
Solution proposal for the 2011-10-22 TSEA26 exam

(v1.3)

Problem 1

This exercise can be solved in quite a few different ways by trading off performance vs
area. There are two tricky things in this problem:

• Realize that blit() can be rewritten so that only two multiplications with 160
is needed in the prologue of the kernel. (This multiplication can be done using
regular MAC instructions.) Alternatively, if no hardware multiplier is available in
the MAC unit (unlikely for a DSP processor), the multiplication with 160 can be
done using two shifts and one add.

• Realize that the multiplication with 64 in getsingle() can be done using a shift.

In addition, if you realize that you can unroll the inner loop in the blit() function
you only need one address register in the AGU (assuming that you want to avoid an
excessive amount of read ports in your register file).

blit:

mul acr0,r1,160 ; r1 = yoffs1*160

move r1,LOW(acr0)

mul acr0, r3, 160 ; r3 = yoffs2*160

move r3, LOW(acr0)

add r1,r1,r0 ; r1 = xoffs1+yoffs1*160

add r3,r3,r2 ; r3 = xoffs2+yoffs2*160

add r1,r1,img ; r1 = &img[xoffs1+yoffs1*160]

add r3,r3,ref ; r3 = &ref[xoffs1+yoffs1*160]

; If we unroll the loop fully we only need register + offset

; addressing.

repeat 8,endloop

ld r4,DM0[r3+0] ; AGUOP1

st DM0[r1+0],r4

ld r4,DM0[r3+1]

st DM0[r1+1],r4

ld r4,DM0[r3+2]

st DM0[r1+2],r4

ld r4,DM0[r3+3]

st DM0[r1+3],r4

1

ld r4,DM0[r3+4]

st DM0[r1+4],r4

ld r4,DM0[r3+5]

st DM0[r1+5],r4

ld r4,DM0[r3+6]

st DM0[r1+6],r4

ld r4,DM0[r3+7]

st DM0[r1+7],r4

add r1,r1,160

add r3,r3,160

endloop:

ret ; 9+144 clock cycles (excluding RET instruction)

getsingle:

move boundaryflag,r2 ; AGUOP2

set ar0,tmem ar0=&tmem[0] ; AGUOP3

clr acr

add acr,DM0[(r0+ r1<<6) + ar0] ; AGUOP4

add acr,DM0[(r0+ (r1+1)<<6) + ar0] ; AGUOP5

add acr,DM0[((r0+1)+r1<<6) + ar0] ; AGUOP6

add acr,DM0[((r0+1)+(r1+1)<<6)+ ar0] ; AGUOP7

ret

//

// Beginning of hardware design

//

always @* begin

merged = {4’b0,tmp2[5:0],tmp1[5:0]};

satval = 0;

if (tmp1[15]) satval[5:0] = 0;

else if(|tmp1[15:6]) satval[5:0] = 63;

else satval[5:0] = tmp1[5:0];

if (tmp2[15]) satval[11:6] = 0;

else if(|tmp2[15:6]) satval[11:6] = 63;

else satval[11:6] = tmp2[5:0];

end

2

0 1

AR0

OpA[15:0]

0 1

BFLAG

OpA[0]

0

OpA[15:0]

C3

C1 C2

0 OpB[15:0]

C5

tmp1[15:0]

tmp2[15:0]

0 1

OpB[15:0]

0 1

tmp1[15:0]

0 1

merged satval

BFLAG

C6

ADDR_TO_DM0

AR0[15:0]

C4

Assumptions made in this solution: There are two inputs to the AGU from the general
purpose register file: OpA and OpB, each 16 bits wide. One of these inputs (OpB) can
carry an immediate as well.

Operation C1 C2 C3 C4 C5 C6
AGUOP1 (OpA+OpB) 0 0 1 0 - 0
AGUOP2 (set boundaryflag) 0 1 - - - -
AGUOP3 (set AR0) 1 0 - - - -
AGUOP4 (OpA + (OpB <<6) + ar0 0 0 0 0 0 1
AGUOP5 (OpA + (OpB + 1) <<6) + ar0 0 0 0 0 1 1
AGUOP6 (OpA + 1 + (OpB) <<6) + ar0 0 0 0 1 0 1
AGUOP7 (OpA + 1 + (OpB + 1) <<6) + ar0 0 0 0 1 1 1

