
TSEA26 Tutorial 1. Micro Architecture and Finite Length

Frans Skarman

November 10, 2021

Tutorial structure

I Some more theory

I Introduction to the Senior processor

I Lab hints

I Exercises

Administrative information

Labs:

I In groups of 2 students

I No written report

I Demonstration during scheduled lab sessions

I Both of you must be prepared to answer questions about your design

I Mandatory to pass the course (3 of 6 hp)

If you miss a lab:
I Remote work is possible

I ssh -YC ssh.edu.liu.se
I thinlinc

Extending 2’s complement numbers

I More integer bits: sign extension

I More fractional bits: adding zeros

1 0 0 0 1
-2 1 1/2 1/4 1/8

1 0 0 0 1
-8 1 1/2 1/4 1/824

11 0 0 0
1/16 1/32 1/64

0

2’s complement rounding and truncation

I Truncation just throws away bits

I Rounding introduces less error but
requires an extra adder (usually)

1 0 0 0 1
-2 1 1/2 1/4 1/8

a b c
1/16 1/32 1/64

1 0 0 0 1
-2 1 1/2 1/4 1/8

1 0 0 0 1
-2 1 1/2 1/4 1/8

TruncationRounding

+ 0 0 0 0 a

2’s complement rounding and truncation

I Another alternative rounding approach
(used in the labs)

1 0 0 0 1
-2 1 1/2 1/4 1/8

a b c
1/16 1/32 1/64

+
1 0 0 0 1

1

-2 1 1/2 1/4 1/8

a b c
1/16 1/32 1/64

0 0 0 00

Truncate result

2’s complement saturation

Bits to cut off are guard bits

I Used to protect against overflow
I Check sign bit

I Positive overflow if positive and
guard bits are not all 0

I Negative overflow if negative and
guard bits are not all 1

I Fits otherwise

0 0 0 1
-8 1 1/2 1/4 1/8

a b c
24

Guard bits

0 0 0 1
-1 1/2 1/4 1/8

0 1
-1 1/2 1/4 1/8

11
max

1 0 0 0
-1 1/2 1/4 1/8

min

a=1, bc!=11 a=0, bc!=00 otherwise

Adders (signed/unsigned)

16-bit addition with carry in

Inferred:

// Compute A+B+c_i. Split output into 16 bit output and carry out

{c_o , result} <= A + B + {15’b0 , c_i}

Explicit

// Add c_i on the left hand side

// Drop left hand side of result , split rest

// into 16 bit output and carry out

{c_o , result , x} <= {A, c_i} + {B, c_i}

// Alternatively

{c_o , result , x} <= {A, 1’b1} + {B, c_i}

VHDL behaves slightly differently

Multipliers

I Multiplication of N-bit number with
K -bit number produces N + K -bit
result

I Output fixed point is shifted similarly

Examples:

Integer multiplication:
0111× 0111 = 00110001 (7× 7 = 35)

Fixed point multiplication:
0.11× 0.11 = 00.1001
(0.75× 0.75 = 0.5625)

Senior

DSP with lots of bells and whistles

I 32 16-bit general purpose regs (r0..r31)

I 32 16-bit special purpose regs (sr0..sr31)

I 4 32-bit accumulator regs with 8 guard bits
(acr0..acr3)

Special purpose registers in Senior

Mnemonic Location Address code Specification

ar0 AG 00000 Address register 0

ar1 AG 00001 Address register 1

ar2 AG 00010 Address register 2

ar3 AG 00011 Address register 3

sp AG 00100 Stack pointer

bot0 AG 00101 Bottom for AR0

top0 AG 00110 Top for AR0

step0 AG 00111 Step size for AR0

bot1 AG 01000 Bottom for AR1

top1 AG 01001 Top for AR1

step1 AG 01010 Step size for AR1

bitrev AG 01011 Number of bits to reverse-6

fftbase AG 01100 Base address for FFT addressing

fftstage AG 01101 Current stage of FFT addressing

intaddr AG 01110 Start address for interrupts

fl0 CP 01111 Flags, processor status register

fl1 CP 10000 Flags, core control register

loopn CP 10001 Number of iterations in loop

loopb CP 10010 Loop start address

loope CP 10011 Loop end address

intmask CP 10100 Reserved(interrupt mask)

