
Examination
Design of Embedded DSP Processors, TSEA26

Date 2018-10-24

Room G36

Time 8–12

Course code TSEA26

Exam code TEN1

Course name Design of Embedded DSP Processors

Department ISY

Number of questions 5

Number of pages (including this page) 16

Course responsible Oscar Gustafsson

Teacher visiting the exam room Oscar Gustafsson
Phone number during the exam time 013-284059

Visiting the exam room About 9 and 11

Course administrator Oscar Gustafsson

Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41–50 5
31–40 4
21–30 3
0–20 U

Important information:

• You can answer in English or Swedish.

• When designing a hardware unit you should attempt to minimize the amount
of hardware. (Unless otherwise noted in the question.)

• The width of data buses and registers must be specified unless otherwise noted. Likewise,
the alignment must be specified in all concatenations of signals or buses. When using a
box such as “SATURATE” or “ROUND” in your schematic, you must (unless otherwise
noted) describe the content of this box! (E.g. with RTL code). You can assume that all
numbers are in two’s complement representation unless otherwise noted in the question.

• In questions where you are supposed to write an assembler program based on pseudo code
you are allowed to optimize the assembler program in various ways as long as the output
of the assembler program is identical to the output from the pseudo code. You can also
(unless otherwise noted in the question) assume that hazards will not occur due to parts
of the processor that you are not designing.

Good luck!



Question 1: Arithmetic and Logic Unit (8 p)
An 8-bit Arithmetic and Logic Unit should be implemented. The following functions should
be supported.

Op Function Description

0 Nop No operation
1 Result ← OpA + OpB Addition
2 Result ← OpA−OpB Subtraction
3 Result ← OpA + OpB + C Addition with carry flag
4 Result ← OpA−OpB + C Subtraction with carry flag

5 Result ← OpA+OpB
2 Average value

6 Result ← |OpA| Absolute value
7 Result ← max{OpA,OpB} Max value
8 Result ← min{OpA,OpB} Min value

In addition, there should be support for carry flag, overflow flag and sign flag, so this must
also be implemented. Note that saturation is not required, but that the average value
should always produce a correct result, even if the corresponding 8-bit addition happens to.

Draw a hardware architecture with control table for an ALU supporting the functionality
discussed above. Denote the word length of all data signals (no need for control signals). (8 p)

Solution:

Guards Guards

OpA OpB

8 8

9 9

9

c0

0

A Ai B Zc1

Remove guards

8

Bi

c3

0 1

C
Z

O
n
e

0

1

C

>>1 Guard

c2

0 1

Shift MaxNormal Min

88

Flags

carry_out

tmp_res

Result



Op Condition c0 c1 c2 c3 cflag

0 - - - - - 0
1 - A B Z Normal 1
2 - A Bi One Normal 1
3 - A B C Normal 1
4 - A Bi C Normal 1
5 - A B Z Shift 1
6 sign(A) = +/0 A 0 Z Normal 1
6 sign(A) = −/1 Ai 0 One Normal 1
7 - A Bi One Max 1
8 - A Bi One Min 1

Guards

output(8 downto 0) <= input(7) & input(7 downto 0)

>> 1

output(7 downto 0) <= input(8 downto 1)

Remove guards

output(7 downto 0) <= input(7 downto 0)

Guard

output <= input(8)

Flags

if cflag

carry, C <= carry_out

overflow, V <= tmp_res(8) xor tmp_res(7)

sign, S <= result(7)

end if

One may argue if the overflow flag really should be set in the case of operation 5 since
the shift avoids the overflow which the flag may indicate. Note that the sign flag must
be decided based on the actual result.

