
Solution proposal for the TSEA26 exam on
2011-01-12 (v1.2)

Andreas Ehliar

October 25, 2013

Note about this solution proposal: This solution proposal is quite long, but it includes
quite a few notes about the included solutions (including alternative solutions for some of
the exercises). It is of course not required to come up with various alternative solutions
when writing the exam. (In fact, it is likely to be a bad idea to do so since it increases
the likelihood of mistakes not to mention the time it takes to do so.)

Question 1: General knowledge

a) The unit doesn’t contain an accumulator register. (Instead it contains a combina-
tional loop.)

b) The memory is the largest component and the multiplexer is the smallest component.
(If you claimed that the multiplier was the largest component and the multiplexer the
smallest component you would get 0.5 points on this question.) All other answers would
lead to 0 points on this question.

c) The most important case is when saturating the number 100002 (-16), as the number
16 will not fit in the same number of bits (assuming two’s complement representation is
used for the answer as well).

1

Question 2: ALU

1 0
0

1

SAT

{A[7],A[7],A[7:0]}{B[7],B[7],B[7:0]}

0 1 2

0

MSB

C2

C1

C3

0
0

DOSAT

RESULT

FLAGS

Z N S

Flags:
always @(posedge clk) begin
 if(OP == 7) begin
 S <= 0;
 end else if(OP != 0) begin
 S <= S || DOSAT;
 N <= RESULT[7];
 Z <= RESULT == 0 ? 1 : 0;
 end
end

SAT:
always @* begin
 if((in[9:7] != 3'b000) ||
 (in[9:7] != 3'b111)) begin
 RESULT = {in[9], {7{~in[9]}} };
 DOSAT = 1;
 end else begin
 RESULT = in[7:0];
 DOSAT = 0;
 end
end

Control table
 C1 C2 C3
OP0: - - - No operation
OP1: 0 0 0 SAT(A+B)
OP3: 1 1 0 SAT(A-B)
OP4: 2 0 1 SAT(ABS(A))
OP5: 0 0 1 SAT(ABS(A+B))
OP6: 1 1 1 SAT(ABS(A-B))
OP7: - - - Set S=0

Note: The operation numbering is odd since OP2 was forgotten in the exam.

List of common mistakes:

• The absolute operation doesn’t work correctly

• It is not clear whether the flags are registers, latches, or just combinational logic.

• There is a combinational loop in the design

• The hardware is not able to perform saturation correctly for the case where A and
B are -128 and we perform SAT(ABS(A+B)).

• The saturate flag does not work correctly

• The saturate flag is not “sticky”. That is, the saturation flag can be reset to 0
without running the OP6 instruction.

2

Question 3: AGU

In this question we will need the following AGU operations:

• Register + offset for both memories

• Post increment for both memories simultaneously

• Post increment for DM1, modulo-like addressing with variable step-size for DM1

• Special indirect addressing mode where DM0 is addressed using post increment
mode and the output of DM0 is sent as address into DM1

The reason that I call it modulo-like instead of modulo addressing is that the C-code
in the original exercise is not a true modulo addressing mode with variable step size.
The version from the exam is actually slightly easier to implement as seen below as no
subtraction is required:

// Code from the exam

for(i=0; i < 128; i = i + 1)

tmp += DM0[ptr0+=step] * DM1[ptr1++]

if (ptr0 > end) then

ptr0 = start

endif

endfor

// Real modulo addressing with variable step-size

for(i=0; i < 128; i = i + 1)

tmp += DM0[ptr0+=step] * DM1[ptr1++]

if (ptr0 > end) then

ptr0 = ptr0 - (end - start)

endif

endfor

Also, note that the special indirect addressing mode is not very realistic, especially if
asynchronous memories are used. However, a more realistic (but more complicated) so-
lution proposal is shown later in this document which doesn’t require such an addressing
mode.

3

Part B: AGU schematic and control table

0 1 2

AR0

A
D

D
R

E
S

U
LT

M
O

D
U

LO
A

R
0

C3

0 1 2

AR1

O
p

A

1

C4

0 1

A
D

D
R

E
S

U
LT

A
R

0
DM0

Address input

(Asynchronous memory)

Data from DM0

C5 0 1 2

A
D

D
R

E
S

U
LT

A
R

1
D

a
ta

 f
ro

m
 D

M
0

DM1

Address input

(Asynchronous memory)

Note: The complete memory
architecture is not shown, only
the parts that the AGU is involved
with. (E.g. write data/write enable
signals are missing.)

