the state actions are written in
language independent syntax and then exported to Verilog, VHDL, or ABEL.

ISE 6 In-Depth Tutorial

www.xilinx.com 69
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

STMACH_V

strtstop = '0’

Z€ro
clken<="0'
rst<="0'

strtstop ='1'

start
clken<="1'
rst<="0’

strtstop ='1'

strtstop =0’

counting
clken<="1'
rst<='0'

strtstop = '0’

strtstop ='1' strtstop = '1'

stop
clken<="0'

rst<='0"

strtstop ="'

strtstop ='0'

stopped
clken<="0'

rst<='0'

strtstop ='0'

X10081

Figure 3-17: Incomplete State Machine Diagram

70 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

In the following section, add the remaining states, transitions, actions, and a reset
condition to complete the state machine.

Adding New States

Complete the state machine by adding a new state called clear. To do so:

1.

4.

Click the Add State icon in the vertical toolbar.

Figure 3-18: Add State Icon

The state bubble is now attached to the cursor.

Place the new state on the left-hand side of the diagram as shown in Figure 3-19. Click
the mouse to place the state bubble.

The state is given the default name, STATEO.

strtstop = '0'

Zero
clken<='0'
rst<='0'

strtstop = '1'

start
clken<="1"'
rst<='0'

strtstop ="'1"'

strtstop = '0'

X10082

Figure 3-19: Adding the CLEAR State

Double-click STATEQO in the state bubble, and change the name of the state to clear.

Note: The name of the state is for your use only and does not affect synthesis. Any name is
fine.

Click OK.

To change the shape of the state bubble, click the bubble and drag it in the direction you
wish to “stretch” the bubble.

ISE 6 In-Depth Tutorial

www.xilinx.com 71
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Adding a Transition

A transition defines the movement between states of the state machine. Transitions are
represented by arrows in the editor. You will be adding a transition from the clear state to
the zero state in the following steps. Because this transition is unconditional, there is no
transition condition associated with it.

1. Click the Add Transitions icon in the vertical toolbar.

=

Figure 3-20: Add Transitions Icon

Double-click the clear state (one click to select it, and one click to start the transition.)
Click the zero state to complete the transition arrow.
To manipulate the arrow’s shape, click and drag it in any directory.

ZEero
clken<="0'
rst<='0'

strtstop = '1'

start
clken<='1'
rst<='0'

strtstop = '1'

strtstop = '0'

X10083

Figure 3-21: Adding State Transition
5. Click the Select Objects icon in the vertical toolbar to exit the Add Transition mode.

Adding a State Action

A State Action dictates how the outputs should behave in a given state. You will add two
state actions to the clear state, one to drive the clken output to 0, and one to drive the RST
output to 1.

72 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

To add a State Action:
1. Double-click the clear state.

The Edit State dialog box opens and you can begin to create the desired outputs.

Editstate x|

State Mame:

Outputz: Unazsigned outputs are made inactive [i.e. g=0]

et ="1"; -
clken ="0" _I
=

Output Yizard Create counters, muxes, etc. with the wizard,

Justify State Mame———— —Justify Qutput—————————————
’71[" Left © Center © Right ’7{' Left © Center Right

k. I Cancel | Help |

Figure 3-22: Edit State Dialog Box

Select the Output Wizard button.

In the Output Wizard, select the following values:
DOUT = rst, CONSTANT = ‘1’;
DOUT = cl ken, CONSTANT = ‘0’ ;

Click OK to enter each individual value.

Click OK to exit the Edit State dialog box. The outputs are now added to the state.

ISE 6 In-Depth Tutorial www.xilinx.com 73
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Zero
clken<="0'
rst<='0'

strtstop = '1'

reset ='1' OR
DCM_lock ='0’

start
clken<="1"
rst<="0'

strtstop ='1'

|--4—— from state stopped

to state counting

X10084

Figure 3-23: Adding State Outputs

Adding a State Machine Reset Condition

Using the State Machine Reset, specify a reset condition for the state machine. The state

machine initializes to this specified state and enters the specified state whenever the reset
condition is met. In this design, add a Reset condition which sends the state machine to the
clear state whenever either the reset signal is asserted or the DCM _lock signal is deasserted.

1. Click the Add Reset icon in the vertical toolbar.

E3
Figure 3-24: Add Reset Icon

Click the diagram near the clear state, as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for this reset. Move the
cursor to the clear state, and click the state bubble.

4. A question is then asked, “Should this reset be asynchronous(Yes) or
synchronous(No)?” Answer Yes.

74

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

zZero
clken<='0'
rst<="0'

clear
rst="1"
clken ='0'

strtstop = '1'

start
clken<="1'
rst<="'0'

strtstop ='1 | -——— from state stopped

strtstop ='0'

to state counting

X10085

Figure 3-25: Adding Reset

5. Double-click the newly created RESET condition and edit the condition field to read:
reset="1" OR DCM _lock="0". Then click OK.

6. Save your changes by selecting File —» Save.

Creating the State Machine Symbol

In this section, you will create the HDL code used to create a macro symbol that you can
place on the Watch schematic. The macro symbol is added to the project library. When you
create the macro, StateCAD™ creates HDL code representing the macro from the state
machine diagram.

1. Select Options —» Compile (Generate HDL).
StateCAD verifies the state machine and displays the results.
2. Review the results and exit the dialog box.
StateCAD will then create the HDL code and open a browser displaying the code.
Exit the browser when you have finished examining the code.
Exit StateCAD.
In Project Navigator, select Project — Add Source.
Select STMACH_V.vhd, which is the VHDL file generated by StateCAD.
Click Open.
Select VHDL Design File as the source type.
Click OK.

© © N o g b~ w

ISE 6 In-Depth Tutorial

www.xilinx.com 75
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

The file STMACH_V.vhd is added to the project in Project Navigator.

10. In the Sources in Project window, select stmach_v.vhd.

11. Inthe Processes for Current Source window, double-click Create Schematic Symbol
from the Design Entry Utilities hierarchy.

Creating a DCM Module

The Clocking Wizard, a Xilinx® Architecture Wizard, enables you to graphically select
Digital Clock Manager (DCM) features that you wish to use. In this section, you will create
a basic DCM module with CLKO feedback and duty-cycle correction.

Using DCM Wizard
Create the DCM1 module.

1. Select Project - New Source.

2. Inthe New Source dialog box, select the IP (Coregen & Architecture Wizard) source
type, and type the filename DCML1. Click Next.

3. Select Single DCM in the Clocking hierarchy.

Select Core Type x|

~|:| Bazic_Elements

E|~|:| Clocking

L Board Deskew with an Internal Deskew
Cascading in Series with Two DCMs
Clack Forwarding / Board Deskew

: Clock Switching with Two DCMs

e

-2 Communicafion_t_Networking

~|:| Diigital_Signal_Processing

~|:| bd ath_Functions

~|:| Memories_&_Storage_Elements

~|:| Standard_Bus_|nterfaces

drchitecture YWizard: Single DCK

¢ Back I Meut > I Cancel Help

Figure 3-26: Selecting Single DCM core type

Click Next and click Finish.
Verify that RST, CLKO and Locked are selected.
Type 50 for the Input Clock Frequency.

76 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry ST XILINX®

7. \Verify the following settings:
+ CIkin Source: External

¢ Feedback Source: Internal
¢ Feedback Value: 1X
¢ Phase Shift: None
¢ Duty Cycle Correction: Yes
l =<ilingc Clocking Wizard - General Setup =]
=
-
-
-
-
-
-
-
-
I
PSEN |
PSINCDEC [
PSCLK PSDONE
— lnput Clock Frequency——————— CLEIM Source——— 1 1~ Diwvide By walue
IEU— & MHz s i+ External " Internal m
B B " Single
= Differential
— Feedback Source Feedback. — Dby C_l,_lcle
" External i+ |nternal i Mone Walue Corrsctian
. Ll i ves
= Single -
Lol D
= Differential =
— Phase Shift Al g
Type: INDNE LI Advanced... I
Walue: Ilj j 0,000 s 0,000 Degrees More Info I
< Back I MHext > I Cancel I

Figure 3-27: Xilinx Clocking Wizard - General Setup

Click the Advanced button.
Select the Wait for DCM Lock before DONE Signal goes high option.
10. Click OK.

An informational message about the LCK_cycle and the STARTUP_WAIT Bitgen
options appears.

11. Click OK, click Next and click Finish.

DCM1.xaw is added to your project sources.

ISE 6 In-Depth Tutorial www.xilinx.com 77
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Creating the DCM1 Symbol

Next, create a symbol representing the DCM1 macro. This symbol will be later added to the
top-level schematic (stopwatch.sch).
1. InProject Navigator, in the Sources in Project window, select DCM1.xaw.

2. Inthe Processes for Current Source window, double-click Create Schematic Symbol
from the Design Entry Utilities hierarchy.

Note: The newly created DCM1_arwz.ucf file does not need to be added to the project, as all of the
constraints are passed into the relevant source file(s).

Placing the STMACH, Tenths, DCM1, outs3, and decode symbols

You can now place the STMACH, Tenths, DCM1, outs3, and decode symbols on the Watch
schematic (stopwatch.sch). If this file is already open in ECS, ignore step 1.

1. In Project Navigator, double-click stopwatch.sch. The schematic file opens in the ECS
schematic editor.
View the list of available library components in the Symbol Browser window.
Locate the macros in the Local Symbols library.

4. Select the appropriate symbol, and add it to the Watch schematic as shown in
Figure 3-28.

Note: Do not worry about drawing the wires to connect this symbol. You will connect components in
the schematic later in the tutorial.

5. Save the schematic.

stmach_v

dcml
——{ CLK clken | ——
—{ RST_IN LOCKED_OUT |——
—— DCM_lock
CLKO_OUT [——
—— reset
— CLKIN_IN CLKIN_IBUFG_OUT [——
—— strtstop rst f——
Q_THRESHO [——
——CE Q(3:0) [——
— cLk
decode outs3

AINIT [
|:| binary(3:0) one_hot(Q:O)E EI inputs(9:0) outs(9:0) E

X10073

Figure 3-28: Placing Design Macros

Creating an HDL-Based Module

With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level HDL design through instantiation and compiled with the rest of the design.

Next you will create a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

78 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

Using the New Source Wizard and ISE Text Editor

Enter the name and ports of the component in the New Source Wizard, and the wizard
creates a “skeleton” HDL file which you can complete with the remainder of your code.

1.

o N o O

9.

In Project Navigator, select Project - New Source.
The New Source dialog box opens.

Select the source type VHDL Module or Verilog Module, depending on your coding
preference.

In the File Name field, type hex2led.
Click Next.

The hex2led component has a 4-bit input port named HEX and a 7-bit output port
named LED. First enter the port named HEX as follows:

Click in the Port Name field and type HEX.
Click in the Direction field and set the direction to in.
In the MSB field, enter 3, and in the LSB field, enter O.

