
Examination
Design of Embedded DSP Processors, TSEA26

Date 2014-01-10
Room U1
Time 8-12
Course code TSEA26
Exam code TEN1
Course name Design of Embedded DSP Processors
Department ISY
Number of questions 5
Number of pages (including this page) 14
Course responsible Andreas Ehliar
Teacher visiting the exam room Andreas Ehliar
Phone number during the exam time
Visiting the exam room About 9 och 11
Course administrator Anita Kilander
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• You can answer in English or Swedish.

• When designing a hardware unit you should attempt to minimize the amount of
hardware. (Unless otherwise noted in the question.)

• The width of data buses and registers must be specified unless otherwise noted. Likewise, the
alignment must be specified in all concatenations of signals or buses. When using a box such
as “SATURATE” or “ROUND” in your schematic, you must (unless otherwise noted) describe
the content of this box! (E.g. with RTL code). You can assume that all numbers are in two’s
complement representation unless otherwise noted in the question.

• In questions where you are supposed to write an assembler program based on pseudo code you are
allowed to optimize the assembler program in various ways as long as the output of the assembler
program is identical to the output from the pseudo code. You can also (unless otherwise noted in
the question) assume that hazards will not occur due to parts of the processor that you are not
designing.

Good luck!

Question 1: Misc knowledge(6p)
(a) (2p) Explain one reason why it doesn’t make sense to add too many pipeline stages to a DSP

processor

(b) (1p) Discuss one reason why you wouldn’t want a cache in your DSP processor

(c) (3p) Draw a block level schematic of a simple DSP processor. This is supposed to be a block
level schematic, using blocks with names such as ALU, MAC, and AGU (and all additional
blocks you consider part of a DSP processor. Your task is to show the examiner that you have
a good grasp of the components present in a DSP processor and that you know how they are
connected.

Question 2: ALU(8p)
Draw a schematic and a control table for an ALU with the following specifications:

Required operations:

• OP1: OpA + OpB + SignExtend(Imm[9:0])

• OP2: OpA - OpB + SignExtend(Imm[9:0])

• OP3: ABS(OpA - OpB)

• OP4: ABS(OpA + OpB)

• OP5: ABS(OpB + SignExtend(Imm[9:0]))

Inputs:

• OpA: 16 bit input from the register file

• OpB: 16 bit input from the register file

• Imm: 10 bit input from the register file

• S: Saturation mode: When 0, no saturation should be performed. When 1, saturation should
be performed.

Outputs:

• Result: The 16 bit result of the operation

Question 3: PFC(10p)
Create a program flow controller capable of supporting the following operations:

• OP1: Stall PC (that is, PC=PC)

• OP2: PC = PC + 1

• OP3: PC = Imm[15:0]

• OP4: PC = PC + SignExtend(Imm[7:0])

• OP5: PC = RF

• OP6: Branch if equal

• OP7: Branch if not equal

For OP6 and OP7 you should use PC relative addressing like OP4 does. When starting the system,
the PC should be set to 0xfff0.

Inputs:

• Z,N,V,C: Flags from the ALU

• RF[15:0]: A 16-bit operand from the register file

• Imm[15:0]: A 16 bit constant from the instruction word

• RST: Reset signal, set to one when active.

• And of course, a clock signal and the control signals you have created.

Outputs:

• PM Addr[15:0]: Address to the program memory

• To RF[15:0]: A value which should be written to the register file

(a) (6p) Draw a schematic and control table for your PFC unit.

(b) (4p) In addition to these operations, your PFC unit should also support one 32 bit wide per-
formance counter, something which is useful when profiling a program.

It should be possible to read and write the value of this counter from a program. It should also
be possible to change the mode of this counter to one of the following 5 modes:

• MODE0: Never increment the counter

• MODE1: Increment the counter when any kind of branch is taken

• MODE2: Increment the counter when a conditional branch is executed and the condition
is true

• MODE3: Increment the counter when a conditional branch is executed but the condition
is false

• MODE4: Increment the counter when the program counter is stalled

Add the operations you consider necessary to support this functionality to your PFC schematic
and control table.

Question 4: MAC(13p)
You should a MAC unit which can be used in a DSP processor with the following requirements:

• The system should be able to handle arbitrary length FIR filters at a cost of at most one clock
cycle / tap (excluding prologue and epilogue)

• In addition, the system should be able to handle an FIR filter with the following specifications,
when running at 100 MHz:

– The system should support an FIR filter with 16 taps.