C6

STEP

0 1

O
p

A

BOTTOM

0 1

O
p

A

TOP

0 1

O
p

A

C7

C8

C9

O
p

A

O
p

B

ADDRESULT

A
R

0

1

0 1 C1 C20 1 2

S
T
E
P

Control table:
Operation C1 C2 C3 C4 C5 C6 C7 C8 C9
Set STEP - - 0 0 - - 1 0 0
Set BOTTOM - - 0 0 - - 0 1 0
Set TOP - - 0 0 - - 0 0 1
Set AR0 0 0 1 0 - - 0 0 0
(Note: OpB should be set to 0 here)
Set AR1 - - 0 1 - - 0 0 0
DM0: Register + offset 0 0 0 0 0 - 0 0 0
DM1: Register + offset 0 0 0 0 - 0 0 0 0
Post increment for both 1 1 1 1 1 1 0 0 0
DM0: Modulo, DM1: Postincr. 1 2 2 1 1 1 0 0 0
Special indirect mode 1 1 1 1 1 2 0 0 0

// Creating the MODULOAR0 signal
always @* begin
 // (Unsigned comparison)
 if(ADDRESULT > TOP) begin
 MODULOAR0 = BOTTOM;
 end else begin
 MODULOAR0 = ADDRESULT;
 end
end
// Cost: One comparator and one
// multiplexer

NOTE: All signals are 16 bit wide (except
for mux control signals.)

4

Part C: Assembly code

filter:

set AR0, r0

set AR1, r1

set STEP, r2 ; Assume stepsize is in r2

set START, r3 ; Assume start is in r3

set END, r4 ; Assume end is in r4

CLR ACR

repeat 128

conv ACR,DM0[AR0%++], DM1[AR1++]

ret

interleaver:

load r1, DM0[r0+r31]

load r2,DM0[r0+33]

set AR0, r1

set AR1, r2

repeat 256, endloop

load r0,DM1[DM0[AR0++]] ; Special indirect addr-mode

store DM1[AR1++], r0

endloop:

ret

A more realistic solution

This exercise was made quite easy by the fact that asynchronous memories were allowed.
This allowed us to easily create the special indirect addressing mode where the output
from DM0 was sent as an address into DM1. In a real processor synchronous memories
would be used here instead (it is hard to create a large and efficient asynchronous
memory).

If this architecture would be created with a synchronous memory, it would be tough to
avoid data and structural hazards. However, there is another way to allow the inter-
leaver() function to execute in less than 700 clock cycles. We can make an instruction
which stores data into DM1 while at the same time loading data from DM0. This can
be done without violating the constraints placed on us in the exercise (e.g. we are only
allowed to use single port memories and the register file has two read ports and one
write port).

5

// A more realistic interleaver() function.

interleaver:

load r1,DM0[r0+31]

load r2,DM0[r0+33]

// Might need a NOP here depending on how the pipeline looks like

set AR0, r1

set AR1, r2

// The loop is unrolled four times to ensure that data hazards

// cannot occur. (Depending on the pipeline it could be possible to

// unroll it fewer times, but four times is probably enough for

// most reasonable pipelines.)

// Note the need for a prologue and epilogue to the loop.

load r0,DM0[AR0++]

load r1,DM0[AR0++]

load r2,DM0[AR0++]

load r3,DM0[AR0++]

repeat 63, endloop

load r0,DM1[r0]

load r1,DM1[r1]

load r2,DM1[r2]

load r3,DM1[r3]

; The next instruction stores r0 into DM1

; and loads r0 from DM0

loadstore r0,DM0[AR0++], DM1[AR1++], r0

loadstore r1,DM0[AR0++], DM1[AR1++], r1

loadstore r2,DM0[AR0++], DM1[AR1++], r2

loadstore r3,DM0[AR0++], DM1[AR1++], r3

endloop:

load r0,DM1[r0]

load r1,DM1[r1]

load r2,DM1[r2]

load r3,DM1[r3]

store r0,DM1[AR1++]

store r0,DM1[AR1++]

store r0,DM1[AR1++]

store r0,DM1[AR1++]

ret

6

List of common errors

• It is not possible to execute the interleaver() function in less than 700 clock cycles.

• Forgetting about the step, top, and/or bottom register (including forgetting to set
these registers from the assembly code)

• The answer contains no hint as to how DM0 and DM1 can be accessed simultane-
ously

• The hardware implements pre-increment addressing while the assembly code is
written using post increment addressing

Question 4: PFC

There are many different ways to solve this exercise. It is for example possible to trade
off hardware complexity against software complexity. This is also the reason that no
proposed distribution of points is given to the a and b part of this exercise. (That
is, a solution which depends mostly on software and contains few instructions would
get points mostly for part b whereas a solution which contains many different branch
instructions and very straight forward software would get points mostly for part a.)