Repeat the previous steps for the LED(6:0) output bus. Be sure that the direction is set
to out.

The dialog box entries are displayed in Figure 3-29.

Define YHDL Source E3

Entity Mame IhE:-:2|El:|
Architecture Mame Il:uehavicural
Port Hame Direction MsE LSB ﬂ
HEX in 3 0
LED oLt 5] 0
| in
in
in
in
in
in
in
in
in
in ;I
Cancel | Help |

Figure 3-29: New Source Wizard

Select Next to complete the Wizard session.
A description of the module displays.

10. Select Finish. The “skeleton” HDL file opens in the ISE Text Editor.

ISE 6 In-Depth Tutorial

www.xilinx.com 79
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

1 library IEEE:
2 uze IEEE.3TD _LOGIC 1la4.ALL:
3 uze IEEE.3TD _LOGIC_ARITH.ALL:
4 uze IEEE.3TD LOGIC UN3IIGNED.ALL:
L)
=] -- Tmnmcomment the following lines to use the declarations that are
7 -- provided for instantiating Xilinx primitive components.
8 —-library TUNIZIM:
g --use UNIZIM.VComponents.all:
10
11 entity hexzled i=s
12 Port [HEX : in std_logic_wector (3 downto 0):
13 LED : in std_logic_wector (6 downto 0));
14 end hexZled:
15
16 architecture EBehavioral of hexZled iz
17
12 hegin
19
20
21 end Eehavioral;
22

Figure 3-30: Skeleton VHDL File

fiodule HEXZLED (HEX,LED)
input [3:0] HEX;
input [6:0] LED:

1
2
2
2
5
=]
v endmnodule
=]

Figure 3-31: Skeleton Verilog File

Inthe HDL file, the ports are already declared and some of the basic file structure is already
in place. Keywords are displayed in blue, data types in red, comments in green, and values
in black. This color-coding enhances readability and recognition of typographical errors.

Using the Language Templates

The ISE Language Templates are HDL constructs and synthesis templates that represent
commonly used logic components, such as counters, D flip-flops, multiplexers, and
primitives.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates window and select a template for this tutorial:

1. In Project Navigator, select Edit —» Language Templates.

Each HDL language in the Language Template is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template contents in the right-hand pane.

80 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

2. Locate the template called HEX2LED Converter for VHDL or Verilog located under
the Synthesis Templates heading. Use the appropriate template for the language you
are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

This template provides source code to convert a 4-bit value to 7-segment LED display
format.

b | Go |

Templates: =

D ABEL
D UCE —--HEX-to-seven-sequent decoder

f1-03 Verlo -- HEX: in STD_LOGIC_VECTOR (3 downto D) ;
e VHDLQ -- LED: out 3TD_LOGIC VECTOR (6 downto 0):

D Component Inztantiation
{1 Language Templates
=2 Spnthesis Templates __ _

-- seguent encoding

----- B arrel Shifter — 5] |1

----- Comparator - --- <= A

- Counter -- 4| | 2

: Debounce circuit - -

: Decoder -- 3

----- Encoder

-7 Flip Flops with HEX 3ELect

----- HEX2LED Corvverter LED<= "1111001" when "00017, --1

-] Latches "0lO0l00" when 00107, --2

57 Muliplesers "0110000% when "00117, --3

_____ Puldown "00110017 when "01007, —-4 -

..... Pulup "0010010° when "01017, --5

"0000010% when "01107, --6

w0 RaM *1111000" when "OL1Ll", —-7

- Shift Registers “0000000° when ©10007, —-&

[State Machines "00l0000" when "l0OLT, --8

{0 Tristate Buffers "000l000" when L0107, --4 =
----- {2 User Templates LLI AAREEIn T n I W NECMIR, B W I 2 _'I—I

Q Language TI

Figure 3-32: Language Templates

Adding the Language Template to Your File

Next, using the drag and drop method, add a template to your HDL file. A copy and paste
function is also available from the Language Template Edit Menu and right-click menu.

To add the HEX2LED language template to your file:
1. Inthe Language Templates, click and drag the HEX2LED Converter name into
+ the hex2led.vhd file under the architecture begin statement.
or
¢ the hex2led.v file under the module declaration.
Close the Language Templates window.

3. (Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment.

reg [6:0] LED;

ISE 6 In-Depth Tutorial www.xilinx.com 81

1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

You now have complete and functional HDL code.

4,
5.
6.

Save the file by selecting File — Save.
In Project Navigator, select hex2led.vhd or hex2led.v in the Sources in Project window.

Double-click Check Syntax located in the Synthesize hierarchy in the Processes for
Current Source window. This launches the ISE Text Editor.

Exit ISE Text Editor.

Creating and Placing the HEX2LED Symbol
Next, create the schematic symbol representing the HEX2LED HDL in Project Navigator.

1.
2.

3.

In the Sources in Project window, select hex2led.vhd or hex2led.v.

In the Processes for Current Source window, click the + beside Design Entry Utilities to
expand the hierarchy.

Double-click Create Schematic Symbol.

You are now ready to place the HEX2LED symbol on the Watch schematic.

1.

In the Sources in Project window, double-click watch.sch. The schematic file opens in
the ECS schematic editor.

Select Add — Symbol or click the Add Symbol icon from the Tools toolbar.

—

Figure 3-33: Add Symbol Icon

This opens the Symbol Browser dialog box to the left of the schematic editor, which
displays the libraries and their corresponding components to view the list of available
library components.

Locate the HEX2LED macro in this list.

Select HEX2LED, and add two instances of this symbol to the Watch schematic, as
shown in Figure 3-34. You will connect the entire schematic later in the tutorial.

hex2led

cnt60
E=— HEX(3:0) LED(6:0) F—]

——ce Isbsec(3:0) ——

— ck hex2led

msbsec(3:0) ——
—cIr E=—| HEX(3:0) LED(6:0) F—]

X10078

Figure 3-34: Placing the HEX2LED Component

Specifying Device Inputs/Outputs

Use the 1/0 marker to specify device 1/0 on a schematic sheet. All ECS schematics are
netlisted to VHDL or Verilog and then synthesized by the synthesis tool of choice. When
the synthesis tool synthesizes the top-level HDL, the I/0 markers are replaced with the
appropriate pads and buffers.

82

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

Hierarchy Push/Pop

First, perform a hierarchy “push down” which enables you to focus in on a lower-level of

the schematic hierarchy to view the underlying file. Push down into the OUTS3 macro,

which is a schematic-based user-created macro, and examine its components.

To push down into OUTS3, in ECS:

1. Click OUTS3 symbol in the schematic and select the Hierarchy Push icon. You can
also right-click the macro and select Push into Symbol.

MOIE

Figure 3-35: Hierarchy Push Icon

In the OUTS3 schematic, you see a series of inverters (INV) and output buffers

(OBUF). This macro illustrates that you can place 1/0 buffers in a lower level macro.

The output buffers are not required because the synthesis tool inserts a buffer when

one is not found.

inputs(9:0)

N~

outs(0)

inputs(0) DO
NV

inputs(1)

LSour

N~

outs(1)

¥

INV

inputs(2)

LGour

NN

outs(2)

Y

N’

inputs(3)

LBeur

™

outs(3)

Y

N’

inputs(4)

LGaur

N~

outs(4)

Y

N

inputs(5)

LGour

NN

outs(5)

Y

N’

inputs(6)

L Gaur

™

outs(6)

Y

N’

inputs(7)

LGeur

N~

outs(7)

Y

IN

inputs(8)

LGour

N~

outs(8)

N

INV

LGour

NN

outs(9)

inputs(9) DO
NV

LBeue

Figure 3-36: OUTS3 Schematic Symbol

2. After examining the macro, exit the outs3.sch view.

outs(9:0)

X10079

ISE 6 In-Depth Tutorial

www.xilinx.com
1-800-255-7778

83

$7 XILINX°

Chapter 3: Schematic-Based Design

Adding Input Pins

Next, add three more input pins to the Watch schematic: CLK, RESET and STRTSTOP. Add
an IBUF component for two of the new input pins: RESET and STRTSTOP.

To add these components:

1.

2.
3.
4

Click the Add Symbol icon in the toolbar to open the Symbol Browser dialog box.
Browse to locate the IBUF and INV components in the library.
Drag and drop these two components onto the schematic, as shown below.

Draw a hanging wire to the input of the IBUFs and DCML1. Refer to the “Drawing
Wires” for detailed instructions.

Draw a net between the output of the IBUF and input of the INV. Refer to “Drawing
Wires” for detailed instructions.

stmach
deml

CLK clk_en —

RST_IN LOCKED_OUT

IBUF
DCM_lock
CLKO_OUT
CLKIN_IN reset
CLKIN_IBUFG_OUT [—

strtstop rst b—

IBUF %\p
X10074

Figure 3-37: Placing CLK, RESET and STRTSTOP I/O Components

Adding I/O Markers and Net Names

It is important to label nets and buses for several reasons:

It aids in debugging and simulation, as you can more easily trace nets back to your
original design.

Any nets that remain unnamed in the design will be given generated names that will
mean nothing to you later in the implementation process.

Naming nets also enhances readability and aids in documenting your design.

Label the three input nets you just drew. Refer to the completed schematic below. To label
the RESET net:

1.
2.

Select Add — Net Name.

Type reset into the Name box.

The net name is now attached to the cursor.

Place the name on the leftmost end of the net as illustrated in Figure 3-38.
Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.

Once all of the nets have been labeled, add the 1/0 marker.

Select Add — I/O Marker.

In the Add 170 Marker Options dialog box, select Add an input Marker for an input
signal direction.

84

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

7. Click and drag a box around the three labeled nets to place an input signal around each

net name.
stmach
deml
CLK clk_en —
| RST_IN LOCKED_OUT N
IBUF
DCM_lock
CLKO_OuT
clk CLKIN_IN — 1 reset
CLKIN_IBUFG_OUT |—

!

stristop rst —
strtstop | {>O F
| IBUF INV

X10075

Figure 3-38: Labeled Nets with I/O Markers

Assigning Pin Locations

Xilinx® recommends that you let the automatic placement and routing (PAR) program
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it may be necessary at
some point to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

For this tutorial, you will define the initial pinout by running the place-and-route tools
without pin assignments. Then you will lock down the pin placement so that it reflects the
locations chosen by the tools. Because the tutorial Watch design is simple and timing is not
critical, the example pin assignments will not adversely affect the ability of PAR to place
and route the design.

Specify pin locations by attaching a LOC parameter to a buffer component. In ECS, assign
a LOC parameter to the RESET net on the Watch schematic as follows:

1. Right-click on the IBUF component connected to the RESET I/0 marker, and from the
menu, select Object Properties.

2. Click the New button under Instance Attributes to add a new property.
3. Enter loc for the Attribute Name and A5 for the Attribute Value.