3

Problem 1 - Alternative solution

An alternative solution to problem 1 is to create address registers with post-increment
and pre-decrement mode. The DM0[ar0,ar1,ar2] addressing mode should take the
boundaryflag into account in the same way that the previous solution does. Advan-
tage of this solution: Small code size for blit() and no need to use OpA and OpB for
AGUOP4-7 (allowing them to potentially be used to carry other data when these ad-
dressing modes are used). Disadvantage: More address registers are required (although
in a real processor you would probably want to have more than one address register
anyway).

blit:

mul acc, r1,160 getit:

move r1,acc move boundaryflag, r2

mul acc, r3,160 move ar2,4000 // Address of tmem in DM0

move r3,acc move ar0,ar1,r0,r1

clr acr0

set r6,0 add acr0,DM0[ar0,ar1++,ar2]

repeat 8, outerloopend add acr0,DM0[ar0++,ar1--,ar2]

add r4,r0,img add acr0,DM0[ar0,ar1++,ar2]

add r4,r4,r1 add acr0,DM0[ar0,ar1,ar2]

move ar0,r4 ret

add r5,r1,ref

add r5,r5,r3

move ar1,r5

repeat 8, innerloopend

ld r6,DM0[ar1++]

st DM0[ar0++],r6

innerloopend:

add r1,r1,160

add r3,r3,160

outerloopend

ret

// Note: blit can be optimized somewhat, but it is not needed to meet the

// performance constraints.

Why do you need these functions?

The blit() function is basically used for motion compensation (basically the inverse of
what you did in lab 4 where you optimized a DSP processor to handle motion estimation
in an efficient manner).

The getit() function, is based on the access patterns for bilinear interpolation of 2D

4

data. A more realistic getit() function could look like this in C when using floating
point math (I felt that a more realistic example would be too cumbersome to handle on
the exam so I simplified it):

static int getit_bilinear(float x, float y, int channel,int boundaryflag)

{

int xc=x;

int yc=y;

double u_ratio = x - xc; // Get fractional parts

double v_ratio = y - yc;

u_ratio = 1;

v_ratio = 0.5;

double u_opposite = 1 - u_ratio;

double v_opposite = 1 - v_ratio;

double result;

result =

((float) getsingle(x,y,boundaryflag) * u_opposite

+ (float) getsingle(x+1,y,boundaryflag) * u_ratio) * v_opposite

+ ((float) getsingle(x,y+1,boundaryflag) * u_opposite

+ (float) getsingle(x+1,y+1,boundaryflag) * u_ratio) * v_ratio;

return result;

}

Note that the memory access pattern is the same as the simplified version used on the
exam. Essentially, getit() is a simplified version where getit bilinear() is called
with x and y set to 0.5, 1.5, 2.5, . . .). (A use case for this would be half-pixel motion
compensation, assuming the return value from getit() is divided by 4.)

The boundaryflag is used to indicate what happens when we get to the image border.
When the boundaryflag is zero we wraparound to the other side of the image (assuming
the image is 64x64 large). This is quite useful for repeating signals. (Archetypal example:
Texture lookup.)

When boundaryflag is set to one, the processing of non-repeating signal is simplified.
This would have been useful in lab 4 for example. If an AGU similar to the AGU above
was present in Senior, it would be much easier to search for similar looking blocks close
to the image boundary. (You may recall that lab 4 was written in a simplified way so
that the pixels close to the borders was ignored due to the difficulty of keeping track of
the image border in the performance critical block match kernel.)

5

Comments

This problem had many different solution proposals. It was fairly common that answers
included an adder as follows:

result = (x << 5) + (x << 7); // Multiply with 160 without using multiplier

I considered this an acceptable solution, although I much preferred answers where the
multiplication with 160 was done outside the loop using the regular MAC unit.

Another common issue is that many answers forgot to include the saturation check for
every access. That is, they did something similar to the following pseudo code:

if (boundaryflag == 1) {

t = min(max(t,0),63)

s = min(max(t,0),63)

}else{

t = t & 63;

s = s & 63;

}

tmp = tmem[s+t*64]

tmp += tmem[s+1+t*64]

tmp += tmem[s+(t+1)*64]

return tmp + tmem[s+1+(t+1)*64]

Finally, a very common mistake was to forget about the fact that the exercise didn’t
specify where ref, img, and tmem arrays were located in memory. (Many solutions would
only work if these arrays were located at address 0.)