– The sample rate of the FIR filter is 100 kHz.

– Saturation and rounding should be done (as shown below)

– The A/D converter the filter uses as an input can be read using the ADINPUT instruction

– The D/A converter the filter uses as an output can be written to using the ADOUTPUT
instruction

– The maximum latency allowed between the time when the first instruction in the interrupt
handler is run and the ADINPUT instruction is 100 ns.

– The maximum latency allowed between the time when the first instruction in the interrupt
handler is run and the filtered output being sent via the ADOUTPUT instruction is 400
ns.

– The first 100 outputs values from the filter are allowed to be undefined (e.g., you don’t
need to worry about initializing the sample buffer, etc)

– DM0, DM1, and ADINPUT/ADOUTPUT are all 16 bits wide.

One possible pseudo code implementation of this interrupt routine is seen below, although there are
other ways to solve this as well, which will lead to different trade-offs.

interrupt_handler:

save_registers_used_by_the_next_line() // Hint: Use the push instruction here

input_value = ADINPUT() // Max latency from first instruction: 100 ns

save_all_other_registers_modified_by_interrupt_handler()

coeffptr = coeff_start

bufferptr = saved_bufferptr // saved_bufferptr is stored in DM0

DM1[bufferptr] = input_value

tmp = 0;

repeat 15

tmp = tmp + DM0[coeffptr++] * DM1[bufferptr++]

if bufferptr == bufferend then

bufferptr = start

endif

endrepeat

tmp = tmp + DM0[coeffptr] * DM1[bufferptr]

saved_bufferptr = bufferptr

tmp = tmp + 0x2000

if tmp > 0x1fffffff then

tmp = 0x7fff

else if tmp < -0x20000000

tmp = 0x8000

else

tmp = tmp >> 14

endif

ADOUTPUT(tmp) // <-- Max latency from first instruction: 400 ns

restore_all_saved_registers() // <-- Not performance critical, but should be

return_from_interrupt() // reasonably fast.

(a) (6p) Select an instruction set suitable for your MAC unit and write commented assembler code
for your interrupt handler.

(b) (7p) Draw a schematic and a control table for your MAC unit.

Question 5: AGU(13p)
Create an AGU capable of supporting the following functions under the given constraints:

// This program must be runnable in less than 30 clock cycles.

function fir(coeffptr, sampleptr, startptr, endptr)

tmp = 0

repeat 20

tmp = tmp + DM0[coeffptr++] * DM1[sampleptr]

if sampleptr == endptr then

sampleptr = startptr

else

sampleptr++

end if

endrepeat

return tmp

endfunction

// This function must be able to run in at most 12 clock cycles,

// excluding the return instruction.

// The parameters to this function are placed in r0-r3

// You should assume that baseaddr and pitch are always evenly divisible by 64.

function sum_4x4_block(baseaddr0, baseaddr1, pitch, x, y)

tmp = 0

repeat 4

tmp = tmp + sumpixels_2x(baseaddr0, baseaddr1, pitch, x, y)

tmp = tmp + sumpixels_2x(baseaddr0, baseaddr1, pitch, x+2, y)

y = y + 1

endrepeat

return tmp

endfunction

// This function will only be called by the sum_4x4_block function, so you

// are strongly encouraged to inline this function...

function sumpixels_2x(baseaddr0, baseaddr1, pitch, x, y)

addr0 = baseaddr0 + x/2 + y*pitch

addr1 = baseaddr1 + x/2 + y*pitch

xremainder = x & 1 // Get the LSB bits of x and y

yremainder = y & 1 //

if (xremainder == 0 and yremainder == 0) return DM0[addr0] + DM1[addr1];

if (xremainder == 0 and yremainder == 1) return DM0[addr0] + DM1[addr1];

if (xremainder == 1 and yremainder == 0) return DM0[addr0+1] + DM1[addr1];

if (xremainder == 1 and yremainder == 1) return DM0[addr0] + DM1[addr1+1];

endfunction

(a) (6p) Select a number of suitable addressing modes and other necessary AGU operations which
would be suitable for your AGU when running the pseudo code listed above under the given
constraints and translate sum 4x4 block and sumpixels 2x into commented assembler code
(you do not have to translate fir into assembler).