ISE 6 In-Depth Tutorial

www.xilinx.com 85
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

4. Click OK to return to the Object Properties dialog box.
l

Categom
Instance Attributes

and edit the attributes of the selected ir

Hame Value Visible || Mew

VeriMode! | IBLUF
WhaiModel | 1BUF

Insthame HLHA r
Symboitiame buf - M
JOSTANDAR | LITTL r [elete |
el MLINX r
Libwer 200 r
loc AZ I

r

r

I
(]9 I Cancel | Apply | Help

Figure 3-39: Assigning Pin Locations

5. Check to make sure the visible box is selected.
This will display the LOC attribute on the schematic.

6. With the loc attribute selected, click Edit Traits.
7. Select VHDL and select Write this attribute as well as options 2 and 3 as shown below.

i Attribute Traits

Categomy

X

*Mame and Type
" Permigziohs
“Werilog

| The VHDL netlister should

" Ignore this attibute
% Write this attribute:
[~ 1. In a generic map statement
[~ Use an “itdef" ta hide it from the syrthesis tool
[2. Inan attibute declaration statement

v 2 In an attibute statement

0K I Cancel | Apply | Help |

Figure 3-40: Writing attribute to HDL file

8. Click OK twice to return to schematic.

Note: For more constraint options in the implementation tools, see “Editing Constraints in the
Constraints Editor” and “Editing Constraints in the Pinout Area Constraints Editor (PACE)” in Chapter
5, “Design Implementation.”

86 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Design Entry

$7XILINX°

Completing the Schematic

Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic, or you may want to use the
completed schematic shown below for guidance. Each of the actions referred to in this
section has been discussed in detail in earlier sections of the tutorial. Please see the earlier
sections for detailed instructions.

The finished schematic is shown in the following figure as a guide.

ISE 6 In-Depth Tutorial

www.xilinx.com 87
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

stmach_v
LOC=A5 deml _
clk_int)
| CLK clk_en — clk_int
I RST_IN LOCKED_OUT locked
IBUF
DCM_lock
CLKO_OUT
clk CLKIN_IN reset
CLKIN_IBUFG_OUT |—

r strtstop rst f— rst_int
strtstop | {>O
INV

IBUF

Q_THRESHO |
decode outs3
q(3:0) one_hot(9:0)
clken_int —{ ce Q(3:0) |' binary(3:0) one_hot(9:0) — inputs(9:0) outs(9:0)
clk_int — clk
AINIT
rst_int
g_thres
hex2led
cnt60 ones(3:0)
HEX(3:0) LED(6:0) onesout(6:0)
ce Isbsec(3:0)
clken_int
AND2 clk_int —{ clk msbsec(3:0) |'
rst_int — clr hex2led
tens(3:0)
FE——| HEX(3:0) LED(6:0)
X10086
Figure 3-41: Completed Watch Schematic
88 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

Design Entry

$7XILINX°

To complete the schematic diagram:

1.

10.

11.
12.

13.

14,

15.
16.

17.

18.

Draw a wire between the CLKO_OUT pin of DCM1 and the CLK pin of the STMACH
state machine macro (see “Drawing Wires.”)

Draw a wire between the LOCKED_OUT pin of DCM1 and the DCM_lock pin of the
STMACH state machine macro (see “Drawing Wires.”)

Label this net CLK_INT.

Draw wires between the IBUF of the RESET input and the RESET pins of the STMACH
and DCM1 macros (see “Drawing Wires.”)

Place an INV (inverter) component from the Virtex library between the IBUF of the
STRTSTOP input and the STRTSTOP pin of the STMACH state machine macro (see
“Adding Components to CNT60.”)

Draw wires to connect the INV to both the IBUF and the STMACH state machine
macro (see “Drawing Wires.”)

Place an AND2 component to the left of the CNT60 macro (see “Adding Components
to CNT60.”)

Draw a wire to connect the output of the AND2 with the CE pin of the CNT60 macro
(see “Drawing Wires.”)

Draw a wire to connect the Q_THRESO pin of the TENTHS macro to one of the inputs
to the AND?2 (see “Drawing Wires.”)

Draw a hanging net from the clken pin of the STMACH macro. To terminate a hanging
wire, double-click it (see “Drawing Wires.”)
Name the new added net CE.

Draw a hanging net at the CLK_EN input pin of the TENTHS macro. Label this net
CLKEN_INT (see “Adding 1/0 Markers and Net Names.”)

Draw a hanging wire (see “Drawing Wires”) at the other input of the AND2
component. Label this net CLKEN_INT again (see “Adding I/0 Markers and Net
Names.”)

Note: Remember that nets are logically connected if their names are the same, even if the net
is not physically drawn as a connection in the schematic. This method is used to make the logical
connection of the RST_INT, CLKEN_INT and CLK_INT signals.

Draw a hanging wire from the RST output pin of the STMACH macro (see “Drawing
Wires.”)

Label this net RST_INT.

Draw two more hanging wires, also named RST_INT, from the AINIT pin of the
TENTHS macro and from the CLR pin of the CNT60 macro (see “Drawing Wires.”)

Draw two hanging wires, each named CLK_INT, from the CLOCK pin of the TENTHS
macro and from the CLK pin of the CNT60 macro (see “Drawing Wires.”)

Draw buses to complete the schematic. Label them as shown on the preceding
schematic diagram (see “Adding Buses.”)

The schematic is now complete.

Save the design by selecting File - Save.

ISE 6 In-Depth Tutorial

www.xilinx.com 89
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

90 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 4

Behavioral Simulation

This chapter contains the following sections.

e “Overview of Behavioral Simulation Flow
e “ModelSim Setup”

e “Getting Started”

e “Adding an HDL Test Bench”

e “Behavioral Simulation Using ModelSim”

Overview of Behavioral Simulation Flow

Behavioral simulation is done before the design is synthesized to verify that the logic you
have created is correct. This allows a designer to find and fix any bugs in the design before
spending time with Synthesis or Implementation.

Xilinx® ISE provides an integrated flow with the ModelTech ModelSim simulator that
allows simulations to be run from the Xilinx Project Navigator graphical user interface
(GUI). The examples in this tutorial show how to use this integrated flow. For additional
information about simulation and for a list of the other supported simulators, refer to
Chapter 6 of Synthesis and Verification Guide. This Guide is available with the collection of
software manual and is accessible from ISE by selecting Help — Online Documentation,
or from the web at http://support.xilinx.com/support/sw_manuals/xilinx6/.

ModelSim Setup

In order to follow this tutorial, you need to install ModelSim on your machine. The next
sections discuss requirements and setup for ModelSim PE, ModelSim SE and
ModelSim XE.

ModelSim PE and SE

ModelSim PE and ModelSim SE are the full versions of the ModelSim product that can be
purchased directly from ModelTech. In order to simulate with the ISE 6 libraries, use
ModelSim 5.6 or later. Older versions may work but are not supported.

Note: For more information on purchasing ModelSim PE or SE version 5.6 or later, contact
ModelTech.

ISE 6 In-Depth Tutorial

www.xilinx.com 91
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx6/

$7 XILINX°

Chapter 4: Behavioral Simulation

Getting Started

ModelSim Xilinx Edition

ModelSim Xilinx® Edition Il (MXE II) is the Xilinx version of ModelSim which is based on
ModelSim PE. Two versions exists: a starter version that is free, and a full version that can
be purchased from Xilinx.

MXE I15.7c must be used with the ISE 6.1i software, as this is the only version for which the
latest 6.1i libraries have been compiled.

Note: When ISE 6.2i is released, a newer version of MXE Il will also be released. If you are using
ISE 6.2i, you will need to use the newer version of MXE Il as well.

For information on how to obtain MXE I, go to the Getting Started section of the
MXE Il Tech Tips page:

http://support.xilinx.com/xInx/xil_tt product.jsp?sProduct=MXE+I|I

For general information about MXE 1, go to the FAQ section of the MXE Il Tech Tips
page:
http://support.xilinx.com/xInx/xil_tt product.jsp?sProduct=MXE+lI

The following sections outline the requirements to perform behavioral simulation in this
tutorial.

Required Files

The behavioral simulation flow requires design files, a test bench file and Xilinx simulation
libraries.

Design Files (VHDL, Verilog, or Schematic)

This chapter assumes that you have completed the tutorial design entry by following
Chapter 2, “HDL-Based Design,” or Chapter 3, “Schematic-Based Design.” After you
have completed one of these chapters, your design includes the required design files
and is ready for simulation.

Test Bench File

In order to simulate the design, a test bench is required to provide stimulus to the
design. A VHDL and Verilog test bench are available with the tutorial files.
Alternatively, you may choose to create you own test bench from scratch, for which
instructions are found in “Creating a Test Bench Waveform Using HDL Bencher” in
this chapter.

Note: The HDL Bencher flow is only available on Windows platforms.
Xilinx Simulation Libraries

Xilinx simulation libraries are required when any Xilinx primitive is instantiated in the
design. The design in this tutorial requires the use of simulation libraries because it
contains instantiations of a digital clock manager (DCM) and a CORE Generator™
component. Information on simulations libraries and how to compile them is provided
in the next section.

92

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+II
http://support.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+II

Getting Started

$7XILINX°

Xilinx Simulation Libraries

To simulate designs that contain instantiated Xilinx® primitives or CORE Generator™
components, you need to use the Xilinx simulation libraries. These libraries contain
models for each component. These models reflect the functions of each component, and
provide the simulator with the information required to perform simulation.

Note: For a detailed description of each library, refer to Chapter 6 of the Synthesis and Verification
Design Guide. This Guide is available with the collection of software manual and is accessible from
ISE by selecting Help — Online Documentation, or from the web at
http://support.xilinx.com/support/sw_manuals/xilinx6/.

Updating the Xilinx Simulation Libraries

The Xilinx simulation libraries contain models that are updated on a regular basis. Model
updates occur as follows:

e The XilinxCoreLib models are updated each time an IP Update is installed.

e All other models are updated each time a service pack is installed.

When the models are updated, your libraries need to be re-compiled. The compiled Xilinx
simulation libraries are then available during the simulation of any design.

ModelSim Xilinx Edition |l

If you are using ModelSim Xilinx Edition Il (MXE I1), the updated models are precompiled
and available on the Xilinx Support Website for download. To get the latest precompiled
models for MXE I, go to http://support.xilinx.com/support/mxelibs/index.htm

ModelSim PE or SE

If you are using ModelSim PE or SE, you will need to compile the simulation libraries with
the updated models. Refer to Xilinx Answer Record # 15338 for instructions on how to
compile the libraries. To locate Answer Record # 15338:

1. Go to http://support.xilinx.com.

2. Enter compile libraries in the search box.
3. Check to see that the search engine is pointing to Answer Database.
4. Click OK.

Answer Record # 15388 displays on the next page.

