
Examination
Design of Embedded DSP Processors, TSEA26

Date 2012-10-26
Room T2
Time 8-12
Course code TSEA26
Exam code TEN1
Course name Design of Embedded DSP Processors
Department ISY
Number of questions 5
Number of pages (including this page) 10
Course responsible Andreas Ehliar
Teacher visiting the exam room Andreas Ehliar
Phone number during the exam time
Visiting the exam room About 9 och 11
Course administrator Ylva Jernling
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• You can answer in English or Swedish.

• When designing a hardware unit you should attempt to minimize the amount of
hardware. (Unless otherwise noted in the question.)

• The width of data buses and registers must be specified unless otherwise noted. Likewise, the
alignment must be specified in all concatenations of signals or buses. When using a box such
as “SATURATE” or “ROUND” in your schematic, you must (unless otherwise noted) describe
the content of this box! (E.g. with RTL code). You can assume that all numbers are in two’s
complement representation unless otherwise noted in the question.

• In questions where you are supposed to write an assembler program based on pseudo code you are
allowed to optimize the assembler program in various ways as long as the output of the assembler
program is identical to the output from the pseudo code. You can also (unless otherwise noted in
the question) assume that hazards will not occur due to parts of the processor that you are not
designing.

• Premade control tables are available at the end of the exam if you prefer that to drawing your own.

Good luck!

Question 1: Address Generator Unit(8p)
Draw a schematic and a control table for an AGU with the following specifications:

• It should have two address registers

• It should have a post-increment addressing mode with a step size of one

• It should have a pre-decrement addressing mode with a step size of one

• It should have a modulo addressing mode with a step size of one. (Note: Modulo
addressing is sometimes called circular addressing as well.)

• It should be possible to set the address registers (and all other registers necessary
to support these addressing modes) to arbitrary values.

• There should be one 16-bit wide input to the AGU which comes from the register
file.

• It should have one 16-bit wide address output to the data memory.

Question 2: Arithmetic Logic Unit(13p)
The following is a list of desired ALU operations:

• RESULT = OpA + OpB

• RESULT = OpA - OpB

• RESULT = SAT(OpA + OpB)

• RESULT = SAT(OpA - OpB)

• RESULT = (OpA + OpB)/2

• RESULT = SAT(ABS(OpA) - ABS(OpB))

• RESULT = SAT(ABS(OpA - OpB))

• RESULT = SAT(ABS(OpA))

Constraints: OpA and OpB comes from the register file and are 16 bits wide. RE-
SULT should also be 16 bits wide.

However, it turns out that it is desirable to implement an ALU where only one adder
is used (for area, power, and critical path purposes). This means that some of the
operations listed above cannot be implemented in a single clock cycle.

Note: If you choose to answer both part a and part b you only have to draw one
schematic/control table.

Tasks:

(a) (7p) Analyze the list of ALU instructions given above and determine which in-
structions that can be implemented under the constraint that only one adder
can be used in the ALU. Draw a schematic and a control table for an ALU that
supports these instructions. (Note: Only single cycle instructions are allowed.)

(b) (6p) Since the remaining operations are also desirable, you need to figure out a
way to perform these operations in at most two clock cycles. In order to do that
you may need to add new instructions to your ALU and perhaps new flags and/or
registers. Determine whether you need to add any new instructions to your ALU
and modify your schematic and control table so that those new instructions are
supported. Finally you need to describe how these new instructions allows you
to perform the operations that you couldn’t include in part a. Important: You
are not allowed to introduce multi-cycle instructions!

Question 3: Program Flow Control Unit(7p)
The following two assembler level functions has been written and your task is to create
a PFC unit that can support these functions. (We assume that your DSP processor
is a normal in-order single issue RISC-like processor like the Senior processor.)

function1:

set r15,#32

move ar0,r1

move ar1,r2

clear acr0

loop:

mac acr0, DM0[ar0++],DM1[ar1++]

add r15,r15,#-1

bne loop

nop // Delay slot

nop // Delay slot

rts

satrnd r0,acr0 // Delay slot

function2:

set r14,#128

loop2:

jsr function1

nop // Delay slot

store DM0[ar2++],r0

add r1,#1

add r14,r14,#-1

bne loop2

nop // Delay slot

nop // Delay slot

rts

nop // Delay slot

Inputs and outputs:

• Z flag input from the ALU (1 bit wide)

• Address output to the program memory (16 bit wide)

• And of course your control signals

Tasks:

(a) (5p) Implement a PFC unit that supports the PFC operations given in the as-
sembler program listed above. A hardware stack with at least two levels must
be used. You need to include a schematic and a control table for your PFC unit.
You don’t need to worry about the pipeline in this exercise and you can assume
that the instruction decoder will send the correct operation at the correct time.

(b) (2p) Rewrite function1 so that the NOPs in the delay slots are eliminated. (The
program should of course produce the same result in r0 after the rewrite.)

Question 4: MAC UNIT(15p)
Design a MAC unit capable of supporting the following functions:

function save_state(ptr)

// This function should save all of the state in the MAC unit to

// memory. (The context for this would be an interrupt handler in a

// multi-tasking operating system.) Should take less than 32 cycles.

endfunction

function restore_state(ptr)

// Same as save_state but this one should restore all state saved

// by save_state(). Should take less than 32 cycles.

endfunction

// The parameters to this function are passed in register r0-r5.

