
Examination

Design of Embedded DSP Processors, TSEA26

Date 2010-08-27
Room
Time 14:00-18:00
Course code TSEA26
Exam code TEN 1
Course name Design of Embedded DSP Processors
Department ISY, Department of EE
Number of questions 5
Number of pages 7
(including this page)
Responsible teacher Dake Liu
Phone number during 013-281256
the exam time
Visiting the exam room Around 15.00 and 17.00
Course administrator Ylva Jernling, 013-282648, ylva@isy.liu.se
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• Answers can be given in English or Swedish. Don’t
write any answers on the exam sheet.

• Your number of points will depend on how easy it
is for us to understand and verify your answer. A
correct but not justified answer may not give full
points on the question.

• The width of data buses and registers must be speci-
fied unless otherwise noted. Likewise, the alignment
must be specified in all concatenations of signals or
buses. When using a box such as “SATURATE”
or “ROUND” in your schematic, you must (unless
otherwise noted) describe the content of this box!
(E.g. with RTL code)

• All numbers are in two’s complement format unless
otherwise specified.

1



Question 1: General knowledge (5p)

a) You are asked to increase the performance of a 16-tap FIR filter which is running
on a pipelined single issue RISC processor with 32 registers. Discuss what is most
important to add to this RISC processor: A MAC instruction or a zero overhead
loop instruction. (2p)

b) You are asked to increase the performance of an 8-point FFT which is running on
a pipelined single issue RISC processor with 32 registers. Discuss what is most
important to add to this RISC processor: A bit-reversed addressing mode or a
butterfly instruction. (2p)

c) A 5-tap FIR filter is implemented using fractional multiplication in the MAC unit.
The filter coefficients are 0.25, 0.75, -0.5, 0.25, and 0.75. It is also known that the
absolute value of all input samples are always less than 0.75. Assuming that we
want the output of the FIR filter in fractional format, how many guard bits do we
need in the accumulator? (1p)

Question 2: Arithmetic units (10p)

Draw a schematic for an arithmetic unit capable of the following operations:

• OP0: RESULT = A+B

• OP1: RESULT = A-B

• OP2: RESULT = (A+B+1)/2 (average with rounding)

• OP3: RESULT = ABS(B)

• OP4: RESULT = MAX(A,B)

• OP5: RESULT = ABS(B-A)

Constraints:

• Overflow must be handled for OP2, OP3 and OP5. It is up to you if you want to
handle overflow in the remaining cases.

• RESULT, A, and B are 8 bits wide

Tasks:

a) Draw a hardware schematic of your arithmetic unit. You should minimize the amount
of hardware, especially adders. You should also annotate the bit width of all signals
except control signals to muxes. (7p)

b) Draw a control table for your ALU (3p)

2



Question 3: MAC (10p)

Design a MAC unit capable of the following operations:

• OP0: No operation

• OP1: ACR = 0

• OP2: ACR = A * B (Fractional multiplication (signed))

• OP3: ACR = A * B + ACR (Fractional multiplication (signed))

• OP4: ACR = 1.25 * ACR (Scaling)

• OP5: Load ACR with a fractional value from a register

• OP6: ACR = SATURATE(ROUND(ACR))

• OP7: RF = ACR[7:0]

• OP8: RF = ACR[15:8]

• OP9: RF = SIGNEXTEND(ACR[19:16])

Constraints:

• A and B are 8 bits, registers are 8 bits

• ACR is 20 bits (including 4 guard bits).

• Only one multiplier may be used. You should select as small a multiplier
as necessary. You also need to annotate whether it is signed or unsigned.

• Rounding is performed in such a way that OP8 can be used to read out the
saturated and rounded result.

Tasks:

a) Draw a hardware schematic for your MAC unit. You must annotate the bit width of
all signals except mux control signals. (7p)

b) Draw a control table for your MAC unit where you include all operations defined
above. (3p)

3



Question 4: Understanding the pipeline (15p)

A schematic of a processor is shown on the next page. The datapath is 16 bits wide
and there are 16 registers, r0 to r15. OpB will always be set to the contents of a
register whereas OpA can be set to either a register or the 16 least significant bits of
the instruction word depending on whether bit 16 of the instruction word is 0 or 1,
as shown in the figure. The program memory contains 4096 (212) instructions. The
following instructions are already implemented:

Instruction Explanation Instruction Explanation
nop No operation set OpW, immediate OpW = immediate

add OpW,OpA,OpB OpW = OpA + OpB load OpW, OpA OpW = DM[OpA]

sub OpW,OpA,OpB OpW = OpA - OpB store OpA, OpB DM[OpA] = OpB

There are also 16 program flow control instructions implemented in the decoder, tenta-
tively named PFCOP0 . . . PFCOP15. When a jump instruction is encountered, the decoder
will set the signal PFC OP[4] to 1. Additionally, PFC OP[3:0] is set to 0 if PFCOP0 was
decoded, 1 if PFCOP1 was decoded, and so on. If a jump instruction is not decoded, the
value of PFC OP[3:0] is undefined. Each PFCOP instruction may (but don’t have to) use
OpA and OpB. The 12 least significant bits (PFC DATA) in the instruction word can be
used as an absolute address, pc relative address, loop counter setting, etc.