5. Click on Answer Record # 15338.

Mapping Simulation Libraries in the Modelsim.ini File

ModelSim uses the modelsim.ini file to determine the location of the compiled libraries. For
instance, if you compiled the UNISIM library to c:\lib\UNISIM, the following mapping
should appear in the modelsim.ini file:

UNISIM = c:\lib\UNI SIM
ModelSim searches for a modelsim.ini file in the following order:
e The modelsim.ini file pointed to by the MODELSIM environment variable if it exists.
e The modelsim.ini file in the current working directory if one exists.
e The modelsim.ini file in the directory where ModelSim or MXE is installed.

ISE 6 In-Depth Tutorial

www.xilinx.com 93
1-800-255-7778

http://support.xilinx.com/support/mxelibs/index.htm
http://support.xilinx.com
http://support.xilinx.com/support/sw_manuals/xilinx6/

$7 XILINX°

Chapter 4: Behavioral Simulation

If the MODELSIM environment variable is not set and the modelsim.ini file has not been
copied to the working directory, the modelsim.ini file in the installation directory will be
used.

For this tutorial, verify the mapping for your edition of ModelSim:

ModelSim Xilinx Edition Il

If you are using ModelSim Xilinx Edition Il (MXE II), open the modelsim.ini file in the
directory where MXE Il was installed. You will see that all of the Xilinx simulation libraries
are already mapped to the proper location.

ModelSim PE or SE

If you are using ModelSim PE or SE, you should have gone through Answer Record #15338
and used COMPXLIB to compile the libraries. During that process, COMPXLIB will also
update the modelsim.ini file with the correct mapping. Open the modelsim.ini file and make
sure that the library mappings are correct.

Note: In future, you can copy the modelsim.ini file to the working directory and make changes that
are specific to that project or you could use the MODELSIM environment variable to point to the
desired modelsim.ini file.

Adding an HDL Test Bench

In order to add an HDL test bench to your design project, you have the option of either
adding the tutorial test bench files provided with this tutorial, or creating your own test
bench files and adding them to your project.

Adding Tutorial Test Bench File

This section demonstrates how to add pre-existing test bench files to the project. A Verilog
and VHDL test bench have been provided with this tutorial. You can either use the
provided test bench, or skip to the next section and create a test bench using HDL
Bencher™,

VHDL Design

To add your test bench for a VHDL design:
1. Select Project —» Add Source.
2. Select the test bench file stopwatch_th.vhd.
3. Click Open.

The Choose Source Type dialog box opens.
4. Select VHDL Test Bench File.
5. Click OK.

ISE recognizes the top-level design file associated with the test bench, and adds the test
bench in the correct order.

94

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Adding an HDL Test Bench i:X"JNX®

Verilog Design
To add your test bench for a Verilog design:

1. Select Project - Add Source.
2. Select the test bench file stopwatch_th.v.
3. Click Open.
The Choose Source Type dialog box opens.

4. Select Verilog Test Fixture File.
5. Click OK.

ISE recognizes the top-level design file associated with the test bench, and adds the test
bench in the correct order.

Creating a Test Bench Waveform Using HDL Bencher

This section demonstrates how to use the HDL Bencher™ tool, which is a PC-based
test bench and test fixture creation tool in ISE 6. You can use HDL Bencher to graphically
enter stimuli and to generate a VHDL test bench or Verilog test fixture. It is not necessary
to follow this section if you have added the tutorial test bench to the project already.

There are two parts to this section:

e “Creating a Test Bench Waveform Source”
o “Applying Stimulus”
Note: HDL Bencher is available for PC only.

Creating a Test Bench Waveform Source

To create a test bench or test fixture with HDL Bencher:

1. Select stopwatch in the Sources in Project window.

2. Select Project - New Source from the Project Navigator menu.

3. Inthe New dialog box, select Test Bench Waveform as the source type.
4. Type the name stopwatch_tb.

5. Click Next.

Note: In the Select dialog box, the stopwatch file is the default source file because it is selected in
the Sources in Project window (step 1).

6. Click Next.
7. Click Finish.

HDL Bencher launches in ISE. You are prompted to specify the timing parameters used
during simulation. The clock high time and clock low time together define the clock period
for which the design must operate. The Input setup time defines when inputs must be
valid. The Output valid delay defines the time after active clock edge when the outputs
must be valid.

ISE 6 In-Depth Tutorial www.xilinx.com 95
1-800-255-7778

S XILINX® Chapter 4: Behavioral Simulation

For this tutorial, use the settings in Figure 4-1.

If you are using the Verilog project, select GSR under Global Signals.

Initialize Timing x|
Preview
_ i Minimum
Maximum ! i input
ol 4
output delay ! L sefup
i Clock o Clock !
| (— — -
! high for ! low for
— Clock Timing —Design Type
Inputs are assigned at input setup time' and &% Single Clock IELK j

outputs are checked at 'output valid delay’.

* Rizing Edge " Falling Edge
¢ Dual Edge [DDF desian) ™ Combinatorial Design [or intemal clock]

Clack. high time |-| 0 he | = Combinatorial Timing

q |mputs are azsigned, outputs are decode then
Clock low time I1 a ns checked, & delay between inputs and outputs

. avoids assignment/checking conflicts.
Input getup time |5 Nz
Output walid delay |5 s Check outputs IEEI nE after assian inputs
Difset ID e Lgsign inputs IEEI rig after output

— Global Signals [Werlog Only]———————————— Tz Sealk Ins j
[T PRLD [CFLD] [GSR [FPGA)

Tranzition low at: I1 | hs

£ Multiple Clocks

[T Add Azynchronous Signal Support

(1] 4 I Ne:-:t>| Cancell Help |

Figure 4-1: HDL Bencher Initialization

Click OK, and the HDL Bencher™ window displays in the right-pane of ISE.

Applying Stimulus
Enter the following input stimuli:
1. Click the RESET cell at time 0 to set it high (RESET is active high).

2. Click the STRTSTOP cell at time 0 to set it high (STRTSTOP active low).
3. Click the RESET cell under CLK cycle 6 to set it low.

96 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Behavioral Simulation Using ModelSim i:X"JNX®

Timie (hs)
CLK | 1 Z 3 4 5 6 7 8 g 10
lIRESET =

lISTRTSTOPR =
IITENTHSOUT[%0] <2
llowEsOUT[6D <3
ITENSQUT[60] <3

TEXT

Figure 4-2: Applying Stimulus in HDL Bencher Window

4. Click the STRTSTOP cell under CLK cycle 51 to set it low.

5. Grab the blue line (end of test bench) and drag it to CLK cycle 80.

6. Click the Save icon in the toolbar.

Note: STRTSTOP is not asserted until CLK cycle 50 to give the DCM time to lock.

The new test bench waveform source (stopwatch_tb.tbw) is automatically added to the
project.

Behavioral Simulation Using ModelSim

Now that you have a test bench in your project, you can perform behavioral simulation on
the design. ISE has full integration with the ModelSim Simulator. ISE enables ModelSim to
create the work directory, compile the source files, load the design, and perform simulation
based on simulation properties.

Locating the Simulation Processes

The simulation processes in ISE enables you to run simulation on the design using
ModelSim. To locate the ModelSim simulator processes:

1. Inthe Sources in Project window, select the test bench file (stopwatch_th).
2. Click the + beside ModelSim Simulator to expand the process hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
installed or Project Navigator cannot find modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not to set correctly. To set the ModelSim location, select Edit —
Preferences and click the Integrated Tools tab. Under Model Tech Simulator, browse to
the location of modelsim.exe file. For example,
c:\modeltech_xe\win32xoem\modelsim.exe.

ISE 6 In-Depth Tutorial

www.xilinx.com 97
1-800-255-7778

$7 XILINX°

Chapter 4: Behavioral Simulation

The following simulation processes are available:

Simulate Behavioral Model
This process will start the design simulation.

Generate Expected Simulation Results

This process is available only if you have a TBW file from HDL Bencher™. If you
double-click on this process, ModelSim will run in the background to generate
expected results and display them in HDL Bencher.

Simulate Post-Translate VHDL (or Verilog) Model

Simulates the netlist after the NGDBuild implementation stage.
Simulate Post-Map VHDL (or Verilog) Model

Simulates the netlist after the Map implementation stage.

Simulate Post-Place & Route VHDL (or Verilog) Model

Simulates the back-annotated netlist after Place & Route, which contains the detailed
timing information as well.

Specifying Simulation Properties

In this chapter, you will perform a behavioral simulation on the Watch design. You must
first specify the process properties for simulation as shown in the following section.

ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see which properties are available for behavioral simulation:

1.
2.

3.
4,

In the Sources in Project window, select the test bench file (stopwatch_th).

Click the + sign next to ModelSim Simulator to expand the hierarchy in the Processes
For Current Source window.

Right-click on Simulate Behavioral Model.
Select Properties.

The Process Properties dialog box (Figure 4-3) displays.

5.

Change the Simulation Run Time to 2000 ns

98

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Behavioral Simulation Using ModelSim i:X"JNX®

Process Properties E 3(_3

Simulation Properties | Digplay Properties

Propertp Hame | Yalue
|Jze Custom Do File T
Cuztam Do File [ErY
IJze Automatic Do File ¥

Cuztom Compile File List

Otker WSI Command Line Optiohs

Other YLOG Command Line O phioks
Other YCOM Command Line Options

Simulation Run Time 2000z
Sirulation R ezolution Drefault [1 pz]
WHOL Syntasx 93

|1ze Explicit Declarations Only ¥

(] ; Cancel 1 Crefault i Help

Figure 4-3: Behavioral Simulation Process Properties

6. Click OK to continue.

Note: For a detailed description of each property available in a Process Property dialog box, click
the Help button.

Performing Simulation

Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral Model. ModelSim creates the
work directory, compiles the source files, loads the design, and performs simulation for the
time specified.

Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are

displayed in the Signal window based upon the selected structure in the Structure
window.

There are two basic methods for adding signals to the Simulator Wave window.

e Drag and drop from the Signal window.

e Highlight signals in the wave window and then select Add —» Wave — Selected
Signals from the Signal window.

The following procedure explains how to add additional signals in the design hierarchy.
For the purpose of this example, add the Isbsec and msbsec signals in the cnt60 macro.

1. Inthe Structure window, click the + next to UUT to expand the hierarchy.

ISE 6 In-Depth Tutorial www.xilinx.com 99
1-800-255-7778

100

$7 XILINX°

Chapter 4: Behavioral Simulation

Figure 4-4 shows the Structure window for the Verilog flow. The graphics and the
layout of the Structure window for a schematic or VHDL flow may appear different.

File Edit

Wigw Window

EHad testbench
o led2hex

o Inst_dcrl
o MACHIME
o wocounter
o one_decode
o ity

o lshled

o mshled

& gl

[

1]

| »

sirm:ftestbench/ULT

A

Figure 4-4: Structure Window - Verilog flow

Select sixty in the Structure window.

Notice that the signals listed in the Signal window are updated.

Click and drag Isbsec from the Signal window to the Wave window.

Select msbsec in the Signal window and select Add — Wave — Selected Signals to

add the signal to the Wave window.