Question 2: Address Generation Unit (10 p)
An address generation unit (AGU) shall be implemented that can handle image data in an
efficient way. For simplicity, we only consider the case of 256× 256 pixels, i.e., 16 bits are
required to address the whole memory. However, the data is either stored in a linear way
or in a block way as illustrated in Fig. 1 and it should be possible to access the data in a
linear or block way independent of how the data is stored. Hence, the AGU must possibly
perform translations between the different formats. There is a register, FORMAT, which is
0 if the data is stored in a linear way in the memory and 1 if it is stored in a block way,
and an input, MODE which determines if the 16-bit immediate or register file value shall be
interpreted as linear ROW & COLUMN, where ROW and COLUMN are 8 bits each, or block BLOCK

& POSITION, where BLOCK and POSITION are 8 bits each.

The following instructions shall be supported:



0 2551 2

256 511

512

0

255

1 2 256

511

51215

0 1 2 255

0
1
2

255

Block 0 Block 1Position 0

Column

R
o
w

Block 255

65535 65535

65280

Linear Block

514 34 290 291

307 564

set

Figure 1: Two different memory mappings of 256× 256 image in AGU problem.

Op Function Description

0 Reset Clear all registers
1 Nop No operation
2 Ar ← RF Load address from register file, interpret depending on MODE

3 Ar ← Imm Load address from immediate, interpret depending on MODE

4 Mem[Ar][Ar] Access memory with Ar
5 Mem[Ar++][Ar] Access memory with Ar, post-increment of ROW or BLOCK

depending on MODE

6 Mem[Ar][Ar++] Access memory with Ar, post-increment of COLUMN or
POSITION depending on MODE

7 Mem[Ar++][Ar++] Access memory with Ar, post-increment of ROW or BLOCK

and COLUMN or POSITION depending on MODE

For the post-increment addressing, the value is expected to wrap-around. For example,
when the end of the row is reached and COLUMN is increased, Ar should be set to the first
value of the next row. If the end of a block is reached and POSITION is increased, Ar should
be set to the first value of the next block.

Hint: let the internal address register be in one of the two formats and convert when
required.

Example (the dashed arrows in the figure illustrates this sequence of operations):

; image stored in block mode, so format == 1

set ar.linear, 0x0202 ; row 2, column 2

; points at address 34, which is the pixel at that position

; with image stored in block mode (format == 1)

; if format == 0, 514 would be the correct address

; load with post-increment of block => address = 34, next address = 290

load.block r0, mem(ar[++,])



; load with post-increment of column => address = 290, next address = 291

load.linear r0, mem(ar[,++])

; load with post-increment of row => address = 291, next address = 317

load.linear r0, mem(ar[++,])

; load with post-increment of block and position => address = 317, next address = 564

load.block r0, mem(ar[++,++])

Draw a hardware architecture including control table of the Address Generation Unit meet-
ing the functionality described above. Inputs are Op, RF, Imm, mode, and format. Output
is address going to memory. (10 p)

Solution: Assume that the address is stored in linear format (arbitrarily chosen based
on the hint). The architecture can then be drawn as below (in general without knowing
how the conversion is performed). The constants v0 to v2 corresponds to adding one
row/block, one column/position, or both, respectively.

Block-to-Lin

Lin-to-Block

c1RFImmAdd

210

v2v0 v1

c0

Ar

Lin modeBlock

Lin formatBlock

Imm
RF

Lin-to-Block

Linmode Block

To memory

LoadKeep

0

c2Zero

For this particular case it is possible to implement the block to linear conversion and
vice versa by simply exchanging the LSB half of ROW/BLOCK with the MSB half of
COLUMN/POSITION. In VHDL:

output <= i(15 downto 12) & i(7 downto 4) & i(11 downto 8) & i(3 downto 0);



The control table looks as:

Op Function c0 c1 c2

0 Reset - - Zero
1 Nop - - Keep
2 Ar ← RF - RF Load
3 Ar ← Imm - Imm Load
4 Mem[Ar][Ar] - - Keep
5 Mem[Ar++][Ar] 0 Add Load
6 Mem[Ar][Ar++] 1 Add Load
7 Mem[Ar++][Ar++] 2 Add Load

The constants here are the same for both modes, where v0 = 0x0100, v1 = 0x0001,
and v2 = 0x0101.

