
Design of Embedded DSP Processors, TSEA26

Date 2011-08-23
Room
Time 14:00-18:00
Course code TSEA26
Exam code TEN 1
Course name Design of Embedded DSP Processors
Department ISY, Department of EE
Number of questions 5
Number of pages (including this page) 6
Course responsible Andreas Ehliar
Teacher visiting the exam room Olle Seger
Phone number during the exam time 013 - 28 2159
Visiting the exam room Around 15 and 17
Course administrator Ylva Jernling, 013-282648, ylva@isy.liu.se
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

• Exams are normally corrected within 10 working days. However, due to parent
leave it is likely that it will take longer than normal to correct the exam this time.
For more information about the exam correction, please see the course homepage.

• You can answer in English or Swedish. Don’t write answers on the exam sheet.

• When designing a hardware unit you should attempt to minimize the
amount of hardware used. (Unless otherwise noted in the question.)

• The width of data buses and registers must be specified unless otherwise noted.
Likewise, the alignment must be specified in all concatenations of signals or buses.
When using a box such as “SATURATE” or “ROUND” in your schematic, you
must (unless otherwise noted) describe the content of this box! (E.g. with RTL
code). You can assume that all numbers are in two’s complement representation
unless otherwise noted in the question.

• In questions where you are supposed to write an assembler program based on
pseudo code you are allowed to optimize the assembler program in various ways
as long as the output of the assembler program is identical to the output from the
pseudo code. You can also (unless otherwise noted in the question) assume that
hazards will not occur due to parts of the processor that you are not designing.

1



Question 1: (5p)

Draw a schematic and a control table for a program flow control unit that supports the
operations listed in the table below. The allowed inputs and outputs are also listed in
a table below. At reset the system should start executing at address 0x800. You don’t
have to worry about pipelining issues such as delay slots when solving this question.
The program counter is 14 bits wide.

Name Operation
OP1 Branch on equal
OP2 Branch on not equal
OP3 Branch always

Inputs and outputs
Direction Name Comment
Input IMM[13:0] The immediate data field from the instruction word
Input Z Zero flag from the ALU
Input RST Reset signal
Input Your choice Control signals created by you in your control table
Output TO PM[13:0] The address which is sent to the program memory

Question 2: Arithmetic Unit (15p)

a) Draw a schematic and a control table for an arithmetic unit with the following
operations: (6p)

Name Operation
OP1 RESULT = OpA + OpB
OP2 RESULT = OpA - OpB
OP3 RESULT = SAT(OpA - OpB)
OP4 RESULT = SAT(ABS(OpA))
OP5 RESULT = SAT(ABS(A - B))
OP6 RESULT = BITREVERSE(OpA)

Inputs and outputs
Direction Name Comment
Input OpA[15:0] Input from the register file
Input OpB[15:0] Input from the register file
Input Your choice Control signals created in your control table
Output RESULT[15:0] Output to the write back mux

Hint: Read through part b on the next page before you start to draw a schematic as
you will need to create a more complicated schematic if you choose to answer this part.

2



b) The function saturate values() needs to be supported on your DSP processor and
your task is to add the ALU functionality necessary to support it.

You need to figure out which instructions you will need in the ALU to support the
function. You need to add support for those instructions to the schematic and you
also need to update the control table. If you need to connect the ALU to other
components in the DSP processor (such as DM0) your schematic must clearly show how
you do this! Finally you need to translate saturate values() into assembler.

You can assume that the other parts of the processor have all features necessary to
support this function. (E.g., the AGU has appropriate addressing modes, the PFC has
a repeat instruction, etc.)

; r0 contains ptr

; r1 contains maxval

; r2 contains minval

function saturate_values(ptr, maxval, minval)

repeat 160

; x is a 16 bit temporary value

x = DM0[ptr]

if x > maxval then

DM0[ptr] = maxval

else if x < minval then

DM0[ptr] = minval

end if

ptr = ptr + 1

endrepeat

endfunction

There are two sets of constraints for this part of the question. It is up to you which
alternative you want to design for, but you will only be able to get the maximum points
of this question if you choose to fulfill the constraints listed under alternative 2 below.

Constraint alternative 1 (worth 5 points):

• The function saturate values need to execute in less than 380 clock cycles.

• DM0 is a single port memory which is 16 bit wide.

Constraint alternative 2 (worth 9 points):

• The function saturate values need to execute in less than 240 clock cycles.

• You may change the width of DM0 to 32 bit if you would like to. (You may not
change the number of ports however, it is still a single ported memory.)

• The parameter ptr which is passed to the function is guaranteed to be even.

3



Question 3: MAC unit (15p)

You should design a MAC unit which is optimized to run the do filter() and do small fir()

functions. The code and clock cycle constraints for these functions are shown below and
on the next page.

