
Examination
Design of Embedded DSP Processors, TSEA26

Date 2014-10-31
Room R34, R35, R36
Time 8-12
Course code TSEA26
Exam code TEN1
Course name Design of Embedded DSP Processors
Department ISY
Number of questions 5
Number of pages (including this page) 15
Course responsible Andreas Ehliar
Teacher visiting the exam room Andreas Ehliar
Phone number during the exam time
Visiting the exam room About 9.30 and 11
Course administrator Andreas Ehliar
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• You can answer in English or Swedish.

• When designing a hardware unit you should attempt to minimize the amount of
hardware. (Unless otherwise noted in the question.)

• The width of data buses and registers must be specified unless otherwise noted. Likewise, the
alignment must be specified in all concatenations of signals or buses. When using a box such
as “SATURATE” or “ROUND” in your schematic, you must (unless otherwise noted) describe
the content of this box! (E.g. with RTL code). You can assume that all numbers are in two’s
complement representation unless otherwise noted in the question.

• In questions where you are supposed to write an assembler program based on pseudo code you are
allowed to optimize the assembler program in various ways as long as the output of the assembler
program is identical to the output from the pseudo code. You can also (unless otherwise noted in
the question) assume that hazards will not occur due to parts of the processor that you are not
designing.

Good luck!

Question 1: Miscellaneous questions(6p)
(a) (2p) Create a saturation unit which is capable of saturating a 24 bit two’s complement number

to a 16 bit two’s complement number. This saturation unit should also have an output which
shows whether saturation was performed or not.

(b) (3p) Discuss how you can decide how many bits you will require in your accumulator for a
certain FIR filter. (If you want to, you can assume that all inputs and outputs are in fractional
format.)

(c) (1p) Explain briefly what hardware multiplexing is

Question 2: Address Generation Unit(8p)
Create an AGU with support for the following operations:

• NOP

• ADDR = AR

• ADDR = RF

• ADDR = AR + Imm

• ADDR = AR; AR = AR + 1

• ADDR = AR; AR = AR - 1

• ADDR = AR; AR = AR + STEP

• ADDR = AR; AR = AR - STEP

• STEP = RF

• AR = RF

Inputs/outputs

• RF: A 16 bit input from the register file

• Imm: A 16 bit input from the instruction word

• ADDR: A 16 bit address output to the memory

• And of course whatever clock and control signals you deem necessary

Your tasks:

(a) (4p) Draw a schematic, and a control table of this AGU

(b) (2p) Modify the schematic and control table so that you also have all operations that are
required to support efficient addressing of circular buffers (i.e. modulo addressing). Only a step
size of one is required.

(c) (2p) Suppose you want to implement a single cycle PUSH and POP instruction for access to a
software based stack. Are the AGU operations you have implemented so far sufficient? If so,
prove it by explaining how you would implement a PUSH and POP instruction by using these
addressing modes. If not, add whatever operations you deem necessary to the AGU and explain
how you, with the help of your modified AGU, can implement PUSH and POP.

Question 3: Arithmetic Logic Unit(10p)
Create an ALU with support for the following operations:

• OP1: RESULT = OpA + OpB

• OP2: RESULT = OpA - OpB

• OP3: RESULT = SAT(OpA + OpB)

• OP4: RESULT = SAT(OpA - OpB)

• OP5: RESULT = XOR(OpA, OpB)

• OP6: RESULT = OR(OpA, OpB)

• OP7: RESULT = AND(OpA, OpB)

Inputs/Outputs:

• OpA, OpB: 32 bit inputs

• RESULT: 32 bit output

• MODE: 2 bit input interpreted as follows:

– 00: OpA, OpB, and RESULT should be interpreted as 32 bit wide values.