Notice that the waveforms have not been drawn for Isbsec or msbsec. This is because
ModelSim did not record the data for these signals. By default, ModelSim will only record
data for the signals that have been added to the waveform window while the simulation is

running. Therefore, when new signals are added to the waveform window, the simulation
needs to be restarted and re-run for the desired amount of time.

To restart and re-run the simulation:

1. Click Restart Simulation.

Figure 4-5: Restart Simulation Icon

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

Behavioral Simulation Using ModelSim i:X"JNX®

The Restart dialog box opens

=10 %]

—Kep:
¥ List Format

¥ wave Fomat
¥ Ereakpoints
¥ Logged Signals

v irtual Definitions

Resztart ﬂ LCancel

Figure 4-6: Restart Dialog Box

Click Restart.
At the ModelSim command prompt, enter “run 2000 ns” and hit enter.

WSIM B un 2000 ns

Figure 4-7: Entering the run command at the ModelSim command prompt

4. The simulation will run for 2000 ns. The waveforms for Isbsec and msbsec should now
be visible in the Waveform Window.

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. This can be important when additional signals or stimuli are added, and the
simulation is restarted. The saved signals list can easily be loaded each time the simulation
is started.

In the Wave window, select File — Save Format.

ISE 6 In-Depth Tutorial www.xilinx.com 101
1-800-255-7778

S XILINX® Chapter 4: Behavioral Simulation

5. Inthe Save Format dialog box, rename the default filename wave.do to sec_signal.do.

Save Format EHE
Save in; | 3 watch_se LI El
| wark
File name: Save I
Save az hupe: IMau:n:u Files [*.dao) L] Cancel |

Figure 4-8: Save Format Dialog Box

6. Click Save.

After restarting the simulation, you can select File — Load Format in the Wave window
to load this file.

102 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 5

Design Implementation

This chapter contains the following sections.

e “Overview of Design Implementation”

e “Getting Started”

e “Creating an Implementation Project”

e “Specifying Options”

e “Translating the Design”

e “Creating and Editing Timing Constraints”

e “Mapping the Design”

e “Using Timing Analysis to Evaluate Block Delays After Mapping”
e “Placing and Routing the Design”

e “Using FPGA Editor to Verify the Place and Route”
e “Evaluating Post-Layout Timing”

e “Creating Configuration Data”

e “Creating a PROM File with iMPACT”

e “Command Line Implementation”

Overview of Design Implementation

Design implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The design implementation tools are embedded in
ISE for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is an important chapter for
the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” or Chapter 3, “Schematic-Based Design.” In this chapter,
you will be passing an input netlist (EDN, NGC) from the front-end tool to the back-end
design implementation tools, and incorporating placement constraints through a user
constraints file (UCF). You will add timing constraints later through the Constraints Editor
and the Pinout Area Constraints Editor (PACE).

ISE 6 In-Depth Tutorial

www.xilinx.com 103
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

Getting Started

The tutorial Watch design emulates a runner’s stopwatch. There are two inputs to the
system: RESET and SRTSTP. The configuration clock on the device is used as a ten-hertz
clock signal. This system generates three seven-bit outputs for output to three seven-
segment LED displays. There are two options in this tutorial for design implementation.

Tutorial Option 1

Go through the previous chapters and synthesize the design to create the EDIF/NGC
Netlist File. If you don’t have a stopwatch.ucf file, you will need to create one.

To add a UCF file to the design:

1. Select xc2v40-5fg256.

2. Select Project - New Source.

3. Select Implementation Constraints File.
4. Type stopwatch.ucf as the file name.

5. Click Next.

6. Select stopwatch from the list.

7. Click Next.

8. Click Finish.

9.

Go to the “Specifying Options” section in this chapter.

Tutorial Option 2

Use the EDIF Netlist Files that are provided. If you choose this option, create a working
directory with the tutorial files as follows.

1. Create an empty working directory named Watch.

2. Copy the Required Tutorial Files listed in the following table from the
http://support.xilinx.com/support/techsup/tutorials/tutorial6.html directory into
your newly created working directory.

Table 5-1: Required Tutorial Files

File Name Description
stopwatch.edn, stopwatch.edf, or Input netlist file (EDIF)
stopwatch.ngc
tenths.edn Counter netlist file (EDIF)
stopwatch.ucf User Constraints File
104 www.xilinx.com ISE 6 In-Depth Tutorial

1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/tutorial5

Creating an Implementation Project ST XILINX®

Creating an Implementation Project

This section describes how to create a project with ISE. The process is the same for either
Schematic or HDL designs.

To create a project:

1. Open ISE.
a. On a UNIX workstation, enteri se &

Note: The implementation-only flow of this tutorial is the only flow available for a
UNIX environment.

b. OnaPC, select Start » Programs — Xilinx ISE6 — Project Navigator.
If you are continuing this project from the previous chapters, go to “Specifying Options.”

If you are using the pre-synthesized design, create a new project and add the (stopwatch)
EDIF netlist as follows:

1. Select File - New Project.

Type EDIF Flow for the Project Name.
Select EDIF for the top_level Module Type.
Click Next.

Select stopwatch.edn for the Input Design file
Select stopwatch.ucf for the Constraints file.
Click Next.

Select the following:

o N o g b~ wDN

+ Virtex2 for the Device Family
¢ xc2v4O0 for the Device
+ -5 for the Speed Grade, fg256 for the Package
9. Click Next.
10. Click Finish.
When you create a new project, specify a design to open and a directory for the project. You

can create as many projects as you want, but you can only work with one at a time. See
“Snapshot View” in Chapter 1 for strategies for project revision control using snapshots.

ISE 6 In-Depth Tutorial

www.xilinx.com 105
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

Su:uurl:es it Project;
- [B] EDIF_Flaw
= £3 wc2v40-5fg256 - EDIF
= stopwatch [ztopwatch. edf)
L U] stopwatch.uct

| B itodule View l X Snapzhot e I TD Libirary Wiew I

x|
Proceszes for Current Source: |
----- W Dezign Entry Utilities

E| W

] Create Timing Conztraints
[Assign Package Pinz
------- 5 Create Area Constraints

: Lo Edit Constraints [Text)

----- 3 Implement Design

|zer Constraintz

Figure 5-1: Selecting File in Sources in Project Window

In the Sources in Project window, select the top-level module, stopwatch.edf or
stopwatch.edn. This enables the design to be implemented.

Specifying Options

This section describes property options and sets two options for this tutorial. The options
associated with the Implement process control how the software maps, places, routes and
optimizes a design. To access these options, right-click on any process in the Implement
process hierarchy and select Properties from the menu. The list of options is found in the
Process Properties dialog box that displays.

ISE offers two property display levels: Standard and Advanced.

e Standard

Standard options are the most commonly used options. By default, Standard property
options are displayed in ISE.

e Advanced

The Advanced options provide access to all options, including options not needed for
a pushbutton flow. Advanced options are intended for experienced users. By default,
Advanced property options are not displayed in ISE. You must select the Advanced
property display level in the Preferences dialog box.

While not necessary for the tutorial, you can select the Advanced property display level.
With this property display level specified, you will see both Advanced and Standard
properties.

1. Select Edit — Preferences.

2. Inthe Preferences dialog box, click the Processes tab.

3. Change the Property Display Level from Standard to Advanced.
4. Click OK.

106

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Specifying Options ST XILINX®

Next, you will change the settings for two options: the Report Type option and the Place &
Route Effort Level (Overall):

1. In the Processes for Project window, right-click Implement Design.
2. Select Properties.

The Process Properties dialog box provides access to the Translate, Map, Place and Route,
Simulation, and Timing Report options.

Process Properties B EI

FPozt-tap L':;.tatig: Timitg Beport Properties

Tranzlate Properties | Wap Froperties | Place & Route Properties
Fost-Place & Route Static Timing Feport F'ru:uperti'es | Simulation Properties
Property Hame:

Repott Type L}

Mumbir of fems in Errorfverboze Report {0-32000)
Timing Report (Mumber-of tems) 3
Petform Advanced Snalysis -
Change Device Speed To I
Report Uncovered Paths (humber of tems)
Analyze Clock Skewy for All Clocks -
Stamp Timing Model Filerame I
Timing Specification Interaction Report file

Ok I Cancel Diefault Help

Figure 5-2: Post-Place & Route Static Timing Report Properties

3. Inthe Post-Place & Route Static Timing Report Properties tab, change Report Type to
Verbose Report.

This option changes the type of report from an error report to a verbose report. This
report is created after Place and Route is completed.

ISE 6 In-Depth Tutorial www.xilinx.com 107
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

4. Inthe Place & Route Properties tab, change the Place & Route Effort Level (overall) to
High. This option increases the overall effort level of Place and Route during
implementation.

Process Properties @

Post-Map Static Timing Report Properties]
Incremental Design Properties] Simulation Model Properties l

Post-Place & Route Static Timing Report Properties
Transzlate Properties l tdap Propertiss Flace & Route Properties
Property Hame | VYalue | #

Place & Route Effort Level [Qwverall] |High -
Placer Effort Level [Overdes Owerall Lewvel] Mone
Fouter Effort Level [Dvemides Owerall Lewvel) Mone
Ewxtra Effort [Highest PAR level only] Mone
Starting Placer Cost Table [1-100) 1
Place &nd A oute Mode MNormal Place and Route
PAR Guide Design File [.nod)
P&R Guide Mode MNone
Corveert Guide File to B.11 Format r
IUze Timing Constraints I
lJze Bonded 1/0s r
EPHPI'RIP ﬂ@llﬂl"'hl’ﬂﬁﬁl (k= nP'IFlll I:!p-nnrf |- v

(1] | Cancel Default Help

Figure 5-3: Place & Route Properties

5. Click OK to exit the Process Properties dialog box.

Translating the Design

ISE manages the files created during implementation. The ISE tools use the settings you
supply in the Process Properties dialog box. This gives you complete control over how a
design is processed. Typically, you set your options first. You then run through the entire
flow by clicking Implement Design, and selecting Process — Run. This tutorial
illustrates the implementation one step at a time.

Note that during translation, the program NGDBuild performs the following functions:

e Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

e Performs timing specification and logical design rule checks.
e Adds a user constraints file (UCF) to the merged netlist.

Creating and Editing Timing Constraints

The user constraints file (UCF) provides a mechanism for constraining a logical design
without returning to the design entry tools. However, without the design entry tools, you
must understand the exact syntax needed to define constraints. In the Xilinx®
Development System, the Constraints Editor and the Pinout Area Constraints Editor
(PACE) are graphical tools that enable you to enter timing and pin location constraints.

108

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Creating and Editing Timing Constraints

$7XILINX°

Launch the Constraints Editor as follows:

1. Expand the User Constraints hierarchy.
2. Double-click Create Timing Constraints.
This automatically runs the Translate process and launches the Constraints Editor.

