
Examination

Design of Embedded DSP Processors, TSEA26

Date 2010-10-23
Room R34, R35, R41, R42, R44, U6
Time 14:00-18:00
Course code TSEA26
Exam code TEN 1
Course name Design of Embedded DSP Processors
Department ISY, Department of EE
Number of questions 5
Number of pages 7
(including this page)
Responsible teacher Andreas Ehliar
Visiting the exam room Around 15.00 and 17.00
Course administrator Ylva Jernling, 013-282648, ylva@isy.liu.se
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• Answers can be given in English or Swedish. Don’t
write any answers on the exam sheet.

• Your number of points will depend on how easy it
is for us to understand and verify your answer. A
correct but not justified answer may not give full
points on the question.

• The width of data buses and registers must be speci-
fied unless otherwise noted. Likewise, the alignment
must be specified in all concatenations of signals or
buses. When using a box such as “SATURATE”
or “ROUND” in your schematic, you must (unless
otherwise noted) describe the content of this box!
(E.g. with RTL code).

• All numbers are in two’s complement format unless
otherwise specified.

1



1 Question 1: Program Counter (10p)

Design a PC module capable of the following operations:

• OP1: PC++

• OP2: PC = PC + signextend(Immediate)

• OP3: PC = PC

• OP4: PC = RF

• OP5: Push(PC); PC = PC + signextend(Immediate)

• OP6: Push(PC); PC = RF

• OP7: Pop(PC)

• OP8: if(flag) PC = PC + signextend(Immediate) else PC++

• OP8: if(!flag) PC = PC + signextend(Immediate) else PC++

Inputs to your PC module:

• Immediate[9:0]: Jump target offset from the instruction word

• RF[15:0]: Input from register file

• Flag: 1 bit signal from ALU

• All control signals that you specify in the control table

• Reset signal

• (And, of course, a clock signal)

Outputs from your PC module:

• PC (16 bits wide) (which is then sent to the program memory)

Other constraints:

• After the processor is reseted, the processor should start executing at address 0

• You must also have a hardware stack in your PC module capable of holding two
entries.

Also, note that for this exercise you don’t have to worry about the rest of the pipeline.
That is, you can assume that the instruction decoder has already dealt with delay slots,
setting the flag in the ALU, etc.

a) Draw a schematic of your PC module (7p)
b) Draw a control table for your PC module (3p)

2



2 Question 2: Address Generator (10p)

Create an AGU capable of the following addressing modes. The AGU should have one
address register (AR). The address space is 16 bits. The value from the register file
is 16 bits and marked as RF in the following explanation. Immediates are 10 bits.
ADDR[15:0] is the address output to the memory.

The following addressing modes have been requested by the software engineers:

• OP0: NOP

• OP1: ADDR = RF + signextend(Immediate)

• OP2: ADDR = AR + RF

• OP3: AR = RF

• OP4: ADDR = AR + signextend(Immediate)

• OP5: ADDR = AR + signextend(Immediate*2)

• OP6: ADDR = AR + signextend(Immediate*4)

• OP7: ADDR = AR + Immediate; AR += Immediate

• OP8: ADDR = AR + Immediate * 2; AR += Immediate * 2

• OP9: ADDR = AR + Immediate * 4; AR += Immediate * 4

• OP10: Bit-reversed mode (see below)

Regarding OP10: The software engineers believe that it is crucial that you include some
sort of bit-reversed addressing mode, but they don’t know how to handle this efficiently
in hardware.

The bit-reversed addressing mode will only be needed for a buffer that is 1024 words
large. You may also implement this bit-reversed addressing mode in whatever way you
want to, as long as you can use it to iterate over the entire buffer in 1024 clock cycles.

In addition, you are also allowed to place some conditions on the programmer (that is,
he may have to place his bit-reversed buffer at a special address in the memory).

a) Draw a schematic for your AGU
b) Draw a control table for your AGU

3



3 Question 3: MAC-unit (15p)

Design a MAC unit capable of supporting the following two functions:

// Input data in r0-r5 are in 16-bit fractional format

// Output data in r6 and r7 should be in 16-bit fractional format

//

// Intermediate calculations are performed using a sufficient number

// of bits, so that SAT() will be able to detect an overflow.

function butterfly_part()

r6 = SAT(ROUND(r0 * r2 - r1 * r3 - r4))

r7 = SAT(ROUND(r0 * r3 + r1 * r2 - r5))

endfunction

// * DM0 and DM1 are 16 bit wide and contains signed integers in this

// example.