– 01: OpA, OpB, and RESULT should be interpreted as two concatenated 16 bit wide values

– 10: OpA, OpB, and RESULT should be interpreted as four concatenated 8 bit wide values

– 11: Undefined (do whatever you wish)

• Whatever clock and control signals you deem necessary

Example:

In order to solve this exercise it is important to understand how the MODE signal works. The
following is an example of how OpA, OpB, and RESULT are handled depending on what MODE is
set to.

Mode OpA OpB RESULT
00 0x12345678 0xffffffff 0x12345677

01 0x1234 5678 0xffff ffff 0x1233 5677

10 0x12 34 56 78 0xff ff ff ff 0x11 33 55 77

Your task: Draw a schematic and a control table for the AGU described above. When drawing this
schematic you do not need to explain how your saturation blocks work, as this has been explicitly
covered by another question on this exam. However, you do need to annotate the bit width of the
inputs and outputs to your saturation block.

Hint 1: You should reduce the number of adders required in this solution. An N bit wide adder
can be created by cascading two N/2 bit wide adders.

Hint 2: In order to make your schematic less messy, you can divide it into more than one part and
use named signals to connect the parts. (E.g., divide it into a part with adders and a part with
post-processing.) Another solution you could consider is to make a hierarchical schematic where a
certain module is instantiated several times.

Question 4: Multiply and Accumulate unit(15p)
Create a MAC unit which supports the following two functions:

// The following is a four tap FIR filter which runs for 100

// iterations. (ptr0 points to the input buffer, ptr1 to the

// coefficients and ptr2 to the output buffer). You can assume that

// ptr0 to ptr2 are available in either address registers or normal

// registers (your choice).

function filter(ptr0, ptr1, ptr2)

repeat 100

ptr3 = ptr0++;

ptr4 = ptr1;

tmp = 0;

repeat 4

tmp = tmp + DM0[ptr3++] * DM1[ptr4++];

endrepeat

tmp = (tmp + 0x4000);

tmp = tmp >> 15; // Arithmetic shift

DM0[ptr2++] = saturate(tmp);

endrepeat

endfunction

// This is a signed 32x32 bit multiplication with a 32 bit result.

function mult_32x32(ptr0, ptr1, ptr2)

// val1, val2, and result are 32 bit signed integers

val1 = DM0[ptr0]; // Hint: Store val1 in two 16 bit registers

val1 = val1 + DM0[ptr0+1] << 16; // (Same for val2 and results)

val2 = DM0[ptr1];

val2 = val2 + DM0[ptr1+1] << 16;

result = SATURATE(val1*val2); // ***

DM0[ptr2] = result & 0xffff;

DM0[ptr2+1] = (result >> 16) & 0xffff;

endfunction

Constraints:

• The register file has 32 registers that are 16 bit wide. Two read ports and one write port are
available.

• DM0 and DM1 are 16 bit wide

• The filter function must execute in at most 1600 clock cycles.

• It is important (for power reasons) that the filter function does not access the
DM0 and DM1 unless necessary. For maximum points you need to get down to less
than 130 read accesses in total. There are no limitations on the number of write accesses.

• The line marked with *** in mult 32x32 must execute in at most 12 clock cycles.

• You can decide how many accumulation registers you need, and the width of these accumulation
registers.

• When drawing your schematic, you do not need to explain the content of your saturation
block (since this is explicitly covered by a separate question in this exam). However, you still
need to annotate the number of bits coming in and out from this block.

• You are allowed to choose your own inputs and outputs in this problem (within reason)

Your tasks:

(a) (8p) Create an instruction set for your MAC unit and translate the filter and mult 32x32

function into assembler. In the mult 32x32 function I am mostly interested in how you handle
the line marked with ***, so this is the only part of that function that you have to translate into
assembler. (Although you need to comment your source code so that it is clearly understandable
how the inputs and outputs to your part of the code are handled. (E.g., in what register is the
high part of val1 stored, etc).)

(b) (7p) Draw a schematic of your MAC unit and a control table.