Proceszes for Current Source:

Dezign Entry Utilities

Izer Constraints

Create Timing Constraints
“o] Assign Package Pins

------- | Create Area Congtraints
w0 Edit Constraints [Test)
L Implement Dezsigh

Figure 5-4: Create Timing Constraints

Editing Constraints in the Constraints Editor

In the Constraints Editor you can:

e Edit constraints previously defined in a UCF file.
e Create new constraints for your design.

Input files to the Constraints Editor are:

e NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

e Corresponding UCF (User Constraint File)

By default, when the NGD file is opened, an existing UCF file with the same base name
as the NGD file is used. Alternatively, you can specify the name of the UCF file.

The Constraints Editor generates a valid UCF file. The Translate step (NGDBuild) uses the
UCF file and the design source netlists to produce a newer NGD file which incorporates
the changes made. The Map program (the next section in the design flow) then reads the
NGD. In this design, the stopwatch.ngd file and stopwatch.ucf files are automatically read
into the Constraints Editor.

ISE 6 In-Depth Tutorial

www.xilinx.com 109

1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

The Global tab appears in the foreground of the Constraints Editor window. This window
automatically displays all the clock nets in your design, and enables you to define the
associated period, pad to setup, and clock to pad values.

.;gﬁxﬂinx Constraints Editor - [Global - stopwatch.ngd / stopwatch.ucPt] i I E||_X_!
File Edit W¥iew Window Help

D|=|8| x| =|={=g]| 2[]|

Clock Het Hame Period Pad to Setup i Clock to Pad

CLK 18.5 s HIGH 50 % |

Pad to Pad... I |

£
Global | Parts | Advanced Misc
-]
MET "CLE" THM_MET = "CLK";
TIMESPEC "T5_CLK" = PERIOD "CLK" 18.5 ns HIGH 50 %; E]

UCF Gonstraints [read-wirite] IUCF-C'on:ﬂraims [read-only] | Source Constraints [read-only) I

Figure 5-5: Constraints Editor

In the Constraints Editor, edit the constraints as follows:

1.

Double-click the Period cell on the row associated with the clock net CLK. The Clock
Period dialog box opens.

For the Clock Signal Definition, keep the default (Specific Time) selected to define an
explicit period for the clock.

Enter a value of 18.5 in the Time text box.
Verify that ns is selected from the Units pull-down list.
Click OK.

The period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

Note: For the purpose of this tutorial, you have opened a secondary dialog box by double-
clicking a cell to specify your constraint values. You can also click once in a cell and enter
constraints directly.

Select the Ports tab from the Constraints Editor main window.
The left hand side displays a listing of all the current ports as defined by the user.

Select OnesOut<0> in the Port Name Column.
Hold the Shift key and select OnesOut<6>.
This selects the group of elements.

110

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Creating and Editing Timing Constraints

$7XILINX°

9. Inthe Group Name text box, type OnesOut_grp, and click Create Group to create the

group.

Port Hame

Port Direction

Location

Pad to Setup

Cl

ONESOLT=6=

NPT

P,

Tra,

REZET IMPLIT [f
STRTSTOP IMPUIT [idi
Fad Groups
. . : G Marme: |0 E Create G
[140 Canfiguration Options ’7 foup ame I hesout_ord M{SJ ‘

Figure 5-6: Selected Elements of a Grouped OFFSET

10. In the Select Group pull-down list, select the group you just created.

11. Click Clock to Pad.

Fad Groups

Group Mame;

Select Group:

| Create Group I

Fad to Setup... |

Clock to F'ad...[: |

Figure 5-7: Selecting the Group that was created to use in an OFFSET

ISE 6 In-Depth Tutorial www.xilinx.com
1-800-255-7778

111

$7 XILINX°

Chapter 5: Design Implementation

12.
13.
14.

15.

The Clock to Pad dialog box opens.

Clock to Pad PX'
— o
: — k—oFFsET

— Lt |
I\Adive edge m

defined by
PERICD Help |

Pad Group: |I:InesEI ut_arp ﬂ
Time Requirement
OFFSET: 11.9 Units: hs -

Relative to Clock Pad Met:
Regizter Timeagroup:

Comment;

|CLK

L Lo

Figure 5-8: Clock to Pad Dialog

Enter 11.5 ns for the Timing Requirement.

Click OK.
Select File — Save.

The changes made by the Constraints Editor are now saved in the stopwatch.ucf file in

your current revision directory.

Exit the Constraints Editor.

Editing Constraints in the Pinout Area Constraints Editor (PACE)

Use the Pinout Area Constraints Editor (PACE) to add and edit the pin locations and area
group constraints defined in the NGD file. PACE generates a valid UCF file. The Translate
step uses this UCF file, along with the design source netlists, to produce a newer NGD file.
The NGD file incorporates the changes made in the design and the UCF file from the
previous section. PACE also places Global Logic at the Slice level with Block RAM, Digital
Clock Managers (DCMs), Gigabit Transceivers (GTs), and BUFG buffers.

112

www.xilinx.com

1-800-255-7778

ISE 6 In-Depth Tutorial

Creating and Editing Timing Constraints

$7XILINX°

a [0 Ping
I:l Global Logic
F-C] Logic

Design Object List - I/0F

1’0 Hame 10 Direct

TEMTHSOUT =95 | Sttt

TEMTHSOUT =5= | Cutput

TERTHSOUT =7 = | Sttt

TEMTHSOUT =6 | Sttt

TERTHSOUT =55 | Cwutput

TEMTHSOUT =4 | Sttt

TEMTHSOUT =3 | Cutput

TERTHSOUT =2 | Sttt

TERTHSOUT =1 = | Sttt

TERTHSOUT =05 | Sttt

Figure 5-9: The PACE tool

T - = < T o MmO o mE &

This section describes the creation of 10B assignments for several signals. PACE edits the

UCF file by adding the newly created placement constraints.
Launch PACE and enter pin locations as follows:
1.

In Project Navigator, double-click Assign Package Pins under the User Constraints
hierarchy.

Select the Package Pin window.

This window shows the graphical representation of the device package.

Select the Design Object List window.
This window displays all the 10 pins in the design.

In the Design Object List window, scroll down to the Onesout nets.

To enter the pin locations, click and type in pin locations in the Pin Location field

associated with each of the following signals:

¢ onesout<0> — H4
¢ onesout<l> — E3
¢ onesout<2> — E4
¢ onesout<3> — D2
¢ onesout<4> — D3
¢ onesout<5> — D1
¢ onesout<6> — C1

ISE 6 In-Depth Tutorial

www.xilinx.com

1-800-255-7778

113

& XILINX®

Chapter 5: Design Implementation

Design Object List - I/0 Pins =0l x|

I | i Hame |I.l'0 Directiunl Location| Bank i =~

CF |RESET Irgoust
OMESOUT=6= |Output BaMKT
OMESOUT=5= |Cutput i BaMKT
OMESOUT=4= |Cutput d3 BaMKT
OMESOUT=3= |Cutput dZ2 BaMKT
OMESOUT=2= |Cutput g4 BaMKT
OMESOUT=1= |Cutput &3 BaMKT
OMESOUT=0= | Cutput hd BaMKT

= |CLK Impost —
Figure 5-10: Pin Locations Typed in PACE

To place some 10 pins in the Package Pin window using the drag and drop method:

1.

2.

3.

In the Design Object List window, click, drag and drop the following signals to the
specific location in the Package Pins window:

Figure 5-11:

¢ Tenthsout<9> — A7
¢ Tenthsout<8> — B7
¢+ Tenthsout<7> — A8
¢ Tenthsout<6> — B8
¢ Tenthsout<5> — C8
¢+ Tenthsout<4> — D8
¢ Tenthsout<3> — D9
¢ Tenthsout<2> — C9
¢+ Tenthsout<l1> — B9
¢ Tenthsout<0> — A9
Top Wiew
12 3 4 5 & 7 8 9 10 11 12 13 14 15 16
A | LN
= | m
c @[] il
r ooOH n
E SOoN HE |
F EEEEEREN
G HEREEERE
H SHEEREREEERER
[@ B O O O o O

Drag and Drop I0s in the Package Pins Window

Once the pins are locked down, select File — Save. The changes made in PACE are

now saved in the stopwatch.ucf file in your current working directory.

Exit PACE.

114

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

Mapping the Design

$7XILINX°

Mapping the Design

Now that all implementation strategies have been defined (options and constraints),
continue with the implementation of the design.

1.
2.

3.

In the Processes for Current Source window, right-click on Map.
Select Run from the menu.
Expand the Implement Design hierarchy to see the progress through implementation.

Proceszses tor Cument Source;
o W Deszign Entry Litiites
E B W IJzer Conztraints
. Edit Implementation Conztraintz File
o G E dit Implementation Conztraints [Constraintz E ditor)

B 3 Implement Design
e Translate

. B

: F-3% Place & R¥ite

I Generate Programming File

Figure 5-12: Mapping the Design

The design is mapped into CLBs and I0Bs. Map performs the following functions:

Allocates CLB and IOB resources for all basic logic elements in the design.

Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

Each step generates its own report as shown in the following table.

Table 5-2: Reports Generated By Map

Report Type Description

Includes warning and error messages

Translation R r -
anslation Report from the translation process.

Includes information on how the target
device resources are allocated, references
to trimmed logic, and device utilization.
For detailed information on the Map
report, refer to the Development System
Reference Guide.

Map Report

To view a report:

1.

Expand the Translate or Map hierarchy.

ISE 6 In-Depth Tutorial

www.xilinx.com 115
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

2. Double-click a report, such as Translation Report or Map Report.

Proceszes tor Curent Source;

G 3 Implement Design
- T Tranglate
] g Translation Repart

o Generate Fozt-Tranzlate Simulation Model
' i [2] g Map Report
- Generate P ap Static Timing

A Floorplar Desigh

Figure 5-13: Translation Report and Map Report

3. Review the report for Warnings, Errors, and Information (INFO).

Using Timing Analysis to Evaluate Block Delays After Mapping

After the design is mapped, use the Logic Level Timing Report to evaluate the logical paths
in the design. Because the design is not yet placed and routed, actual routing delay
information is not available. The timing report describes the logical block delays and
estimated routing delays. The net delays provided are based on an optimal distance
between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule

For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. The 50/50 rule offers a rough guideline to follow. The 50/50 rule
specifies that the block delays in any single path are approximately 50% of the total path
delay after the design is routed. For example, a path with 10ns of block delay should meet
a 20ns timing constraint after it is placed and routed.

If your design is extremely dense, the Logic Level Timing Report provides a summary

analysis of your timing constraints based on block delays and estimates of route delays
that can help to determine if your timing constraints are going to be met. This report is
produced after Map and prior to Place and Route (PAR).

Report Paths in Timing Constraints Option

Use the Logic Level Timing Report to determine timing violations that may occur prior to
running PAR. For the tutorial design, timing constraints were defined earlier in this
tutorial, and, as a result, the Report Paths in Timing Constraints option is selected. When
Implement Design is run with the Report Paths in Timing Constraints option selected, a
Logic Level Timing Report is generated with a period and path analysis for each constraint
specified.