guards01 MAC 10101 Guard for ACR0 and ACR1

guards23 MAC 10110 Guard for ACR2 and ACR3

Memory in Senior

I Senior has 4 memories
I RAM0
I ROM0
I RAM1
I Program Memory

I Accessed using ld st, and special
instructions

I RAM0 and ROM0 share the same bus
and address space

I RAM1 is independent

ROM0

RAM0 RAM1

DM0 DM1

Processor

Move load and store instructions

Instructions for setting values of registers and memory:1

I Copy values from register to register: move

I Load from memory 0 or 1: ldX

I Store in memory 0 or 1: stX

I Clear register: clear

I Set register to constant: set

I And a few other, see section 2 of manual for details

Check the delay between instructions and insert NOPs or re-order where needed

1See manual for more details

Conditional execution

Some instructions support being executed conditionally

; Compare r16 with r17

cmp r16 ,r17

; If they were equal , copy r1 to r0

move.eq r0 ,r1

^^^ Conditional

Not all instructions support this, look for [.cdt] in the manual

Short and long arithmetic

Short arithmetic instructions operate on normal registers (r0-r31)

I add

I sub

I mul

I . . .

Long arithmetic instructions operate the accumulator registers (acr0..acr4)

I addl

I subl

I mac

I . . .

Delay slots

Pipelining means jumps take extra cycles. Normally the hardware inserts NOPs while
waiting

start:

addi r0 ,1 ; No effect on jump

cmp r16 ,0

jump.eq some_label

;

nop ; Inserted by hardware

nop ; And always executed

nop ; regardless

; of jump taken or not

addi r0 ,1

some_label:

; ...

This is quite wasteful... Delay slots solve
this

Delay slots

Pipelining means jumps take extra cycles. Normally the hardware inserts NOPs while
waiting

start:

addi r0 ,1 ; No effect on jump

cmp r16 ,0

jump.eq some_label

;

nop ; Inserted by hardware

nop ; And always executed

nop ; regardless

; of jump taken or not

addi r0 ,1

some_label:

; ...

This is quite wasteful... Delay slots solve
this

start:

cmp r16 ,0

jump.eq ds1 some_label

addi r0 ,1 ; Moved from before jump

;

nop ; Only 2 nops

nop ; inserted

;

addi r0 ,1

some_label:

; ...

0− 3 delay slots available

The repeat instruction

Tight loops have lots of overhead

start:

set r0 ,32 ; Init loop

loop:

ld0 r16 ,ar0 ; 1 useful insn

subi r0 ,1 ; Decrement loop count

jump.ne loop ; Jump (3 cycles)

; do something with r16

DSP ⇒ accelerate slow instructions

The repeat instruction

Tight loops have lots of overhead

start:

set r0 ,32 ; Init loop

loop:

ld0 r16 ,ar0 ; 1 useful insn

subi r0 ,1 ; Decrement loop count

jump.ne loop ; Jump (3 cycles)

; do something with r16

DSP ⇒ accelerate slow instructions

repeat: repeat a loop a fixed amount of
times

start:

repeat 32,loop_end

ld0 r16 ,ar0

loop_end:

; do something with r16

The repeat instruction

I Saves 4n + 1 cycles in this case

I Uses 3 special registers loopn, loopb and loope

I Nesting not possible

Convolution instruction (convXX)

Perform a convolution step in a single instruction

convss acr1 , (ar0++), (ar1 ++%)

^^^^^^^ Data 2 address

^^^^^ Data1 address

^^^^ Target accumulator

I Signed or unsigned convss, convsu, convus, convuu

I Retreive data at arX

I Multiply values

I Add to accumulator register

Addressing modes

Retreive data and update address register in the same instruction

I arX No change

I arX++ Load data, then increment by stepX

I arX++% Load data, then increment with modulo
I if arX ≥ topX then arX = botX
I Useful for ring buffers

Senior assembler and simulator

I Assembly code includes
I Assembly instructions: ld, add, cmp ...
I Symbolic names for memory locations (labels)
I Assembler directives .skip 31, .df 0.125

I Senior assembler (srasm): translates assembly code into executable binary code
(hex files)

I Senior simulator (srsim): executes hex files and provides a debugging
environment

code.asm Assembler
(srasm)

Simulator
(srsim)

code.hex

Input file
(IOS0010)

Output file
(IOS0011)

The in and out instructions

Used by simulator for input/output

; Output value of r0 to new line in IOS0011

out 0x11 ,r0

; Tell simulator to end simulation

out 0x13 , r0 ; Dummy register needed here

; Read a line of IOS0010 to r0

in r0 , 0x10

Using srsim

Assemble code into code.hex

srasm code.asm

Start simulator in debug mode

srsim code.hex

I h: help menu

I r<n>: run n instructions and break

I l: list instructions around program counter

I p: print content of registers

I g: run the whole program to completion

Start simulator and run program with srsim -r <hex file>

Exercises

Exercises 1, 2, and 3 from Introductory exercises in TSEA26 exercise collection.