Note that it must be clear what each addressing mode and other AGU operation actually do
(if you solve the next part of this question correctly, you can assume that the examiner will be
able to figure out the functionality of your addressing modes and other AGU operations).

(b) (7p) Draw a schematic and a control table for your AGU.

Solution proposal, question 1

a)

One reason is that as the number of pipeline stages are increased, the cost (in terms of clock cycles) of
a mispredicted jump increases. At a certain point, the penalty of adding another clock cycle latency
to a mispredicted branch will reduce the overall performance of the processor, even though the clock
frequency itself could be increased (marginally) by adding pipeline stages.

b)

A typical cache requires at least two memory reads (from the tag memory and the memory containing the
stored data). If low latency is required, all of the ways in the cache needs to be read out simultaneously
as well. If low power consumption is desired it is often beneficial to use a scratch pad memory instead,
as only one memory access is required, rather than two.

c)

See for example the pipeline diagram of the Senior processor present in the lab compendium.

Solution proposal, question 2

MSB

18

18

Operation C1 C2 C3 Cabs Csat
OP1 0 0 1 0 S
OP2 1 0 1 0 S
OP3 1 0 0 1 S
OP4 0 0 0 1 S
OP5 0 1 0 1 S

always @* begin : SAT

if(in[17]) begin

if(in[16:15] != 3) begin

out = 16’h8000;

end else begin

out = in[15:0]

end

end else begin

if(in[16:15] != 0) begin

out = 16’h7fff;

end else begin

out = in[15:0]

end

end

end

Solution proposal, question 3

Note: All signals are 16 bit wide except signals that will end up in multiplexer inputs.
Operation C1 C2 C3 C4 C5 Cmode Cr
OP1 0 - - 0 0 0 -
OP2 1 2 - 0 0 0 -
OP3 2 - - 0 1 0 -
OP4 1 1 - 0 1 0 -
OP5 3 - - 0 1 0 -
OP6 1 0 0 1 0 0 -
OP7 1 0 1 1 0 0 -
PERFMODE(RF) 1 2 - 0 0 1 -
RF=HIGHPERF 1 2 - 0 0 0 1
RF=LOWPERF 1 2 - 0 0 0 1

Note: this assumes that the performance counter related control signals can be generated in the same
pipeline stage as the PFC related control signals. If this doesn’t hold two control tables should most
likely be used, one for the PFC signals (C1-C3) and one for the performance counter signals (Cmode
and Cr). Otherwise it will not be possible to use branches close to the instruction which accesses the
performance counter.

Solution proposal, question 4

;;; Assembler code for interrupt handler

interrupt_handler:

push r1

ADINPUT r1 ; 20 ns latency from the time when the first insn is executed.

; Accumulator

push r0 ; If we want lower latency we could include an output

move r0,LOW(acr) ; in the MAC unit to allow us to push the acr register

push r0 ; directly to the stack.

move r0,HIGH(acr)

push r0

move r0,GUARDS(acr)

push r0

; Address registers

push ar0

set ar0, #coeff_start

push ar1

load r0, DM0[saved_bufferptr]

move ar1,r0

st DM1[ar1], r1 ; Store input value in sample buffer

; Ring buffer related regs

push bottom

set bottom, #samples_bottom

push top

set top, #samples_top

push loopstatus ; Assuming interrupts are allowed during a repeat loop

; (which they probably must be due to the strict real-time

; constraints in this system)

mul acr, DM0[ar0++], DM1[ar1%++]

repeat endloop, 14

mac acr, DM0[ar0++], DM1[ar1%++]

endloop:

mac acr, DM0[ar0], DM1[ar1] ; Make sure not to increment ar1 here.

satrnd r0, acr

ADOUTPUT r0 ; Latency: ~39 cycles = 390 ns

; (We could reduce the latency slightly by unrolling

; the loop completely and not saving loopstatus.)

pop loopstatus

pop top

pop bottom

pop ar1

pop ar0

pop r0

move GUARDS(acr),r0

pop r0

move HIGH(acr), r0

pop r0

move LOW(acr), r0

pop r0

pop r1

reti

;;; This is another variant where we reduce the latency by precalculating 15 out of 16 taps in the

;;; previous iteration to reduce the latency.

interrupt_handler:

push r1

ADINPUT r1 ; 20 ns latency from the time when the first insn is executed.