Question 3: Program Flow Control (14 p)
Two versions of the same processor should be evaluated. The first version has a cycle time
of 10 ns (fclk = 100 MHz) and has three delay slots for both conditional and unconditional
jumps and a one cycle latency for ALU operations, i.e., the result from one instruction
can be used directly by the proceeding one. The second version has a cycle time of 8 ns
(fclk = 125 MHz) due to more pipelining stages. This leads to five delay slots for conditional
and unconditional jumps and two cycles of latency for the ALU, i.e., the result from an in-
struction can not be used by the proceeding instruction, but only for the one following that.
Neither of the processors introduce any NOPs, so this must be done by the programmer.
The processors does not support immediates for ALU instructions, only for set. set uses
the ALU to avoid structural hazards, so for the first processor the value can be used in the
next instruction, while for the second processor, the next instruction can not use the value.
The same holds for stack pop.

Assume that the structure of the first processor is as follows:

Pipeline stage Description

P0 Next program counter value, PC++
P1 Program counter
P2 Fetched instruction
P3 Decoded instruction
P4 Register file
P5 ALU and and conditional checking
P6 Write back

For the second processor one pipeline stage is added in register file and one in the ALU.

(a) Consider the following piece of code, written for the first processor:

; Input data in r3

0: set r0, #1

1: set r1, #1

2: set r2, #5

loop:

3: cmp r3, r1

4: jmp.leq destination

5: add r4, r3, r0



6: nop

7: nop

8: add r4, r4, r1

destination:

9: add r1, r1, r1

10: sub r2, r2, r0

11: jmp.nz loop

12: nop

13: nop

14: nop

Rewrite the code for the second processor and draw pipeline diagrams for the sec-
ond processor when the input is r3=1 and r3=2. It is enough to include the first 10
instructions that are not NOPs. (7 p)

Solution: Code for second processor (primarily five delay slots)

; Input data in r3

0: set r0, #1

1: set r1, #1

2: set r2, #5

loop:

3: cmp r3, r1

4: jmp.leq destination

5: add r4, r3, r0

6: nop

7: nop

8: nop

9: nop

10: add r4, r4, r1

destination:

11: add r1, r1, r1

10: sub r2, r2, r0

11: jmp.nz loop

12: nop

13: nop

14: nop

15: nop

16: nop

(b) Consider the following piece of code

int f1(int[] a, int[] b, int[] c, int[] d, int e) {

int sum;

for(int i = 0; i <= 8; i++) {

sum = a[i] + b[i] + c[i] + d[i];

if (sum >= e) {

return sum;

}

}

return -1;

}

The values are on the stack and the return value should be push:ed to the stack, where
the first argument, a, (the address of the array), is the first value to be pop:ed and
so on. It can be assumed that you have enough registers both in the general register
file and number of address registers to not limit the way you write your assembly



code. It is possible to pop directly to address registers. The arrays a, b, c, and
d are all stored in memory which can be accessed through a load instruction with
post-increment addressing. For the first processor, the result can be used in the next
instruction, while for the second processor, the result can not be used for the proceeding
instruction. Considering that the code is written as a sub-routine, and, hence, ret ends
the program.

What is the worst case execution time of the program for the two different processors?
It is enough to count the number of cycles for the instructions, including ret, to
determine the time. However, there is no need to consider the delay slots for the
ret, nor the pipeline latency for filling and emptying the pipeline. You should try
to minimize the amount of NOPs required for both codes to get a fair comparison.
Although it should be possible to easily change the loop counter if required (so do not
use loop unrolling). (7 p)

Solution:

Processor 1 – initial implementation

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e

set r1, #1

set r2, #8 ; as geq is used

loop:

load r4, (ar0++)

load r5, (ar1++)

load r6, (ar2++)

load r7, (ar3++)

add r4, r4, r5

add r4, r4, r6

add r4, r4, r7

cmp r4, r0

jmp.geq end

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

sub r2, r2, r1

jmp.nz loop

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

set r4, #-1 ; return value

end:

push r4

ret

7 + 9× 17 + 3 = 163 cycles ⇒ 1.63 µs.