// This function should use at most 150 clock cycles.

function matrix_x_vectors(A, B, C, D, vecptr, resultptr)

repeat 128

tmp = DM0[vecptr++]

even = signextend(tmp[15:0])

odd = signextend(tmp[31:16])

evenresult = even * A + odd * B

evenresult = evenresult + 0x4000

if (evenresult >= 0x40000000) then

evenresult = 0x3fffffff

endif

if(evenresult < -0x40000000) then

evenresult = -0x40000000

endif

oddresult = even * C + odd * D

oddresult = oddresult + 0x4000

if (oddresult >= 0x40000000) then

oddresult = 0x3fffffff

endif

if(oddresult < -0x40000000) then

oddresult = -0x40000000

endif

tmp[15:0] = evenresult[30:15]

tmp[31:0] = oddresult[30:15]

DM1[resultptr++] = tmp

endrepeat

endfunction

// The parameters are passed in register r0 and r1

// This function should use at most 40 clock cycles

function cplx_dotproduct(sampleptr, coeffptr)

sum_real = 0

sum_imag = 0

repeat 30

sample = DM0[sampleptr++]

coeff = DM1[coeffptr++]

sample_real = signextend(sample[15:0])

sample_imag = signextend(sample[31:16])

coeff_real = signextend(coeff[15:0])

coeff_imag = signextend(coeff[31:16])

sum_real = sum_real + sample_real * coeff_real - sample_imag * coeff_imag

sum_imag = sum_imag + sample_real * coeff_imag + sample_imag * coeff_real

endrepeat

if(sum_real >= 0x80000000) then

sum_real = 0x7fffffff

endif

if(sum_real <= -0x80000000) then

sum_real = -0x80000000

endif

if(sum_imag >= 0x80000000) then

sum_imag = 0x7fffffff

endif

if(sum_imag <= -0x80000000) then

sum_imag = -0x80000000

endif

r0 = sum_real[31:16] // Return the result in register r0

r1 = sum_imag[31:16] // and register r1

endfunction

• These are the allowed inputs and outputs to your module:

– From DM0 and From DM1: 32 bit wide input from data memory 0 and 1.

– OpA/OpB: 16 bit wide inputs from the register file

– To RF: 16 bit wide output to the writeback port of the register file

– TO DM1: 32 bit wide output to data memory 1

• Your accumulator registers should be 40 bit wide.

• You are allowed to use up to four multipliers in your MAC unit.

Tasks:

(a) (6p) Decide on an instruction set for your MAC unit and write assembly code
for all functions listed above. If you don’t answer part b you need to carefully
specify what each of your instructions does.

(b) (9p) Draw a schematic and a control table for the MAC unit

Question 5: Misc knowledge(7p)
Each of the questions should be answered fairly briefly using at most five sentences
per question. You are encouraged to draw a figure if it will simplify or clarify your
explanation.

(a) (3p) Explain briefly the concept of profiling and how you would want to use this
in the context of ASIP development.

(b) (2p) Discuss at least one advantages and one disadvantage of using floating point
arithmetic in a DSP processor instead of fixed point arithmetic.

(c) (2p) Explain briefly the concept of dynamic scaling (which is sometimes called
block floating point).

Control table for Q1 (AGU)
Feel free to use this table when answering question 1. Remove it from the exam and
hand it in together with the rest of the exam in that case. (Or draw your own control
table if you prefer.)

A
ID

: ___________ D
ate: 2012-10-26. P

age num
ber ________

C
ourse code: T

S
E

A
26 E

xam
 code: T

E
N

1

Operation

Control signals

Comments

Control table for Q2 (ALU)
Feel free to use this table when answering question 2. Remove it from the exam and
hand it in together with the rest of the exam in that case. (Or draw your own control
table if you prefer.)

A
ID

: ___________ D
ate: 2012-10-26. P

age num
ber ________

C
ourse code: T

S
E

A
26 E

xam
 code: T

E
N

1

Operation
OpA + OpB
OpA - OpB
SAT(OpA + OpB)
SAT(OpA - OpB)
(OpA + OpB) / 2
SAT(ABS(OpA) - ABS(OpB))
SAT(ABS(OpA - OpB))
SAT(ABS(OpA))

Control signals

Comments

Control table for Q3 (PFC)
Feel free to use this table when answering question 3. Remove it from the exam and
hand it in together with the rest of the exam in that case. (Or draw your own control
table if you prefer.)

A
ID

: ___________ D
ate: 2012-10-26. P

age num
ber ________

C
ourse code: T

S
E

A
26 E

xam
 code: T

E
N

1

Operation

Control signals

Comments

Control table for Q4 (MAC)
Feel free to use this table when answering question 4. Remove it from the exam and
hand it in together with the rest of the exam in that case. (Or draw your own control
table if you prefer.)

A
ID

: ___________ D
ate: 2012-10-26. P

age num
ber ________

C
ourse code: T

S
E

A
26 E

xam
 code: T

E
N

1

Operation

Control signals

Comments

