
Examination

Design of Embedded DSP Processors, TSEA26

Date 2010-01-14
Room TER1 and TER2
Time 14:00-18:00
Course code TSEA26
Exam code TEN 1
Course name Design of Embedded DSP Processors
Department ISY, Department of EE
Number of questions 5
Number of pages 7
(including this page)
Responsible teacher Andreas Ehliar
Phone number during 013-288956
the exam time
Visiting the exam room Around 15.00 and 17.00
Course administrator Ylva Jernling, 013-282648, ylva@isy.liu.se
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• Answers can be given in English or Swedish. Don’t
write any answers on the exam sheet.

• Your number of points will depend on how easy it
is for us to understand and verify your answer. A
correct but not justified answer may not give full
points on the question.

• The width of data buses and registers must be
specified unless otherwise noted. The alignment
must be specified in all concatenations of signals
or buses. When using a box such as “SATURATE”
or “ROUND” in your schematic, you must (unless
otherwise noted) describe the content of this box!
(E.g. with RTL code)

• All numbers are in two’s complement format unless
otherwise specified.

1



Question 1: General knowledge (5p)

a) A certain FIR filter has the coefficients of 0.25, -0.75, 3, and 0.5. The samples
and the result shoule be in fractional format. How many guard bits do you need
in the accumulator to make sure that you will always detect an overflow? (1p)

b) What is a delay slot? Explain why delay slots can increase the performance of a
DSP processor. (2p)

c) In a real time system, can you trust the result of static profiling? What about
dynamic profiling? (2p)

Question 2: ALU (8p)

Design an ALU capable of the following operations:

• OP0: RESULT = A+B+Carry in

• OP1: RESULT = A-B

• OP2: RESULT = ABS(B-A)

• OP3: RESULT = LEFTSHIFT(A,B[2:0]) (Shift A left by B[2:0] times)

• OP4: RESULT = RIGHTSHIFT(A,B[2:0]) (Shift A right by B[2:0] times (not arith-
metic shift))

Constraints::

• Overflow must be handled for ABS(B-A). It is up to you if you want to handle
overflow in any other case.

• You should minimize the amount of hardware such as adders and shifters.

• A is 8 bits wide, B is 8 bits wide, Carry in is 1 bit wide. RESULT is 8 bits wide.

Tasks:

a) Draw a hardware schematic of your ALU. You should also annotate all signals
except control signals to muxes with the bit width (6p)

b) Draw a control table for your ALU (2p)

2



Question 3: MAC (14p)

Design a MAC unit capable of the following operations:

• OP0: No operation

• OP1: ACCx = A * B (Fractional multiplication (signed))

• OP2: ACCx = A * B + ACCy (Fractional multiplication (signed))

• OP3: ACCx = 4.0 * ACCy (Scaling)

• OP4: ACCx = 1.5 * ACCy (Scaling)

• OP5: Load ACCx with a fractional value from a register

• OP6: ACCx = SATURATE(ROUND(ACCy))

• OP7: ACCx = ACCy + ACCz

• OP8: ACCx = ACCy - ACCz

• OP9: RF = ACCy[7:0]

• OP10: RF = ACCy[15:8]

• OP11: RF = SIGNEXTEND(ACCy[21:16])

Constraints::

• A and B are 8 bits, registers are 8 bits

• ACC0, ACC1, and ACC2 are 22 bits (including 6 guard bits).

• x, y, and z are 2 bits wide and are sent from the instruction decoder to select the
appropriate accumulator register. For example, where the description above says
ACCx, this means that either ACC0, ACC1, or ACC2 is used here, depending on the
value of x. If, for example, ACCy is not present in that operation, the content of y
is undefined.

• Only one multiplier may be used. You should select as small a multiplier as
necessary. You also need to annotate whether it is signed or unsigned.