Tasks:

a) How many delayslots will an unconditional jump have if the FORCE NOP signal is
deactivated? (1p)

b) Write assembly code to calculate the sum of r0, r1, and r2, using a minimum amount
of instructions. Hint: The pipeline has no forwarding or register bypass! (1p)

c) The following two programs need to execute in less than 200 cycles each. The size
of program 1 must be less than 20 instructions. The size of program 2 must be less
than 25 instructions. Decide on which program flow control instructions you will need
to fulfill these constraints. You may create up to 16 program flow control instructions.
(There are 4 bits in PFC OP[3:0].) You also need to describe how many delay slots each
instruction has. Finally, you should write assembly code for both programs. (7p)

// Program 1: // Program 2:

// x is in r0, flag is in r1 // inptr is in r0, outptr in r1

if x >= 10 repeat 36

x = x + 55 x = DM[inptr]

else inptr = inptr + 1

x = x + 48 DM[outptr] = x

if flag == 1 outptr = outrptr + 1

x = x + 32 endrepeat

end if

end if

4



d) Draw a hardware schematic of the program counter module. You may use multiplex-
ers, registers, adders, FSMs (finite state machines), and logic gates. If you use an FSM,
you must include the state diagram of the FSM. (6p)

Signal Explanation
FORCE NOP This signal makes the instruction decoder believe

that it is decoding a NOP instruction.
NEXT PC The next value for the program counter.
PC The current value of the program counter.
PCFSM OPA LARGER Set to 1 if OpA is larger (unsigned) than OpB
PCFSM OPA SMALLER Set to 1 if OpA is smaller (unsigned )than OpB
PCFSM OPA EQUAL Set to 1 if OpA is equal to OpB
PFC DATA, PFC DATA 1, The twelve least significant bits in the instruction
PFC DATA 2 word. These signals are delayed 0, 1 or 2 clock cycles.
PFC OP[4] 1 if a jump is decoded, 0 otherwise
PFC OP[3:0] The kind of jump that was decoded.
RESET System reset. Will be asserted for at least 16 cycles.

PCFSM_OPA_LARGER
PCFSM_OPA_SMALLER
PCFSM_OPA_EQUAL

PC

PM

INSNREG

Instruction
decoder

Register
file

[31:21] [20:17] [15:12] [15:0]

[16]

01

OPB OPA
Control Signals

ALU MEMORY

Writeback to RF

PCFSM_OPA_LARGER
PCFSM_OPA_SMALLER
PCFSM_OPA_EQUAL

Jump flags

PFC_DATA_1

[11:0]

PFC_DATA_2

32

16

16

16

16 16

16

12

12

12

NOTE: Unsigned comparison!
12

Program counter module

P
F

C
_D

A
TA

12

FORCE_NOP

NEXT_PC

RESET

PFC_OP[4:0]

5

5



Question 5: ASIP instruction selection (10p)

The following function should be implemented on the Senior processor.

function ROTATE_VECTOR

A = dm0[matrixptr]

B = dm0[matrixptr+1]

C = dm0[matrixptr+2]

D = dm0[matrixptr+3]

repeat 50

X = dm0[vectorptr++]

Y = dm0[vectorptr++]

ROTATEDX = A*X+B*Y

ROTATEDY = C*X+D*Y

dm1[resultptr++] = ROTATEDX

dm1[resultptr++] = ROTATEDY

endrepeat

endfunction

Constraints:

• matrixptr, vectorptr, and resultptr are available in general purpose registers
when the function is called.

• A, B, C, D, X, Y, ROTATEDX, and ROTATEDY are 16 bit fractional numbers.

• You don’t need to worry about saturation and rounding in this exercise.

• You may not add any ports or change the width of either DM0 or DM1.

Tasks:

Your task is to modify the pipeline of the Senior processor so that the function ROTATE VECTOR

can be executed in less than 130 clock cycles. You will also need to select suitable in-
structions to implement this function. The pipeline of the Senior processor is shown in
Figure 1 on the next page. Note: If you can’t manage it in 130 clock cycles, you
may still get some points if you can manage it in less than 165 clock cycles.

a) Select a set of new instructions that will allow you to execute ROTATE VECTOR in less
than 130 clock cycles and translate ROTATE VECTOR into assembler. (2p)

b) Draw a hardware schematic of the modified parts of the pipeline. You don’t need to
annotate the bit widths of any signals. You may use up to two multipliers. You may
also use as many gates, multiplexers and adders as you want to (within reason). (5p)

c) Draw a control table for your hardware where you include all instructions that you
selected in task a. You should also include a NOP instruction in your control table. For
each of your new instructions you also need to describe any AGU or memory operation
that it may perform. (3p)

6



Figure 1: The Senior pipeline

7