; Accumulator

push r0

move r0,LOW(acr)

push r0

move r0,HIGH(acr)

push r0

move r0,GUARDS(acr)

push r0

move r0, DM0[savedacr]

move LOW(ACR),r0

move r0, DM0[savedacr+1]

move HIGH(ACR),r0

move r0, DM0[savedacr+2]

move GUARDS(ACR),r0

set r0,#lastcoeff

mac acr, r0,r1

satrnd r0, acr

ADOUTPUT r0 ; 190 ns latency from the first insn

; Address registers

push ar0

push ar1

set ar0, #coeff_start

load r0, DM0[saved_bufferptr]

move ar1, r0

push bottom

push top

set bottom, #samples_bottom

set top, #samples_top

push loopstatus ; Assuming interrupts are allowed during a repeat loop

; (which they probably must be due to the strict real-time

; constraints in this system

mul acr, DM0[ar0++], DM1[ar1%++]

repeat endloop, 14

mac acr, DM0[ar0++], DM1[ar1%++]

endloop:

store DM1[ar1], r1 ; Store input value in sample buffer

mov r0,ar1 ; Save bufferptr

store DM1[saved_bufferptr], r0

;; Save acr for last sample (calculated next interrupt)

move r0,LOW(acr)

store DM0[savedacr]

move r0,HIGH(acr)

store DM0[savedacr+1]

move r0,GUARDS(acr)

store DM0[savedacr+2]

pop loopstatus

pop top

pop bottom

pop ar1

pop ar0

;; Restore accumulator

pop r0

move GUARDS(acr),r0

pop r0

move HIGH(acr), r0

pop r0

move LOW(acr), r0

pop r0

pop r1

reti

Note: Since the FIR filter has 16 iterations we will require, 4 guard bits.

32

36

36

36 16

Operation C1 C2 C3 C4 Cr
NOP - - 4 - -
RF=LOW(ACR) - - 4 - 1
RF=HIGH(ACR) - - 4 - 2
RF=GUARD(ACR) - - 4 - 3
LOW(ACR)=RF - - 0 - -
HIGH(ACR)[=RF - - 1 - -
GUARD(ACR)=RF - - 2 - -
MUL (DM) 0 0 3 0 -
MAC (DM) 1 0 3 0 -
MAC (RF) 1 0 3 1 -
satrnd 1 1 3 - 0

roundvec = 36’h2000;

always @* begin : SAT

out = in[29:14]

if(in[35:29] != 7’b11111111) begin

if(in[35:29] != 7’b0) begin

out = {in[35], {15{in[35]}}};

end

end

end

Solution proposal, question 5

fir: ; Not required by the question, but included here for completeness

mov ar0,r0

mov ar1,r1

mov top, r2

mov bottom,r3

clr acr

repeat endloop, 20

mac acr,DM0[ar0++], DM1[ar1%++]

endloop:

ret ; Assume return value in acr

;;; r0 = baseaddr0

;;; r1 = baseaddr1

;;; r2 = pitch

;;; r3 = x

;;; r4 = y

sum_4x4_block: ; sumpixels_2x is inlined here a couple of times

mul r6, r4,r2 ; r6 = pitch * y

setxy r3,r4 ; ar0 = r3, ar1 = r3; XMODE = r3[0]; YMODE = r4[0]

updatepitch r6,r2 ; ar0 += r6, ar1 += r6, PITCH = r2

updateaddr r0,r1 ; ar0 += r0, ar1 += r1

add r0, DM0, DM1, XYDELTA(0,0) ; Set r0 to DM0 + DM1

add3 r0, r0, DM0, DM1, XYDELTA(+,++) ; Add DM0+DM1 to r0, use offset 1 for

;both memories, increment y with pitch

add3 r0, r0, DM0, DM1, XYDELTA(0,0) ; and so on

add3 r0, r0, DM0, DM1, XYDELTA(+,++)

add3 r0, r0, DM0, DM1, XYDELTA(0,0)

add3 r0, r0, DM0, DM1, XYDELTA(+,++)

add3 r0, r0, DM0, DM1, XYDELTA(0,0)

add3 r0, r0, DM0, DM1, XYDELTA(+,++)

ret ; 12 cycles (excluding ret)