Required PFC instructions

Assumptions: It is actually not stated in the exam how wide PC should be, so we assume
a 16 bit PC in this exercise.

• jump immediate Unconditional branch. PC = PC + 1;. On next clock cycle:
PC = immediate

• jump.lte immediate Branch on less than or equal. PC = PC + 1. On next clock
cycle: PC = PC + 1. On next clock cycle: if(N || Z) then PC = immediate

else PC = PC + 1;

• jump.eq immediate Branch on equal. PC = PC + 1. On next clock cycle: PC

= PC + 1. On next clock cycle: if(Z) then PC = immediate else PC = PC +

1;

• repeat immediate Repeat next instruction: loopcounter = immediate; PC =

PC + 1;

• jal reg, immediate Jump and link. PC = PC + 1. On next clock cycle: reg =

PC + 1; PC = immediate

• jump OpB Indirect jump. PC = PC + 1. On next clock cycle: PC = PC + 1.On
next clock cycle: PC = PC + 1. On next clock cycle: PC = OpB

• Normal instruction if (loopcounter != 0) then loopcounter-- else PC

= PC + 1;

7

Note 2: jal reg, immediate and jump OpB are used in order to handle call to sub-
routine and return from subroutine. (This allows us to do some tricky things involving
conditional branches to subroutines where the return register (r31) is set in the delay
slot.) (Actually, we could probably manage to write these programs without having a
jal instruction at all, but at a slight performance loss.)

Assembly code

// In this code I assume the calling convention that r0-r15, all

// address registers, all accumulator registers, and the status

// register can be modified by a called function. However, r16-r30

// must not be modified by a subroutine. (If it needs to be modified

// it needs to be stored first so that it can be restored later on.)

// Finally, r31 contains the return address.

// Finally: Keep track of the delay slots when reading this code!

// (Unconditional branches have 1 delay slot, conditional branches

// have 2 delay slots, and register indirect branches have 3 delay

// slots!)

// (main doesn’t need to store r31 as it will never return)

main:

jal r31, get_packet

nop

cmp r0,0 ; Set flags as if we used r0 - 0

jump.lte anerror

nop

nop

cmp r0,9

jump.lte worker

set r31, before_update_outputs

nop

cmp r0, 59

jump.lte anerror

nop

nop

jal r31, guiworker

nop

jump before_update_outputs

nop

8

anerror:

jal r31, logerror

nop

before_update_outputs

jal r31, update_outputs

nop

jump main

nop

worker:

// Store r31 on the stack

push r31

jal r31, get_packet_operations

nop

cmp r0, 0

jump.eq dosum

nop

nop

cmp r0, 1

jump.eq dodiff

nop

nop

// Tail call optimization

pop r31

jump logerror

nop

dosum:

jal r31, sum

nop

pop r31

jump r31

store DM0[95], r0

nop

nop

dodiff:

jal r31, diff

nop

9

pop r31

jump r31

store DM0[96], r0

nop

nop

sum:

push r31

jal r31, get_current_buffer

nop

pop r31

move AR0, r0

clr ACR0

repeat 100

add ACR0, DM0[AR0++]

jump r31

sat ACR0

move r0, ACR0

nop

diff:

push r17

push r16

push r31

jal r31, get_current_length

nop

jal r31, get_current_buffer

move r16, r0

jal r31, get_previous_buffer

move r17, r0

; r16 now contains the current length

; r17 contains ptr1

; r0 contains ptr2

move AR0, r17

move AR1, r0

clr ACR0

10

add r0,r0,-1

diffloop:

jump.neq diffloop

add ACR0, ABS(DM0[AR0++]-DM1[AR1++])

add r0,r0,-1

pop r31

jump r31 ; And return from subroutine

move r0, ACR

pop r16

pop r17

Common errors

Not that many people attempted to solve this exercise, but the most common problem
for those who tried to do so is that no detail description of each instruction was present.
While it doesn’t have to be written in exactly the same way as written above, it should
contain the same kind of information.

Besides that, it was common with mistakes in the assembler code, but there wasn’t any
mistake there that really stood out.

Alternative solutions

I’ve tried to keep the solution above fairly “mainstream” with few instructions that
wouldn’t be found on a normal processor. However, it is possible to solve it in a few
different ways. For example, the solution above contains a “jump and link”-instruction
to handle call to subroutines. This means that the solution outlined above requires quite
a bit more support from the software, but requires easier hardware. A more traditional
solution would use a call/ret instruction pair which would automatically store and load
the return address from a stack (either in memory or a separate hardware stack).