Tasks:

a) Draw a hardware schematic for your MAC unit. You must annotate the bit width
of all signals except mux control signals. (11p)

b) Draw a control table for your MAC unit where you include all operations defined
above. (3p)

3



Question 4: Address Generation Unit (AGU) (12p)

Profiling has shown that the following two functions are important for a certain appli-
cation. Your task is to design an AGU that is capable of supporting them under the
constraints given below.

function FIR_FILTER(samplesptr, bottom, top, coeffptr)

repeat(128)

ACC = ACC + dm0[samplesptr] * dm1[coeffptr]

samplesptr = samplesptr + 1

if samplesptr == top

then

samplesptr = bottom

endif

coeffptr = coeffptr + 1

endrepeat

endfunction

function STORE_VAL(addr, value)

parameter = dm0[59]

dm0[addr] = value

dm0[addr+2] = parameter

dm0[addr+4] = parameter

dm0[addr+8] = parameter

dm0[addr+16] = parameter

dm0[addr+32] = parameter

endfunction

Constraints::

• STORE VAL() must execute in less than 12 clock cycles. FIR FILTER() must exe-
cute in less than 140 clock cycles.

• The processor is a single scalar pipelined DSP processor which issues one instruc-
tion each clock cycle. (Like Senior.) You don’t need to worry about pipeline
penalties for any kind of jump in this exercise however.

• Function parameters are passed in general purpose registers

• You can assume that all other parts of the processor can handle the clock cycle
requirements listed above. E.g. the MAC unit is connected to each memory, etc.
This exercise is only about designing the AGU.

4



• The general purpose register file has two read ports and one write port. The
memories are single ported.

Tasks:

a) Select the addressing modes you will need to fulfill the requirements listed above
and write pseudo assembler code for the two functions. (3p)

b) Draw a hardware schematic of your AGU. You should minimize the amount of
hardware in your AGU by for example making use of the fact that dm0 and dm1
will not require the same addressing modes. You don’t need to annotate any bit
widths in the AGU schematic. (6p)

c) Draw a control table for all of your addressing modes. Also, if your AGU includes
any register, include instructions to set such registers in your control table. (3p)

Question 5: Special instructions (10p)

The function FIR 3 is responsible for 70% of the time in a hypothetical application
running on the Senior processor. Your task is to evaluate the hardware cost of speeding
up this function by designing a custom instruction that is able to execute FIR 3 in
one clock cycle. Additionally, it is necessary to initialize the values used by the FIR 3

function by using the INITFIR 3 function. However, it is expected that the FIR 3

function will be executed around 1000 times as often as the INITFIR 3 function. This
means that the INITFIR 3 function does not need to execute quickly.

function FIR_3()

samples[2] = samples[1]

samples[1] = samples[0]

samples[0] = dm0[inputptr]

inputptr = inputptr + 1

tmp = 0

tmp = tmp + samples[0] * coefficients[0]

tmp = tmp + samples[1] * coefficients[1]

tmp = tmp + samples[2] * coefficients[2]

dm1[outputptr] = SATURATE(tmp)

outputptr = outputptr + 1

endfunction

5



function INITFIR_3(val1, val2, val3, val4, val5)

samples[0] = 0

samples[1] = 0

samples[2] = 0

inputptr = val1

outputptr = val2

coefficients[0] = val3

coefficients[1] = val4

coefficients[2] = val5

endfunction

Constraints:

• Function parameters are passed in general purpose registers

• samples contains 16 bit values in signed integer format

• coefficients contains 16 bit values in signed integer format

• The tmp variable has a suitable number of guard bits.

• You don’t need to pipeline this unit for maximum clock frequency.

• You should be able to issue one FIR 3() instruction every clock cycle.

Tasks:

Your task is to design and implement the function FIR 3() as a special instruction on
the Senior processor. (The pipeline of the Senior processor is shown in Figure 1 on the
next page.) You also need to implement support for the INITFIR 3() function and you
will probably need to add a couple of instructions to do this.

a) What parts of the Senior processor pipeline will you need to modify (besides the
instruction decoder?) (1p)

b) Draw a hardware schematic of the modified parts of the pipeline. You don’t need to
annotate bit widths. You don’t need to annotate the contents of a SATURATE box.
(6p)

c) Draw a control table for your hardware where you include a NOP instruction, the
FIR 3 instruction and the instructions necessary to implement INITFIR 3. You should
also write pseudo assembler code for INITFIR 3. (3p)

6



Figure 1: The Senior pipeline

7