Allowed inputs and outputs
Direction Name Comment
Input DM0 result[15:0] Data that have been read from DM0
Input DM1 result[15:0] Data that have been read from DM1
Input OpA[15:0] An operand from the register file
Input OpB[15:0] The other operand from the register file
Input Your choice Control signals created in the control table
Input clk The system clock
Output TO RF[15:0] This is sent to the register file writeback port
Output TO DM0[15:0] This is sent to the write port of DM0
Output TO DM1[15:0] This is sent to the write port of DM1

; ptr1 is passed in register r0

; ptr2 is passed in register r1

; ptr3 is passed in register r2

; flag is passed in register r3

; Returns data in r0 and potentially in DM0[ptr3]

function do_filter(ptr1, ptr2, ptr3, flag)

tmp = 0

repeat 100

; Note: It is not a mistake that DM0 is used twice in the

; fractional multiplications below.

if flag == 0 then

tmp = tmp + DM0[ptr1] * DM0[ptr2]

else

tmp = tmp + ABS(DM0[ptr1] * DM0[ptr2])

endif

ptr1 = ptr1 + 1

ptr2 = ptr2 + 1

endrepeat

if ABS(tmp) >= 0x80000000 then

tmp = tmp >> 4 ; Arithmetic right shift

DM0[ptr3] = 1

end if

return SAT(tmp) ; Return value in register r0

endfunction

Constraint: This function should execute in a maximum of 260 clock cycles.

4



; ptr1 is passed in register r0

; ptr2 is passed in register r1

; tap1 is passed in register r2

; tap2 is passed in register r3

; tap3 is passed in register r4

; Returns data in DM0 in an array pointed to by ptr2

function do_small_fir(ptr1, ptr2, tap1, tap2, tap3)

tmp = 0

oldval1 = DM0[ptr1]

oldval2 = DM0[ptr1+1]

ptr1 = ptr1 + 2

repeat 99

; tap1-tap3 are 16 bit fractional values.

; val, oldval1, and oldval2 are 16 bit fractional values

val = DM0[ptr1]

ptr1 = ptr1 + 1

tmp = oldval1 * tap1 + oldval2 * tap2 + val * tap3

oldval1 = oldval2

oldval2 = val

; We should store a fractional value to DM1 here

DM1[ptr2] = SAT(tmp)

ptr2 = ptr2 + 1

endrepeat

endfunction

Constraint: This function should execute in at most 440 clock cycles

a) Select a suitable instruction set for your MAC unit. You can assume that the other
units in the DSP processor has all features required to execute these programs under
the listed constraints. For example, the AGU:s have a post increment addressing mode,
the PFC has a repeat instruction, and so on. (If you answer part b, c, and d you don’t
have to write a specific answer to part a since it is obvious which instructions you have
selected anyway). (3p)

b) Translate do filter and do small fir into assembly code that fulfills the constraints
listed above. (5p)

c) Draw a schematic for your MAC unit. Your accumulator(s) should be 40 bit wide
with 8 guard bits. (6p)

d) Draw a control table for your MAC unit. (2p)

5



Question 4: Address Generator Unit (10p)

You are designing an address generator unit (AGU) for a certain DSP processor. The
application engineers desire the following addressing modes:

Address sent to memory Operation on address register
OP1 AR[15:0] NOP
OP2 AR[15:0]+RF[15:0] NOP
OP3 AR[15:0]+1 AR[15:0] = AR[15:0] + 1
OP4 AR[15:0] AR[15:0] = AR[15:0] + 1
OP5 AR[15:0]-1 AR[15:0] = AR[15:0] - 1
OP6 AR[15:0] AR[15:0] = AR[15:0] - 1
OP7 AR[15:0]+SIGNEXTEND(IMM[7:0]) NOP
OP8 RF[15:0]+SIGNEXTEND(IMM[7:0]) NOP

In addition, the application engineers also need to access circular buffers or FIFOs in
an efficient manner. Therefore they require support for some sort of modulo addressing
mode with a step size of one. You need to figure out what operations to add to the
AGU in order to support this.

a) Draw a schematic for an AGU supporting all operations outlined above plus modulo
addressing. When drawing your schematic you need to show how you connect your AGU
to the memory subsystem. (8p)

b) Draw a control table for your AGU including all operations listed above plus all
operations required for modulo addressing. (2p)

Question 5 (5p)

a) A three tap FIR filter has the coefficients of 0.25, 0.125, and -0.25. The inputs and
outputs of this FIR filter is supposed to be in fractional format. How many guard bits
are required in the accumulator in the MAC unit? (1p)

b) Pipelining is an important technique that is used to great effect in both DSP proces-
sors and regular processors. However, this optimization does not come without costs.
Give two reasons why it is not a good idea to increase the number of pipeline stages be-
yond a certain point. (E.g., 10 pipeline stages might be a good idea whereas 30 pipeline
stages might be a bad idea in terms of performance.) Use at most 6 sentences. (2p)

c) Create a unit which will round a 161 bit two’s complement number in Q5.15 format
to Q5.10 format. You should use the rounding algorithm which has been discussed
throughout the course. (The rounding algorithm discussed in the course is called round
to nearest. In case the number in Q5.15 format is equally close to two Q5.10 numbers
you should round up towards positive infinity.) (2p)

1Errata: This was a typo in the exam, it should really be a 20 bit number!

6