Processor 1 – better implementation

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e



set r1, #1

set r2, #8 ; as geq is used

loop:

load r4, (ar0++)

load r5, (ar1++)

load r6, (ar2++)

load r7, (ar3++)

add r4, r4, r5

add r4, r4, r6

add r4, r4, r7

cmp r4, r0

jmp.geq end

nop ; delay slot 1

nop ; delay slot 2

sub r2, r2, r1 ; OK to decrease counter in delay slot

jmp.nz loop

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

set r4, #-1 ; return value

end:

push r4

ret

7 + 9× 16 + 3 = 154 cycles ⇒ 1.54 µs.

Processor 1 – even better implementation using software pipelining

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e

set r1, #1

set r2, #7 ; as geq is used

load r4, (ar0++) ; First iteration

load r5, (ar1++)

load r6, (ar2++)

load r7, (ar3++)

add r4, r4, r5

add r4, r4, r6

add r4, r4, r7

loop:

cmp r4, r0

jmp.geq end

load r7, (ar3++) ; delay slot 1

load r5, (ar1++) ; delay slot 2

load r6, (ar2++) ; delay slot 3

load r4, (ar0++) ; if loaded in delay slot, the return value would change

sub r2, r2, r1

jmp.nz loop

add r4, r4, r5 ; delay slot 1

add r4, r4, r6 ; delay slot 2

add r4, r4, r7 ; delay slot 3

set r4, #-1 ; return value

end:

push r4



ret

14 + 8× 11 + 3 = 105 cycles ⇒ 1.05 µs.

Processor 2 – initial implementation

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e

set r1, #1

set r2, #8 ; as geq is used

set r3, #-1 ; return value

loop:

load r4, (ar0++)

load r5, (ar1++)

load r6, (ar2++)

load r7, (ar3++)

add r4, r4, r5

nop

add r4, r4, r6

nop

add r4, r4, r7

nop

cmp r4, r0

jmp.geq end

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

nop ; delay slot 4

nop ; delay slot 5

sub r2, r2, r1

jmp.nz loop

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

nop ; delay slot 4

nop ; delay slot 5

push r3

ret

end:

push r4

ret

8 + 9× 24 + 2 = 226 cycles ⇒ 1.808 µs.

Processor 2 – better implementation

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e

set r1, #1

set r2, #8 ; as geq is used

set r3, #-1 ; return value, if done as in previous code

; an additional cycle is required for worst case



loop:

load r4, (ar0++)

load r5, (ar1++)

load r6, (ar2++)

add r4, r4, r5 ; assuming that load also requires an extra cycle

load r7, (ar3++) ; not clearly stated in problem

add r4, r4, r6

nop

add r4, r4, r7

nop

cmp r4, r0

jmp.geq end

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

nop ; delay slot 4

sub r2, r2, r1 ; delay slot 5

jmp.nz loop

nop ; delay slot 1

nop ; delay slot 2

nop ; delay slot 3

nop ; delay slot 4

nop ; delay slot 5

push r3

ret

end:

push r4

ret

8 + 9× 18 + 2 = 172 cycles ⇒ 1.376 µs.