To view the Logic Level Timing Report and review the PERIOD constraints that were
entered earlier:

1. Inthe Processes for Current Source, expand the Map hierarchy.
2. Double-click Generate Post-Map Static Timing.

116

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Placing and Routing the Design i:X"JNX®

3. To open the Post-Map Static Timing Report, double-click Post-Map Static Timing
Report. Timing Analyzer automatically launches and shows the report.

Proceszes for Current Source:

wee] Edit Constraints [Text]
i Implement Design

----- Y Translate

= Gy Map
....... # tdap Report
----- (ﬂ Generate Post-tdap Static Timing
Post-tap Static Timing Report
. (ﬂ Text-bazed Post-tap Static Timing Repart
&nalyze Post-Map Static Timing [Timing Analyzer)
------- 5 b anually Place & Route [FPGA Editor]
- i Generate Post-tap Simulation kodel
-3 Place & Route

[G Generate Programming File

Figure 5-14: Post-Map Static Timing Report

At the top of this report, you will find the period timing constraint and the minimum
period obtained by the tools after mapping. The report contains only one path per
timing constraint, and as a result, you can see a breakdown of a single path that
contains four levels of logic. Notice the percentage of block/logic delay versus routing
delay is calculated in the report. The delay for the unplaced nets/blocks that are listed,
are estimates (indicated by the letter “e” next to the net delay) based on optimal
placement of blocks.

4. Exit Timing Analyzer.

Even if you do not generate a Logical Level Timing Report, PAR still processes a design
based on the relationship between the block delays and timing specifications for the
design. For example, if a PERIOD constraint of 8 ns is specified for a path, and there are
block delays of 7 ns and unplaced net delays of 3 ns, PAR stops and generates an error
message. In this example, PAR fails because it determines that the total delay (10 ns) is
greater than the constraint placed on the design (8 ns). Therefore, we recommend using the
Logic Level Timing Report to determine timing violations that may occur prior to running
PAR.

Placing and Routing the Design

The design can be placed and routed after the mapped design is evaluated. Evaluation
verifies that block delays are reasonable given the design specifications.

The Flow Engine performs the following place and route algorithms:
e Timing Driven

Run PAR with timing constraints specified from within the input netlist or from a
constraints file.

e Non-Timing Driven
Run PAR and ignore all timing constraints.

Timing constraints were defined earlier in the tutorial design, and, as a result, the Place
and Route (PAR) process performs timing driven placement and timing driven routing.

ISE 6 In-Depth Tutorial

www.xilinx.com 117
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

To run PAR in the Design Implement hierarchy, double-click Place & Route.

To review the reports generated to ensure that the place and route process finished as
expected:

1. Expand the Place & Route hierarchy.
2. Double-click Place & Route Report.

Follow this by displaying and examining the Pad Report and Asynchronous Delay
Report.

Table 5-3: Reports Generated by PAR

Report Type Description

Provides a device utilization and delay summary.
Place & Route Report Use this report to verify that the design successfully
routed and that all timing constraints were met.

Contains a report of the location of the device pins.
Pad Report Use this report to verify that pins locked down
were placed in the correct location.

Lists all nets in the design and the delays of all

Asynchronous Delay Report loads on the net.

Using FPGA Editor to Verify the Place and Route

Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAS).
The FPGA Editor reads and writes:

e Native Circuit Description (NCD) files
e Macro files (NMC)
e Physical Constraints Files (PCF)

Use FPGA Editor to:

e Place and route critical components before running the automatic place-and-route
tools.

e Finish placement and routing if the routing program does not completely route your
design.

e Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an I0B (Input/Output Block) for
analysis during debugging of a device.

e Run the Bitgen program and download the resulting bitstream file to the targeted
device.

e View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

118 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Using FPGA Editor to Verify the Place and Route ST XILINX®

To view the actual design layout on the FPGA using FPGA Editor:

1. Launch FPGA Editor in the expanded Place & Route hierarchy by double-clicking
View/Edit Routed Design (FPGA Editor).

Proceszes for Current Source:

------- @# Place & Foute Report
------- (ﬂ Agynchronouz Delay Report

....... @# PadReport
------- Guide Results Report

- 3@ Generate Post-Place & Route Static Timing
------- 5 Yiew/E dit Placed Design [FloorPlanner)
Yiew/Edit Routed Design [FPGA Editar]
------- 5 Analyze Power [=Power)

------- G Generate Post-Place & Boute Simulation Model
H--¥% Generate IBIS Model

H--E3 MultiPass Place & Route

H--%3% Back-annotate Pin Locations

Figure 5-15: View/Edit Routed Design (FPGA Editor) Process

2. In FPGA Editor, change the List Window from All Components to All Nets. This
enables you to view all of the possible nets in the design.

i.-'l'-.ll Components

Routed Metz
Urrouted Mets
Zero-pin Mets

All Components
Placed Components
ldnplaced Components

All Macros
Dlacrad b smrme

Figure 5-16: List Window in FPGA Editor

3. Select the clk_dcm (Clock) net and see the fanout of the clock net.

Figure 5-17: Clock Net

4. Exit FPGA Editor.

ISE 6 In-Depth Tutorial www.xilinx.com 119
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

Evaluating Post-Layout Timi

ng

After the design is placed and routed, the Post-Place & Route Static Timing Report, a post-
layout timing report, is generated by default to verify that the design meets your specified
timing goals. This report evaluates the logical block delays and the routing delays. The net
delays are now reported as actual routing delays after the Place and Route process
(indicated by the letter “R” next to the net delay).

To display the report:

1. Expand the Generate Post-Place & Route Timing hierarchy.
2. Double-click Post-Place & Route Static Timing Report to open the report in Timing

Analyzer.

Proceszes for Curment Source:
-3 ¥ Place & Route
------- @# Place & Foute Report
------- (ﬂ Agynchronouz Delay Report
------- @# PadReport
------- Guide Results Report
- G(ﬂ Generate Post-Place & Route Static Timing
N - o:t-Flace b Foute Static Timing Report
-------- @# Textbased Post-Place & Route Static Timing Report
-------- 5 Analyze Post-Place & Route Static Timing [Timing Analyzer)
Figure 5-18: Post-Place & Route Static Timing Report

The following is a summary of the Post-Place & Route Static Timing Report.

¢ The minimum period value increased due to the actual routing delays.

+ After the Map step, logic delay contributed to about 80% of the minimum period
attained. The post-layout report indicates that the logical delay value decreased
somewhat. The total unplaced floors estimate changed as well. Routing delay
after PAR now equals about 31% of the period.

+ The post-layout result does not necessarily follow the 50/50 rule previously
described because the worst case path primarily includes component delays.
After the design is mapped, block delays constitute about 80% of the period.

After place and route, the majority of the worst case path is still made up of logic delay.

Since total routing delay makes up only a small percentage of the total path delay

spread out across three nets, expecting the routing delay to be reduced any further is

unrealistic. In general, you can reduce excessive block delays and improve design
performance by decreasing the number of logic levels in the design.
3. Exit Timing Analyzer.

Creating Configuration Data

After analyzing the design through timing constraints in Timing Analyzer, you can then
create configuration data. Creating configuration data is the final step in the design flow. A
configuration bitstream is created for downloading to a target device or for formatting into
a PROM programming file.

In this tutorial, we are creating configuration data for a Xilinx® Serial PROM. Create a
bitstream for the target device as follows:

120

www.xilinx.com
1-800-255-7778

ISE 6 In-Depth Tutorial

Creating Configuration Data ST XILINX®

Right-click on Generate Programming File.
Select Properties. The Process Properties dialog box opens.

x
General Options I Configuration Dptiohz
Startup Options | Readback Optionz I Encryption Optionz
Property Hame Yalue
FPGA Start-Up Clock JTAG Clack -
Enable Internal Done Fipe r
Dione [Dutput Events] Drefault [4]
Enable Outputs [Dutput Events) Drefault [3)
Releasze 'write Enable [Output Eventz] Drefault [B]
Release DLL [Output Eventz] Drefault [M o ait]
b atch Cycle Drefault [M o ait]
Drive Done Pin High r
k. Cancel Default Help

Figure 5-19: Process Properties’ Startup Options Tab

Select the Startup Options tab.

Change the FGPA Startup Clock property from CCLK to JTAG Clock.

Note: You can use CCLK if you are configuring Select Map or Serial Slave.

Leave the remaining options in the default setting.

Click OK to apply the new properties.

Double-click Generate Programming File to create a bitstream of this design.

The bitstream comes from the BitGen program and creates the design_name.bit file (in
this tutorial, the watch.bit file). The design_name.bit file is the actual configuration data.

Verify that the file is in the project directory.

To review the Programming File Generation Report, double-click Programming File
Generation Report. Verify that the specified options were used when creating the
configuration data.

= G E Generate Programming File
------- (ﬂ Programming File Generation Beport
------- 5 Generate PROM, ACE, or JTAG File
- 5 Configure Device [iIMPACT]

Figure 5-20: Programming File Generation Report

ISE 6 In-Depth Tutorial

www.xilinx.com 121
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

Creating a PROM File with iIMPACT

A BIT file is required to program a single device using iMPACT. A PROM file is required to
program several devices in a daisy chain configuration or if you intend on using a PROM.
iMPACT accepts any number of bitstreams and creates one or more PROM files containing
one or more daisy chain configurations.

In iMPACT, a wizard enables you to create a PROM file and to:

e Add additional bitstreams to the daisy chain.
e Create additional daisy chains.

e Remove the current bitstream and start over, or immediately save the current PROM
file configuration.

For this tutorial, launch iIMPACT and create a PROM file as follows:
1. In Project Navigator, double-click Generate PROM, ACE, or JTAG File. A wizard

opens.

2. Inthe Prepare Configuration Files dialog box, under “l want to create a:”, select PROM
File.

3. Click Next.

Prepare Configuration Files El

| want to create a:

" Systern ACE file
& PROM file
" Boundarny-Scan file

Figure 5-21: Prepare Configuration Files Dialog

4. Inthe Prepare PROM Files dialog, select the following:
a. Under “l want to target a”, select Xilinx Serial PROM.
b. Under PROM File Format, select MCS.
c. For PROM file name, type stopwatchl.

122 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Creating a PROM File with iMPACT ST XILINX®

Prepare PROM Files

X

| want to target a :

* Wiling Serial PROM
" Parallel PROM

7 wilins PROM with Design Revizsioning Enabled
—

PROM File Format

* MCS O TEK UFP['C' format)

B0 HEx BIM ISC
r

temary Fill % alue [2 Hex Digitl: |FF
PROM File Mame: stopwatch
Location: |C:'\EDIF_HOV\.1 Browse. ..

< Back | Mest » | Cancel | Help |

Figure 5-22: Prepare PROM Files Dialog

5. Click Next.

Note: In the Specify Xilinx Serial PROM Device dialog box, check the box associated
with Auto Select PROM.