Question 5: Program Flow Controller(11p)
Implement a program flow controller suitable for the the programs listed below:

function fir_kernel(ptr1, ptr2, ptr3)

tmp = 0

repeat 32

tmp = tmp + DM0[ptr1++]*DM1[ptr2++];

endrepeat

DM1[ptr3] = saturate(round(tmp))

return

endfunction

function handle_filter(ptr0)

ptr1 = DM0[ptr0]

ptr2 = DM0[ptr0+1]

ptr3 = DM0[ptr0+2]

if ptr3 == 0 then

return

endif

if ptr2 == 0 then

ptr2 = DM0[ptr0+3]

endif

fir_kernel(ptr1,ptr2,ptr3)

return

endfunction

Your program flow controller should be implemented in the PFC block in the figure below. Hint:
Study the figure to ensure that you understand how the pipeline of the parts you are not allowed to
modify will impact your PFC operations (e.g., the number of delay slots).

PM

IR

Format of IR:

1

Indicates a
branch instruction.

Use however you
want (19 bits) Instruction

decoder

This is where your
control table is

actually located!

PFC

The remaining parts
of the processor pipeline

Constraints:

• fir kernel must run in at most 50 clock cycles

• handle filter must run in at most 30 clock cycles (excluding the time spent in fir kernel)

• In this task it is important that you handle control hazards correctly in your assembler code.
(E.g., write your assembler code so that the correct number of delay slots are used in your PFC
instructions.)

• You must support two layers of subroutine calls. You may not use function inlining to get
around this when writing your assembler code.

• The address to the program memory is 16 bits wide. You will not know where in memory each
subroutine is located.

• You may use whatever inputs and outputs you require.

(a) (5p) Select the PFC operations you will require and translate the programs listed above to
assembler. For each of your selected PFC operation you must specify an instruction encoding
as well, based on the figure on the previous page.

(b) (4p) Draw a schematic and a control table of your PFC unit

(c) (2p) You will get these points if you correctly handle control hazards in this task (e.g., delay
slots)

Solution proposal, question 1

a)

always @* begin

did_sat = 0;

if(in[23:15] == 9’b111111111) begin

out = in[15:0];

end else if(in[23:15] == 9’b000000000)

out = in[15:0];

end else if(in[23]) begin

did_sat = 1;

out = 16’h8000;

end else begin

out = 16’h7fff;

did_sat = 1;

end

end

b)

The number format doesn’t matter as long as fixed point arithmetic is used since the multiplier and
adder does not know where the radix point is. To simplify calculations I will thus interpret the inputs
to the multiplier as an integer value.

To calculate the largest and smallest possible value the following equations can be used:

maxsum =

N∑
i=1

max(ci · largestpos, ci · largestneg) (1)

minsum =

N∑
i=1

min(ci · largestpos, ci · largestneg) (2)

(where largestneg is the largest negative sample value allowed and largestpos is the largest positive
value allowed)

To ensure that an overflow will never occur the following condition must hold, where W is the bit
width of the accumulator:

2W−1 − 1 ≥ maxsum and minsum ≥ −2W−1

c)

See the textbook

Solution proposal, question 2

Control table:
Operation Car Caddr C1 C2 Cstep Cbot Ctop Comments
NOP 0 - - - 0 0 0
ADDR=AR 0 1 - - 0 0 0
ADDR=RF 0 2 - - 0 0 0
ADDR=AR+Imm 0 0 0 0 0 0 0
ADDR=AR++ 2 1 1 0 0 0 0
ADDR=AR−− 2 1 2 0 0 0 0
ADDR=AR+=STEP 2 1 3 0 0 0 0
ADDR=AR-=STEP 2 1 4 1 0 0 0
STEP=RF 0 - - - 1 0 0
AR=RF 1 - - - 0 0 0
ADDR=AR%++ 3 0 1 0 0 0 0 Added for modulo
BOT=RF 0 - - - 0 1 0 addressing mode
TOP=RF 0 - - - 0 0 1
ADDR=−−AR 2 0 2 0 0 0 0 Added for stack