6

Problem 2

0 1 0 1
0

1

0

1

0

1

{A[15],A[15],A} {B[15],B[15],B}

A[15]

C1

C3

B[15]

C2

C3

C3

A[15]

C4

0 1
0

1

C5

TMP[17]

0

TMP[17:0]

0

0

1 B[15]

C3

0

1 TMP[17]

0

C5

TMP2[17:0]

0 1 2

SAT

TMP2

TMP2[15:0] TMP2[16:1]

C6

TO_RF[15:0]

Operation C1 C2 C3 C4 C5 C6
OP1 0 0 0 0 0 1
OP2 0 1 0 1 0 1
OP3 0 0 0 0 0 0
OP4 0 1 0 1 0 0
OP5 0 0 0 0 0 2
OP6 - - 1 - 0 0
OP7 0 1 0 1 1 0

// Content of SAT:

casez(nisse[17:15])

3’b000: out = in[15:0];

3’b111: out = in[15:0];

3’b0??: out = 16’h7fff;

3’b1??: out = 16’h8000;

endcase

7

Alternative solution

A pretty neat alternative solution used by a few students was based on the fact that
SAT(ABS(A)+ABS(B)) can be divided into the following cases:

• A positive, B positive: SAT(ABS(A)+ABS(B)) = SAT(ABS(A+B))

• A positive, B negative: SAT(ABS(A)+ABS(B)) = SAT(ABS(A-B))

• A negative, B positive: SAT(ABS(A)+ABS(B)) = SAT(ABS(A-B))

• A negative, B negative: SAT(ABS(A)+ABS(B)) = SAT(ABS(A+B))

Comments

A very common issue found in the answers to this problem was that too few guard bits
were used. (You require two guard bits to handle a corner cases for OP6 when A and
B are set to the smallest possible value (-0x8000). Another common issue was that too
many adders were used.

It was also very often unclear whether arithmetic or logic right shift was used for OP5.
(However, many people lucked out here since the MSB bit was commonly ignored at the
output.)

8

Problem 3

PC

0 1

0

1

21

{{4{IMM[11]},IMM}

FLAG

0

OpA[15:0]

STACKTOP[15:0]

TO_PM[15:0](TO_PM_COMBINATIONAL)

STACKTOP

0

1

C2

0 1 2 3

012

0

0123

0

{1'b1,TO_PM}

17

17
STACKBOT

C1

C3

C4

C5

C6
16

Note: In a real processor it may be a pretty good idea to take the output to the program
memory from the TO PM COMBINATIONAL signal since the PM most likely has registers
at the address inputs. (Either alternative is ok on the exam though.)

Operation C1 C2 C3 C4 C5 C6
OP1 - - - 1 3 2
OP2 - - - 3 0 0
OP3 0 0 0 2 0 0
OP4 0 1 0 2 0 0
OP5 1 - 0 2 0 0
OP6 2 - 0 2 0 0
OP7 - - - 0 0 0
OP8 0 1 0 2 2 1
OP9 - - - 0 2 1
OP10 0 0 1 2 1 2

case(operation)

OP8: Stack_Error = STACKBOT[16];

OP9: Stack_Error = STACKBOT[16];

OP10: Stack_Error = !STACKTOP[16];

default: Stack_Error = 0;

endcase

9

Comments

The biggest difficulty with this task was the stack, particularly the Stack Error signal.
Otherwise this task presented no particular difficulties.

Problem 4

a) If the load instruction has a high latency the loop unrolling performed in alternative
2 will reduce (or eliminate) the impact of the data hazards present in alternative 1.

b) Hardware multiplexing is when you reuse a certain hardware component in different
operations (as long as the operations doesn’t have to be performed simultaneously).
For example, in an ALU the (relatively expensive) adder is reused for the subtraction
operation by inverting one of the input operands and setting the carry in to one (using
fairly cheap hardware).

c) The fast Fourier transform

d)

PC

PM

Decode RF

WB

Other logic....

Consider the following program:
1: bra mylabel
2: add r5,r1,r3 ; In the branch delay slot

When the decoder has determined
that instruction 1 is a branch instruction
the processor is already fetching the
next instruction. If instruction 2 is executed
(irregardless of the branch condition) the
instruction is said to be in the branch delay
slot.

bra mylabel

add r5,r1,r3

Comments

The most common issue in these problems was that the answer was not precise enough
or unclear.