Specify Zilink Serial PROM device 5[

Select & Geral PROM: |17 2] Jsei7ied =] fdd |

Fozition Fart M ame

Delete Al |

Figure 5-23: Specify Xilinx Serial PROM Device Dialog Box

6. Click Next.

Note: If you have more data than space available in the PROM, you must split the data into

several individual PROMs with the Split PROM option. In this case, only a single PROM is
needed.

7. Inthe File Generation Summary dialog box, click Next.

ISE 6 In-Depth Tutorial www.xilinx.com 123

1-800-255-7778

S XILINX® Chapter 5: Design Implementation

8. Inthe Add Device File dialog box, click Add File and select the stopwatch.bit file.

Add Device File

Drata Stream : 1]

Starting &ddrezs [Max 3 Hex digit] ; ID

Mow start adding device file(z] : Add File...[: |

Figure 5-24: Add Device File Dialog Box

9. Click No when you are asked if you would like to add another design file to the
datastream.

10. Click Finish.

iIMPACT displays the PROM associated with your bit file.
11. When asked to generate a file now, click Yes. This creates the PROM file.
12. Select File — Save to save the supporting files associated with iMPACT.
13. Exit iIMPACT.

This completes this chapter of the tutorial. For more information on this design flow and
implementation methodologies, see the iIMPACT Help, available from the iMPACT
application by clicking Help — Help Topics.

Command Line Implementation

ISE allows you to view and extract the command line arguments for the various steps of
the Implement Design process. By viewing the command line arguments, you can verify
the options being used or create a command batch file to replicate the design flow.

Viewing The Command Line Log File

At any stage of the design flow you can look at the command line arguments for completed
processes. To do so:

1. Expand the Design Entry Utilities hierarchy in the Processes for Source window
2. Double-click View Command Line Log File.

This process opens a file named <source_name>.cmd_log in read-only mode.

Creating Your Own Command Batch File

Since the Command Line Log file can be viewed in read-only mode, you can save the data
to an editable batch file. Select File — Save As and enter the desired file name.

The ISE Text Editor provides many ways to manipulate the contents of a file. These include
the copy and paste method (both functions are available from the Edit menu) or the drag
and drop method, both of which allow you to copy the contents to another open text file.

124 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Command Line Implementation i:X"JNX®

Command Line Reference Information

For a complete listing of command line options for most Xilinx® executables, refer to the
Development System Reference Guide. Command line options are organized according to
implementation tools, such as Map and PAR, which you will see in the Table of Contents.
This Guide is available with the collection of software manual and is accessible from ISE by
selecting Help — Online Documentation, from the web at
http://support.xilinx.com/support/sw_manuals/xilinx6/.

Command line options may also be obtained by typing the executable name followed by
the - h option at a command prompt.

Another useful tool for automating design implementation is XFLOW. XFLOW is a Xilinx
command line tool that automates the Xilinx implementation and simulation flows.
XFLOW reads a design file as input as well as a flow file and option files. For more
information on XFLOW, refer to the “XFLOW?” section in the Development System Reference
Guide.

ISE 6 In-Depth Tutorial

www.xilinx.com 125
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx6/

S XILINX® Chapter 5: Design Implementation

126 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

2 XILINX®
Chapter 6

Timing Simulation

This chapter includes the following sections.
e “Overview of Timing Simulation Flow”
e “Getting Started”

e “Timing Simulation Using ModelSim”

Overview of Timing Simulation Flow

Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a recommended part of the HDL design flow
for Xilinx® devices. Timing simulation uses the detailed timing and design layout
information that is available after place and route. This enables simulation of the design,
which closely matches the actual device operation.

Getting Started

The following sections outline the requirements to perform this part of the tutorial flow.

Required Software

In addition to Xilinx ISE 6, you must have ModelSim installed. Refer to Chapter 4,
“Behavioral Simulation” for information on installing and setting up ModelSim.

Required Files
The timing simulation flow requires the following files:

e Design Files (VHDL or Verilog)

This chapter assumes that you have completed Chapter 5, “Design Implementation,”
and thus, have a placed and routed design. A tool called NetGen will be used in this
chapter to create a simulation netlist from the placed and routed design which will be
used to represent the design during the Timing Simulation.

ISE 6 In-Depth Tutorial www.xilinx.com 127
1-800-255-7778

$7 XILINX°

Chapter 6: Timing Simulation

Test Bench File (VHDL or Verilog)

In order to simulate the design, a test bench is needed to provide stimulus to the
design. You should use the same test bench that was used to perform the behavioral
simulation. Please refer to the “Adding an HDL Test Bench” in Chapter 4 if you do not
already have a test bench in your project.

Xilinx Simulation Libraries
For timing simulation, the SIMPRIM library is used to simulate the design.

To perform timing simulation of Xilinx® designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are modeled in the SIMPRIM library.

If you completed Chapter 4, “Behavioral Simulation”, the SIMPRIM library should already
be compiled. For more information on compiling and setting up the Xilinx simulation
libraries, see to “Xilinx Simulation Libraries” in Chapter 4.

Timing Simulation Using ModelSim

Xilinx ISE is fully integrated with the ModelSim Simulator. ISE enables work directory
creation, source file compilation, simulation initialization, and simulation property control
for ModelSim.

ISE also runs NetGen to generate a simulation netlist from the placed and routed design.

Specifying Simulation Process Properties

To set the simulation process properties:

1.
2.

4,

In the Sources in Project window, select the test bench file.
Click the + to expand the ModelSim Simulator hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
installed or Project Navigator cannot find modelsim.exe. If ModelSim is installed, select Edit —
Preferences in Project Navigator and select the Integrated Tools tab. Under Model Tech
Simulator, browse to the location of modelsim.exe. For example,
c:\modeltech_xe\win32xoem\modelsim.exe

Select and right-click Simulate Post-Place & Route VHDL (Verilog) Model.
Select Properties.

Simulation Model Properties

Click the Simulation Model Properties tab. The properties should appear as shown in
Figure 6-1. These properties set the options that NetGen uses when generating the
simulation netlist. For a description of each property, click Help in the Simulation Model
Properties tab.

128

www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

Timing Simulation Using ModelSim

$7XILINX°

For this tutorial, the default Simulation Model Properties are used.

Process Properties ﬂ
Simulation Properties I Display Properties Simulation Model Properties
Property Hame Yalue
Simulation kodel T arget
Pozt Place & Route Simulation Model Mame
Fename Top Level Entity o
Fename Top Level Architecture To Structure
Change Device Speed To 5
Correlate Simulation ['ata to Input Design v
Retain Hierarchy v
Generate Multiple Hierarchical Metlist Files [
Ilze Automatic Do File for ModelSim Simulation v
Bring Out Global Trigtate Met as a Port [
Global Tristate Port Mame P
Tristate On Configuration Pulze 'idth 1]
Bring Out Global Set/Reset Met as a Port r
Global Set/Fezet Port Mame P
Rezet On Configuration Pulze 'Width 100
Generate Testbench File r
FRename Deszsign Instance in Testbench File to [A,
Global Dizable of *-generation for Simulation [
Generate Architecture Only [Mo Entry Declaration) [
Other METGEM Command Line Options
k. I Cancel [refault Help

Figure 6-1: Simulation Model Properties

Display Properties

Click the Display Properties tab. This tab gives you control over the MTI (ModelSim)
simulation windows. By default, three windows open when timing simulation is launched
from ISE. They are the Signal window, the Structure window, and the Wave window. For
more details on ModelSim Simulator windows, refer to the ModelSim User Manual.

Simulation Properties

Click the Simulation Properties tab. The properties should appear as shown in Figure 6-2.
These properties set the options that ModelSim uses to run the timing simulation. For a

description of each property, click Help.

ISE 6 In-Depth Tutorial www.xilinx.com
1-800-255-7778

129

S XILINX® Chapter 6: Timing Simulation

Set the Simulation Run Time to 2000 ns. The default options will be used for the other
properties.

Process Properties ﬂ

Simulation Properties | Display Properties | Simulation Model Properties I

Property Hame Yalue

I1ze Custom Do File F
Cuztom Do File [A,
v

Ilze Automatic Do File for ModelSim Simulation
Otker YSI Command Line Dptiohs

Other YLOG Command Line Options

Other YCOM Command Line Options

Simulation Bun Time 2000z
Simulation Fezolution Drefault [1 pz]
Simulation tode b i Drelay
WHOL Syntax 93

|Jze Explicit Declarations Only ¥

UT Instance Mame T

Generate WCD File r

k. I Cancel | [refault Help

Figure 6-2: Simulation Properties

Click OK to close the Process Properties dialog box.

Performing Simulation

To start the timing simulation, double-click Simulate Post-Place and Route VHDL Model
or Simulate Post-Place and Route Verilog Model in the Processes for Current Source
window.

ISE will run NetGen to create the timing simulation model. ISE will then call ModelSim
and create the working directory, compile the source files, load the design, and run the
simulation for the time specified.

130 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

	ISE 6 In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Additional Resources
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow

	Overview of ISE and Synthesis Tools
	Overview of ISE
	Project Navigator Interface
	Sources in Project Window
	Processes for Current Source Window
	Console Window
	MDI Window
	Using Snapshots
	Using Project Archives

	Overview of Synthesis Tools
	Xilinx Synthesis Technology (XST)
	Synplify/Synplify Pro
	LeonardoSpectrum

	HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Checking the Syntax
	Correcting HDL errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design using LeonardoSpectrum

	Schematic-Based Design
	Overview of Schematic-based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Project File in the ECS Schematic Editor Tool
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the CNT60 Schematic
	Creating and Placing the CNT60 Symbol
	Creating a CORE Generator Module
	Creating a State Machine Module
	Creating the State Machine Symbol
	Creating a DCM Module
	Creating the DCM1 Symbol
	Placing the STMACH, Tenths, DCM1, outs3, and decode symbols
	Creating an HDL-Based Module
	Creating and Placing the HEX2LED Symbol
	Specifying Device Inputs/Outputs
	Adding I/O Markers and Net Names
	Assigning Pin Locations
	Completing the Schematic

	Behavioral Simulation
	Overview of Behavioral Simulation Flow
	ModelSim Setup
	ModelSim PE and SE
	ModelSim Xilinx Edition

	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Test Bench
	Adding Tutorial Test Bench File
	Creating a Test Bench Waveform Using HDL Bencher

	Behavioral Simulation Using ModelSim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Design Implementation
	Overview of Design Implementation
	Getting Started
	Tutorial Option 1
	Tutorial Option 2

	Creating an Implementation Project
	Specifying Options
	Translating the Design
	Creating and Editing Timing Constraints
	Editing Constraints in the Constraints Editor
	Editing Constraints in the Pinout Area Constraints Editor (PACE)

	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Creating Configuration Data
	Creating a PROM File with iMPACT
	Command Line Implementation
	Viewing The Command Line Log File
	Creating Your Own Command Batch File
	Command Line Reference Information

	Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files

	Timing Simulation Using ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