Another way that could be used to simplify the assembly code a lot is to use a conditional
call instruction. This is not commonly found in real processors, but it could have
simplified main() and worker() quite a lot.

Finally, a repeat instruction with support for more than one instruction could have been
used to simplify the diff() instruction. However, such a repeat instruction would need
to read the number of iterations from a register (which would make it troublesome to
implement in actual hardware when very few iterations must be supported). (But there
is nothing in the constraints listed in the exercise that would prohibit such a repeat
instruction.)

11

Question 5

Adding 5 guard bits

out = { {5{in[22]}}, in[22:0]};

Register file

I’ve included a Verilog version here. To see what it would look like in a schematic, please
see the book.

module regfile(input wire clk, we

input wire [1:0] opa_sel, opb_sel, wb_sel

input wire [7:0] wb_data

output reg [7:0] opa, opb);

reg [7:0] rf[2:0];

always @* begin

opa = rf[opa_sel];

opb = rf[opb_sel];

end

always @(posedge clk) begin

if(we) begin

rf[wb_sel] <= wb_data;

end

end

endmodule

12

Loop controller

0 1 init_loop

loopctr

-1

6

6

6
6

num_iter

=0
// Function of =0
// box:
if(in == 0) begin
 out = 1;
end else begin
 out = 0;
end

loop_done

Reality check

The schematic for this part is very simple. The exercise was also intentionally designed
in such a way that some subtleties that would be present in a real processor were lost.

Most importantly, it will take a couple of clock cycles before a repeat instruction is
decoded, and one or more clock cycles to notify the PFC unit about this fact. Supporting
a repeat loop with say 2 iterations could therefore be fairly difficult (and wouldn’t make
sense anyway as it would take the same amount of space to unroll it). This is the reason
that the exercise specifies that the repeat Instruction should be able to handle between
four and sixty iterations.

Due to these effects, it may also be necessary to specify a non-obvious value to the
num iter input when starting a loop. For example, say that you want to repeat an
instruction six times. However, due to pipeline effects, the num iter value sent to the
PFC unit might be three instead of six. (As the instruction has already started to be
repeated by the instruction decoder at this point.)

13

MAC unit

32

ACR

C10 1 2

0

C2

R
O

U
N

D
V

E
C

T
O

R

0 1

GUARD

16x16
signed mult

Fr
o
m

 D
M

0

Fr
o
m

 D
M

1

16 16

37

37
37

37

SAT and align

16

// Guard box:
out = { {5{in[31]}}, in};

ROUNDVECTOR = 1 << 16;

// SAT and align box:
if(in[36:32] != {5{in[36]}}) begin
 out = {in[36], ~{15{in[36]}} };
end else begin
 out = in[32:17];
end

Control table:
 C1 C2
Clear ACR: 2 -
MAC: 1 1
NOP: 0 -
SATROUND 0 0

To RF

The most important part of this exercise was to see if you could handle the scaling
necessary to output a number in Q2.13 format based on inputs in Q0.15 format. Besides
this part, it shouldn’t be hard to design a MAC unit this simple.

Note: You could make a good case for a 36 bit accumulator here as well, based on the
opinion that the MSB bit of the signed multiplication could be called a guard bit. So I
would accept such a solution as well here.

Note 2: There is some widespread confusion whether a number in the QX.Y format is
X+Y bits wide (sign bit is included) or X+Y+1 bits wide (sign bit is not included).
However, as I state in the exam that the data is in 16 bit Q0.15 data, there is only one
reasonable interpretation, that is, one sign bit, followed by a radix point, followed by
fifteen more bits.

14

Common errors for question 5

• The most common bug was that there was some mistake in handling the scaling
of the accumulator when reading out the result. Many students didn’t seem to
notice that the output shouldn’t be in the same kind of fixed point format as the
inputs. Similarly, even for the students who actually noticed this, it was quite
common that the round-vector didn’t take this into account.

• An extra adder was used for the rounding instead of reusing the main adder and
using a roundvector

• Drawing a box (e.g. a box named FRACTION) and not explaining the contents
of the box.

• (There was no really common errors for part A-D.)

Revision history

• V1.0: Initial version

• V1.1: Fixed control table and ABS operation for Q2. Thanks to Niclas Sjökvist
for pointing this out. Also clarified opcodes in control table for Q2.

• V1.2: Saturate to Q2.13 instead of Q1.14 in 5e. Thanks to Jonas Henriksson for
pointing this out.

15