It was also surprising that many answers to part d didn’t refer to the figure at all when
explaining delay slots. (I thought that a pipeline figure would enable short and concise
answers to the question.)

10

Problem 5

This is a fairly straightforward problem. It is made even easier if you realize that
filt2() is essentially a fractional MAC unit which is very similar to the first MAC unit
that was introduced in the course. You can also trade software complexity for hardware
complexity in this exercise by realizing that only one accumulator register is needed.

Assembler source code for filt1()

filt1:

clr acr

repeat 32,endloop

mac acr,DM0[ar0++],DM1[ar1++]

endloop:

sat16 r0,acr

ret ; 35 clock cycles (excluding ret)

filt2:

clr acr

move ar0,r0

move ar1,r1

set step0,2

repeat 20,endloop2

mac.f acr,DM0[ar0+=step0],DM1[ar1++]

endloop2:

sat.rnd r3,acr

add r0,r0,1

move ar1,r1

move ar0,r0

repeat 20, endloop3

mac.f acr,DM0[ar0+=step0],DM1[ar1++]

endloop3:

sat.rnd r4, acr

st DM0[r2],r3

st DM0[r2+1],r4

ret ; 53 clock cycles (excluding ret)

11

0 1 2

0 1 2

0 1

SAT

>>16

ACR

*

FRACT0 0x8000

0

C1

C2

C3

C4

From_DM0 From_DM1
1616

32

40

40 40

40

TO_RF

Operation C1 C2 C3 C4
(nop) - 0 - -
clr acr - 1 - -
mac acr,DM0,DM1 0 2 0 -
mac.f acr,DM0,DM1 1 2 0 -
sat16 rX,acr - 0 2 0
sat.rnd rX,acr - 0 1 1

// Content of FRACT:

if(C1) begin

out[39:0] = {{7{in[31]}},in,1’b0};

end else begin

out[39:0] = {{8{in[31]}},in};

end

// Content of >> 16:

out[39:0] = { {16{in[39]}},in[39:16] };

// Content of SAT:

if(&~in[39:15] || &in[39:15]) begin

out[15:0] = in[15:0];

end else begin

out = { in[39], {15{~in[39]}} };

end

12

Comments

A very common mistake in this exercise was to saturate to the wrong number of bits. If
you base your solution completely on the behavior of the pseudo code you would need
to saturate from 40 bits to 16 bits. However, many students realized that the shift and
saturation in filt2() could be combined and therefore created a saturation unit that
saturated from 40 to 32 bits. Unfortunately, filt1() still requires a 40 bit to 16 bit
saturation unit.

Another common issue was that people used inputs and outputs that were not allowed
by the constraints. For example, many people used immediates or register file operands
in this task. Another common issue was to create a saturation instruction which could
store the result directly in memory, even though no memory output was available in the
constraints.

Some students also used a 17 bit wide multiplier instead of a 16 bit wide multiplier,
even though no instruction actually needed these extra bits (or the ability to change
between signed and unsigned multiplication).

Finally, many students figured out that only one accumulator was strictly needed and
could thus reduce the amount of hardware. However, not so many students realized that
the addressing needs to be adjusted for this case. (Using a step size of two and adding
an offset of one for the second iteration.) A similar addressing error was to use normal
registers instead of address registers in the mac/convolution instruction.

Results

The grades were distributed as follows:

• Grade 5: 7 students (the best score was 49 points, a truly outstanding result)

• Grade 4: 9 students

• Grade 3: 20 students

• U: 18 students

Points distribution:

• Average score, problem 1: 2.8

• Average score, problem 2: 4.8

• Average score, problem 3: 6.1

• Average score, problem 4: 3.7

• Average score, problem 5: 6.5

13

Revision history

• v1.0: Initial version

• v1.1: Corrected << 16 to << 6 in control table for Q1. Added clarification that
the return instruction was not included in cycle count for Q1. Fixed typo where
tmp1 was tmp2 and vice versa in Q1. Fixed typo for AGUOP7 in Q1 in control
table. Thanks to Erik Alnervik for noticing these discrepancies.

• v1.2: Fixed typo in saturation for Q5

• v1.3: Removed TRUNC box for Q5 and used SAT directly. Thanks to Rakesh
Praveen for pointing out this clarification.

14