;;; Description of xydelta mode:

XYDELTA(0,0): ADDR_TO_DM0 = ar0 + (XMODE & ~YMODE)

ADDR_TO_DM1 = ar1 + (XMODE & YMODE)

XYDELTA(+,++): ADDR_TO_DM0 = ar0 + 1 + (XMODE & ~YMODE) ; ar0+= PITCH

ADDR_TO_DM1 = ar1 + 1 + (XMODE & YMODE) ; ar1+= PITCH

Notes: All signals are 16 bits wide (except for XMODE and YMODE that are 1 bit wide and control
signals that have the obvious width).

Operation Car0 Car1 Cadd0 Cadd1 Cadd2 Cmadd Cdelta CMODE Ctop Cbot Cpitch
NOP 0 0 - - - - - 0 0 0 0
ar0++/ar1%++ 2 3 1 0 1 0 0 0 0 0 0
load TOP 0 0 - - - - - 0 1 0 0
load BOT 0 0 - - - - - 0 0 1 0
setxy 1 1 - - - - - 1 0 0 0
updatepitch 2 2 0 0 - - - 0 0 0 0
updateaddr 2 2 2 1 1 - - 0 0 0 0
XYDELTA(0,0) 0 0 0 0 0 - - 0 0 0 0
XYDELTA(+,++) 2 2 0 0 - 1 1 0 0 0 0

Why would you want this addressing mode?

At first glance, this seems like a very odd addressing mode. However, this kind of addressing can be
useful in for example image processing applications when multiple pixels needs to be loaded at the same
time. Consider for example an image where two adjacent pixels (either horizontal or vertical) needs to
be loaded in one clock cycle. If the image is organized as follows:

01010101010101010101010101010101..... pitch = the width of the image

10101010101010101010101010101010..... 0: Pixel is found in DM0

01010101010101010101010101..... 1: Pixel is found in DM1

101010101010....

.....

That is, with this organization of the frame buffer into two memory banks, two adjacent pixels can
be loaded at the same time since they are always located in different memory banks. The drawback is
that every odd line needs a somewhat awkward memory addressing scheme.

(It could also be noted that this exercise was made slightly easier by the fact that an addition operation
was used since addition is commutative. If for example a 2D convolution kernel is used instead, it will
be necessary to add multiplexers at the memory outputs so that it is possible to swap the output from
the memories depending on the x and y address (alternatively, the coefficients can be swapped).

Multiplier based solution

The proposed schematic does not contain any multipliers. However, a more obvious solution would set
ar0 to the x coordinate and ar1 to the y coordinate and include a multiplier. This could also net you a
full score as long as you ensure that the multiplier is not wider than necessary (i.e. you take advantage
of the fact that pitch is always a multiple of 64).

;;; Assembler code for solution where y is multiplied with pitch for

;;; every clock cycle:

sum_4x4_block:

setbaseaddr r0,r1 ; ar0 = r0, ar1 = r1

setpitch r2

setxy r3,r4

add r0, DM0[XY(ar0,x,y)], DM1[XY(ar1,x,y)]

add3 r0,r0, DM0[XY(ar0,x+2,y)], DM1[XY(ar1,x+2,y++)]

repeat endloop,3

add3 r0,r0, DM0[XY(ar0,x,y)], DM1[XY(ar1,x+2,y)]

add3 r0,r0, DM0[XY(ar0,x+2,y)], DM1[XY(ar1,x+2,y++)]

endloop:

ret ; (Could be reduced to 11 cycles by unrolling the loop

(The schematic for this variant is not included here but should be relatively straight forward to
implement. The important issue here is that the AGU needs to check the LSB bits of the X and Y part
of the address and adjust the address accordingly.)

Revision history (version 1.2):

Changes from exam version

• Clarified that DM0, DM1, and ADINPUT/ADOUTPUT are 16 bits wide

• It is more realistic if sum 4x4 block take both baseaddr0 and baseaddr1 rather than just baseaddr.

Changes from v1.0

• Added solution proposal for question 3

• Clarified that MSB bit is sent to mux in question 2.

• Added bit width annotations for question 2

• Added assembler code for multiplier based solution to question 5

Changes from v1.1

• Added adder to performance counter in PFC task

• Added missing signals to control table in PFC task