For the stack to work correctly it is necessary to add either preincrement or predecrement mode. In
the control table I added predecrement mode as this is typically used when pushing an item on the stack.
When using pop this corresponds to postincrement mode:

push r0 <-> move DM[--ar0], r0

pop r0 <-> move r0, DM[ar0++]

Solution proposal, question 3

To simplify the schematic, a simple 8 bit wide ALU is first designed:

This ALU is instantiated 4 times:

9 9 9 9

The SAT8 unit saturates a 9 bit number to 8 bits. The SAT16 unit is similar and saturates a 17 bit
number to 16 bits. Finally, the SAT32 unit saturates a 33 bit number to 32 bits.

Control table for Csub and Cr:
ALU*.Csub Cr

op1 0 1
op2 1 1
op3 0 0
op4 1 0
op5 - 2
op6 - 3
op7 - 4

Control table for ALU*.Cc:
MODE ALU3.Cc ALU2.Cc ALU1.Cc ALU0.Cc
00 0 0 0 1
01 0 1 0 1
10 1 1 1 1

Solution proposal, question 4

Assembler code for question 4:

filter:

move ar2, r2 ; Output ptr

load r16, DM1[r1] ; Load taps into r16-r19

load r17, DM1[r1+1]

load r18, DM1[r1+2]

load r19, DM1[r1+3]

move ar0, r0

load r8, DM0[ar0++] ; x[0]

load r9, DM0[ar0++]

load r10, DM0[ar0++]

load r11, DM0[ar0++] ; x[3]

;;; To avoid memory accesses we unroll the entire loop

;;; (Another way to solve this would be to place a shift register

;;; for 4 samples in the MAC unit itself, although this variant is a

;;; bit more general.)

repeat endloop, 25

mul.ss acr, r8,r16

mac.ss acr, r9,r17

mac.ss acr, r10,r18

mac.ss acr, r11,r19

lshift1 acr ; Plenty of time, this allows us to split

satrnd acr ; this into two instructions.

move r31, HIGH(ACR) ; If we wanted to save even more hardware

store DM0[ar2++], r31 ; complexity satrnd could be divided into

load r8, DM0[ar0++] ; mac acr,#1,#0x4000 and sat acr

mul.ss acr, r9,r16 ; (That is, using the mac instruction to add

mac.ss acr, r10,r17 ; the roundvector rather than a specialized

mac.ss acr, r11,r18 ; instruction.)

mac.ss acr, r8,r19

lshift1 acr

satrnd acr

move r31, HIGH(ACR)

store DM0[ar2++], r31

load r9, DM0[ar0++]

mul.ss acr, r10,r16

mac.ss acr, r11,r17

mac.ss acr, r8,r18

mac.ss acr, r9,r19

lshift1 acr

satrnd acr

move r31, HIGH(ACR)

store DM0[ar2++], r31

load r10, DM0[ar0++]

mul.ss acr, r11,r16

mac.ss acr, r8,r17

mac.ss acr, r9,r18

mac.ss acr, r10,r19

lshift1 acr

satrnd acr

move r31, HIGH(ACR)

store DM0[ar2++], r31

load r11, DM0[ar0++]

endloop:

ret

mult_32x32:

load r4, DM0[r0] ; LSB part val1

load r5, DM0[r0+1] ; MSB part val1

load r6, DM0[r1] ; LSB part val2

load r7, DM0[r1+1] ; MSB part val2

mul.ss acr, r5,r7

lshift16 acr ; acr = acr << 16

mac.su acr, r5,r6

mac.su acr, r7,r4

lshift16 acr

mac.uu acr, r4,r6

sat32 acr

move r4,LOW(acr)

move r5,HIGH(acr)

store DM0[r2], r4

store DM0[r2+1], r5

ret

34
G64

64

64
64

17

17

A 64 bit accumulator is selected to allow the entire result of the 64 bit multiplication to be stored in the
accumulator before the value is saturated to 32 bits. To avoid the need for two saturation units we also
ensure that the ACR is left shifted once before using saturation. (This could of course be integrated into
the MAC unit, but there is plenty of time, so there is no need to do so in this particular case.)