// * sumofproducts and sumofdiff are signed integers that are "wide

// enough" (no overflow should occur during the repeat loop)

function filter(buffer)

AR0 = r0 // Use the instruction set AR0,r0

AR1 = r1 // Use the instruction set AR1,r1

sumofproducts = 0

sumofdiff = 0

repeat(30)

sumofproducts += DM0[AR0] * DM1[AR1]

sumofdiff += abs(DM0[AR0++] - DM1[AR1++])

endrepeat

if(sumofproducts > 0x7fffffff) then

sumofproducts = 0x7fffffff

else if(sumofproducts < -0x80000000) then

sumofproducts = -0x80000000

endif

// Read out the 32-bit result to general purpose registers

r2 = sumofproducts[31:16]

r3 = sumofproducts[15:0]

r4 = sumofdiff[31:16]

r5 = sumofdiff[15:0]

endfunction

4



Inputs to this module:

• DM0 result[15:0], DM1 result[15:0]

• OpA[15:0], OpB[15:0]: Operands from the register file

• Control signals (created by you in your control table)

• (And, of course, a clock signal)

Outputs from this module:

• TO RF[15:0] - This is sent to the register file writeback port

Constraints:

• The register file, DM0, and DM1 are 16 bits wide.

• It is up to you to decide how many accumulators you will need and how large they
should be.

• The other parts of the processor have enough features to support these assembly
programs (that is, the PC has a repeat instruction, the AGU have all relevant
addressing modes, etc)

• The function butterfly part() should be executed in at most 15 clock cycles (ex-
cluding the return instruction)

• The function filter() should be executed in at most 80 clock cycles (excluding the
return instruction)

a) Select an instruction set for your MAC unit and write assembly programs for both
functions. You should also decide how many accumulator registers you will need and
how wide such a register should be. (6p)
b) Draw a schematic of your MAC unit (including a control table) (9p)

5



4 Question 4: Custom instructions (10p)

You have been tasked with accelerating a piece of code which contains a lot of complex
valued multiplications, additions, and subtractions. A complex value is stored in a
normal register by putting the imaginary part into the MSB part of the register and the
real part in the LSB part of the register.

Your task is to make sure that the following piece of code should be able to execute in
at most 7 clock cycles. All operations in this code are done on complex valued data!

o0 = i0 * c0 - i1

o1 = i0 + i1

o2 = i2 * c1 - i3

o3 = i2 + i3

Constraints:

• You need to be able to execute the excerpt listed above in at most 7 clock cycles.

• You can assume that all operands will be present in the register file. You can also
assume that all results should be written back to the register file.

• You don’t have to worry about overflows. (The code is written in such a way that
overflows cannot occur.)

Inputs:

• OpA[31:16]: Imaginary part of the first operand from the register file

• OpA[15:0]: Real part of the first operand from the register file

• OpB[31:16]: Imaginary part of the second operand from the register file

• OpB[15:0]: Real part of the second operand from the register file

• Control signals (decided by you in the control table)

Outputs:

• TO RF[31:16]: Imaginary part of the result

• TO RF[15:0]: Real part of the result

a) Select a suitable instruction set for your module (2p)
b) Draw a schematic of your accelerator. (6p)
c) Draw a control table for your accelerator (2p)

6



5 Question 5: General knowledge (5p)

a) The following is a list of components commonly present in a DSP processor. One
very important component is missing, which one? (1p)

• Arithmetic Logic Unit

• Program counter

• Register File

• Address Generator Unit

• Instruction decoder

• Data memory 0 (also includes memory mapped I/O)

• Data memory 1

• Multiply-Accumulate Unit

b) Draw a pipeline diagram of a DSP processor where you include all components from
the previous task (including the missing component). Note: You should not draw the
contents of the various parts, (e.g. just drawing a box and writing “PC” inside is enough
for the program counter module, etc) (1p)

c) A four-tap FIR filter has the following coefficients: 0.4, 1.4, -1.1, and -0.1. Samples
are in the range of [−2, 2). How many guard bits are required if the result of the FIR
filter should be stored in fractional format and we want to be able to detect an overflow
in all cases? (1p)

d) In a pipelined processor you can have data, control, and structural hazards. Explain
what a control hazard is. (2p)

7