Processor 2 – even better implementation using software pipelining

pop ar0 ; a

pop ar1 ; b

pop ar2 ; c

pop ar3 ; d

pop r0 ; e

set r1, #1

set r2, #7 ; as geq is used

set r3, #-1 ; return value

load r4, (ar0++)

load r5, (ar1++)

load r6, (ar2++)

add r4, r4, r5 ; assuming that load also requires an extra cycle

load r7, (ar3++) ; not clearly stated in problem

add r4, r4, r6

nop

add r4, r4, r7

nop

loop:

cmp r4, r0 ; Use r5 instead of r4 to not have to wait for the move

jmp.geq end

load r8, (ar0++) ; use different register to not overwrite return value

load r5, (ar1++) ; delay slot 2

load r6, (ar2++) ; delay slot 3

load r7, (ar0++) ; delay slot 4



sub r2, r2, r1 ; delay slot 5

jmp.nz loop

add r4, r8, r5 ; delay slot 1

add r6, r6, r7 ; addition tree

nop ; delay slot 3

add r4, r6, r6 ; delay slot 4

nop ; delay slot 5

push r3

ret

end:

push r4

ret

17 + 8× 13 + 2 = 123 cycles ⇒ 0.984 µs.

Question 4: Miscellaneous Questions (5 p)

(a) Discuss one advantage and one disadvantage of using memory hierarchies. For example,
both a larger external memory and a smaller internal memory. (2 p)

Solution: Smaller memories are faster and consume less power. However, us-
ing a memory hierarchy requires moving data between the memories making the
implementation more complicated.

(b) When implementing a set instruction, it is possible to write the immediate value to
the register file directly after the instruction is decoded. However, it is common that
the immediate value is passed through the ALU. What is the potential benefit of this? (1 p)

Solution: In this way the structural hazards are decreased as the write otherwise
would happen in a different pipeline stage. This may for example lead to that
an ALU instruction cannot be performed directly after a set. Explicitly using the
ALU, compared to have a dedicated set path with the same pipeline depth, reduces
the hardware complexity as signals do not have to be routed to/from the additional
unit. In addition, writing in an earlier pipeline stage may lead to write-before-read
data hazards.

(c) Why do we typically need two different versions of the simulator? Which are those
two versions and what are their respective advantage. (2 p)

Solution: A behavioral simulator focus on high-level aspects such as the operation
and result of instructions. Primarily used for software development and should be
fast.

A micro architecture provides a more detailed description of the pipeline and build-
ing blocks and will therefore be slower. Primarily used for verification of HDL code.

Question 5: Multiply-Accumulate Unit (13 p)
A multiply-accumulate (MAC) unit shall be implemented using a single multiplier. To
reduce the switching activity, it is possible to interleave two computations of an FIR filter.
This also allows one memory to be shared between data and coefficients. The following
pseudo-code illustrates this:



void executetwofilters(int16 dataptr, int16 coeffptr, int16 filterlength) {

int40 acc0 = 0, acc1 = 0;

for (i = 0; i <= filterlength-1; i++) {

acc0 += mem0[dataptr++]*mem0[coeffptr];

acc1 += mem0[dataptr]*mem0[coeffptr++];

}

int16 result0 = (int16) acc0; // Fixed-point correct casting required,

int16 result1 = (int16) acc1; // with saturation and rounding

return result0, result1; // Not valid C, but you get the idea

}

(a) Define a minimal set of suitable CONV-like instruction that can implement this function,
plus required instructions to start a convolution and obtain the result. To avoid mul-
tiple reads, the instruction must get the old value from a general register, and should
store the new value in the same register. In addition, we would like to keep the same
data at the same multiplier input to avoid unnecessary switching. (2 p)

Solution: We need two different CONV-instructions depending on if the first or
second argument is taken from memory. In addition, we need a clear instruction
(or a MUL with memory access to replace the first CONV) and a MOVE instruction to
get the value from the accumulator register.