always begin : G64

out = {{32{in[31]}}, in[31:0]};

end

Control table
Cmode[1:0] tells whether signed/unsigned operation is used according to the following table:

Cmode[1:0]
mul/mac.ss: 11
mul/mac.su: 10
mul/mac.us: 01
mul/mac.uu: 00
Non-mac/mul: -

Operation C0 C1 Cacr Cshift Cr
nop - - 0 - -
mul.xx 0 0 2 - -
mac.xx 1 0 2 - -
sat32 1 1 3 - -
satrnd 1 2 3 - -
lshift1 - - 1 0 -
lshift16 - - 1 1 -
move rf, HIGH(acr) - - 0 - 0
move rf, LOW(acr) - - 0 - 1

Solution proposal, question 5

; ptr1 in ar0, ptr2 in ar1, ptr3 in r2

fir_kernel:

; Unroll loop to avoid need for repeat instruction

clr acr0

set r0,#8

loop:

add r0,r0,#-1

mac acr,DM0[ar0++], DM1[ar1++]

mac acr,DM0[ar0++], DM1[ar1++]

mac acr,DM0[ar0++], DM1[ar1++]

bne r0, loop ; Jump if r0 is not equal to 0

mac acr,DM0[ar0++], DM1[ar1++] ; Delay slot

move r0, SATRND(acr)

bra r31 ; Link register

store DM1[r2], r0 ; Delay slot

handle_filter:

load r2, DM0[r0+2] ; Load r2 (ptr3) and r5 (ptr2) first so that the value

load r5, DM0[r0+1] ; is available for the bne:s further down even if the latency

load r4, DM0[r0] ; of the memory is fairly high.

move ar0,r4

bne r2,continue

move ar1,r5 ; Delay slot

continue:

bne r5, noupdateptr2

load r5, DM0[r0+3] ; Delay slot

move ar1,r5

noupdateptr2:

push r31 ; Store old value of link register

jal fir_kernel ; r31 = nextpc

nop ; Delay slot

pop r31

nop ; (Number of nops depends on the latency of the memory

nop

bra r31

nop ; Delay slot

Proposed instruction format for branches:

100 xxxxx aaaaaaaaaaaa ; BNE checks if register x is 0. If so jumps to PC with offset a

101 0aaaa aaaaaaaaaaaa ; jump and link to address a

110 xxxxx 000000000000 ; jump to register x

To reduce the complexity of the hardware a link register is used to store the return address. This
means that there are no limitations (aside from memory in DM0/DM1) on the number of subroutine calls
that are possible to make. Similarly, only the bne instruction turned out to be needed here. (Although
beq would be trivial to implement as well.) It is assumed that the instruction decoder ensures that the
value presented on To RF is saved to register r31 when running the jump and link instruction.

Control table:
C1 C2

bne 0 1
jal rX,label 0 0
bra rX 1 0

; jump and link handling:

Address Insn

0 nop

1 jal 5 ; <-- When this is located in IR

2 nop ; <-- PC already points to this location

3 nop ; Thus the PC that should be saved to the RF is this. (Which is

4 nop ; why To_RF comes from the adder and not directly from PC.)

Revision history for v1.2

Difference from exam version

• Typo corrections

• Clarified that 130 accesses corresponded to 130 read accesses

Differences from v1.0

• Fixed bit-width annotations for MAC unit solution proposal

• Fixed formatting of assembler code for MAC unit solution proposal

• Fixed typos

Differences from v1.1

• Changed solution proposal to add did sat signal in question 1.

• Clarified that modulo addressing was only required for a step size of one.

• Fixed a few typos.