Instruction Function

CONVMOVE0 acrX, (arY++), rZ tmp← mem0[arY]
acrX← acrX + tmp× rZ

rZ← tmp
arY← arY + 1

CONVMOVE1 acrX, (arY++), rZ tmp← mem0[arY]
acrX← acrX + rZ× tmp
rZ← tmp
arY← arY + 1

CLEAR acrX acrX← 0

MOVE rX, acrY rX← sat(round(acrY))

(b) Write assembly code for the program. Assume that there is a repeat instruction.
dataptr and coeffptr are available on the stack (for the exam problem, the order
does not matter as it can be easily changed). However, a pop require an additional
cycle before the result is available. filterlength is a constant (so it can be used
directly as a variable). The results should be put back on the stack. (3 p)

Solution:

pop ar0 ; assume dataptr

pop ar1

clear acr0 ; clear here to allow ar1 time to be set

load0 r0, (ar1) ; load first coefficient

clear acr1

repeat endoffilter, filterlength

convmove0 acr0, (ar0++), r0

convmove1 acr1, (ar1++), r0

endoffilter:

move r0, acr0

move r1, acr1

push r0



push r1

(c) Draw a hardware architecture with control table (when applicable) of the MAC-unit
supporting the instructions from the first part. The result should always be saturated
and rounded at readout (in the correct order). Assume that fractional data is used,
the word length for both data and coefficients are 16 bits and that the accumulator
has 8 additional bits, apart from the 32 from the multiplier. Each input comes either
from the register file, rf, or memory 0, mem0. There is a single output to the register
file used both for the intermediate values and for the result. In addition, there is an
input accN with the number of the accumulator register to use. Assume that a signed
fractional representation is used. (6 p)

Solution:

00

acr1

16 16

c4 Mul Round

Round

accN 0 1

Saturation and bit removal

c2 AddZeroKeep c3Add Zero Keep

acr0
Guards

32

40

40

40

40

16

c0 RF Mem c1RF Mem

c5Add Mem

16

16 16

To register file

Register file Memory 0

Op Condition c0 c1 c2 c3 c4 c5

CONVMOVE0 accN = 0 Mem RF Add Keep Mul Mem
CONVMOVE0 accN = 1 Mem RF Keep Add Mul Mem
CONVMOVE1 accN = 0 RF Mem Add Keep Mul Mem
CONVMOVE1 accN = 1 RF Mem Keep Add Mul Mem
CLEAR accN = 0 - - Zero Keep - -
CLEAR accN = 0 - - Keep Zero - -
MOVE - - - Keep Keep Round Add
NOP - - - Keep Keep - -

The result in the accumulator has 10 integer bits and 30 fractional bits (as the
result from the multiplier has two integer bits and 30 fractional bits).



Rounding vector is a one in the first position that is quantized away from the LSB
side, i.e., position 14.

Round = 0x0000004000

Saturation and bit removal

if input(39 downto 30) = "0000000000" or input(39 downto 30) = "1111111111"

output <= input(30 downto 15)

else

if input(39) = ’1’

output <= 0x8000 -- Negative saturation

else

output <= 0x7FFF -- Positive saturation

end if

end if

Alternative architecture (Round and Saturation and bit removal identical)

accN

acr1

16 16

c3 Mul Round

Round

accN 0 1

Saturation and bit removal

c2

acr0
Guards

32

40

40

40

40

16

c0 RF Mem c1RF Mem

c5Acc Mem

16

16 16

To register file

Register file Memory 0

0 1 1 0

Acc Zero

0

x=1x=0

accN

OpNop c4 NopOp

Op c0 c1 c2 c3 c4 c5

CONVMOVE0 Mem RF Acc Mul Op Mem
CONVMOVE1 RF Mem Acc Mul Op Mem
CLEAR - - Zero - Op -
MOVE - - Keep Round Op Acc
NOP - - Keep - Nop -

(d) Discuss how modulo addressing and cyclic buffers will affect the computation using
this type of approach. For example, how long will the buffer be here? (2 p)



Solution: The sample buffer should be one position longer. Also, when writing
the next sample, either it is written with pre-increment or the dataptr is reset
to the correct position, or the last iteration is outside of the repeat such that the
final operation increments dataptr instead of coeffptr. The reason is that as
opposed to the normal single computation approach, the last position in the data
buffer is not accessed a second time and therefore not incremented. Apart from
that, modulo addressing should work just as normal.


