
07 - Program Flow Control

Andreas Ehliar

September 23, 2014

Andreas Ehliar 07 - Program Flow Control

Schedule change this week

I The lecture on thursday needs to move

Andreas Ehliar 07 - Program Flow Control

Lab computers

I The current computer lab (Bussen) is pretty nice since it has
dual monitors

I However, the computers does not have enough memory to
comfortably run matlab and firefox at the same time.

I Modelsim and firefox running at the same time will probably
not improve things.

I Question: Do we move to a lab with faster computers but
only one monitor per computer?

Andreas Ehliar 07 - Program Flow Control

Control path introduction

Program memory

Instruction decoder

Program flow controller

PC finite state machine

Processor configuration Flags and status

Data path Addressing path Peripherals Control path itself

Instruction decoder

[Liu2008]
Andreas Ehliar 07 - Program Flow Control

Important note about FSMs

I Quick hint for lab 3:
I You might want to refresh your memory regarding Moore and

Mealy-style state machines before embarking on lab 3.
I (You will need to create a Mealy-style FSM there.)

Andreas Ehliar 07 - Program Flow Control

Jobs allocated in the control path

I Supplies the right instruction to execute
I Normal next PC, Branches, Call/return and loops

I Decodes instructions into control signals
I For data path, control path, memory addressing, and

peripherals/bus

I Special control for DSP
I Loop controller

Andreas Ehliar 07 - Program Flow Control

Instruction decode - Registered and non-registered

Instruction register Processor configuration

Instruction decoding logic

Registered control signals

… …

… …

… …

… …

Non-registered control signals

[Liu2008]

I Try to keep as many control signals registered as possible

I Control signals dealing with instruction fetch (branches, loop
control, etc) might be unregistered for performance reasons.

Andreas Ehliar 07 - Program Flow Control

Two techniques for instruction decoding:
Centralized vs distributed

Andreas Ehliar 07 - Program Flow Control

And now, for a complete control path example

I A very simplified processor
I The execution unit contains a simple arithmetic unit
I 16 general purpose registers (16 bits each)
I 7 instructions: Four arithmetic, 3 branches
I 8 bit address space for the program memory

Andreas Ehliar 07 - Program Flow Control

Instruction set and binary coding

Mnemonic Encoding

ADD rD,rS,rT 0000 ssss tttt dddd

SUB rD,rS,rT 0001 ssss tttt dddd

CMP rD,rS,rT 0010 ssss tttt 0000

MUL rD,rS,rT 0011 ssss tttt dddd

JMP A 0100 0000 aaaa aaaa

JMP.EQ A 0101 0000 aaaa aaaa

JMP.NE A 0110 0000 aaaa aaaa

I Question: Why should bit 3:0 of the CMP instruction be 0000
rather than don’t care? What about bit 11:8 of the branch
instructions?

I (After all, a don’t care here will simplify the instruction
decoder)

Andreas Ehliar 07 - Program Flow Control

Instruction coding and future expansion

I It is always a good idea to leave some space for future
instructions

I It is a good idea to trap illegal instructions to an exception
I Allows emulation of such instructions (although this is slow!)

I However, in some cases we may want to create an instruction
decoder that handles certain bits as don’t care, to improve the
clock frequency (more on this later)

I (The rest of this example assumes that some bits are don’t
care for simplicity though.)

Andreas Ehliar 07 - Program Flow Control

Instruction set and binary coding

Mnemonic Encoding

ADD rD,rS,rT 0000 ssss tttt dddd

SUB rD,rS,rT 0001 ssss tttt dddd

CMP rD,rS,rT 0010 ssss tttt 0000

MUL rD,rS,rT 0011 ssss tttt dddd

JMP A 0100 0000 aaaa aaaa

JMP.EQ A 0101 0000 aaaa aaaa

JMP.NE A 0110 0000 aaaa aaaa

I Side question: What is missing to make this instruction set
minimally useful?

Andreas Ehliar 07 - Program Flow Control

Instruction set and binary coding

Mnemonic Encoding

ADD rD,rS,rT 0000 ssss tttt dddd

SUB rD,rS,rT 0001 ssss tttt dddd

CMP rD,rS,rT 0010 ssss tttt 0000

MUL rD,rS,rT 0011 ssss tttt dddd

JMP A 0100 0000 aaaa aaaa

JMP.EQ A 0101 0000 aaaa aaaa

JMP.NE A 0110 0000 aaaa aaaa

I Side question: What is missing to make this instruction set
minimally useful?

I Answer: I/O and some way to load constants into registers
(e.g. immediate arguments)

Andreas Ehliar 07 - Program Flow Control

Our execution unit

Andreas Ehliar 07 - Program Flow Control

The complete datapath

Andreas Ehliar 07 - Program Flow Control

Control Path (first version)

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Arithmetic instructions - RF readout

// Not so hard...

ctrl_rfaaddr = de_insn[11:8];

ctrl_rfbaddr = de_insn[7:4];

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Arithmetic instructions - Execute Stage

always @* begin

// Default statements to avoid

// latches. (Very important!)

ctrl_alu = 0;

ctrl_mux = 0;

ctrl_update_flag = 0;

// Note that we are checking

// ex_insn here, not de_insn

case(ex_insn[15:12])

4’b0000: begin // ADD

ctrl_alu = 0;

ctrl_mux = 0;

ctrl_update_flag = 1;

end
Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Arithmetic instructions - Execute Stage

4’b0001: begin // SUB

ctrl_alu = 1;

ctrl_mux = 0;

ctrl_update_flag = 1;

end

4’b0010: begin // CMP

ctrl_alu = 1;

ctrl_mux = 0;

ctrl_update_flag = 1;

end

4’b0011: begin // MUL

ctrl_mux = 1;

end

endcase

end
Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Arithmetic instructions - Writeback Stage

// Instruction decoder writeback stage

always @* begin

ctrl_rfwe = 0;

ctrl_rfwaddr=wb_insn[3:0];

case(wb_insn[15:12])

// ADD

4’b0000: ctrl_rfwe = 1;

// SUB

4’b0001: ctrl_rfwe = 1;

// MUL

4’b0011: ctrl_rfwe = 1;

endcase

end

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Unconditional jump

// Control signals, decoder stage

// Only a limited amount of control

// signals should be generated

// combinationally here.

always @* begin

jumpaddr = de_insn[7:0];

ctrl_jump_uncond = 0;

case(de_insn[15:12])

4’b0100: begin // JMP

ctrl_jump_uncond = 1;

end

endcase

end

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
The problem with jumps

I · Consider the following
program:

I jmp 0x59
I add r5,r2,r3

I The add is already being
fetched when the jump is
decoded

Add is being fetched here

While jump is decoded here

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Handling control hazards

I Option 1 - Don’t use
pipelining

I Bonus: If you don’t need
any performance in your
system you don’t need to
pass TSEA26...

I Option 2 - Discard the extra
instruction

I Not very good for
performance...

Andreas Ehliar 07 - Program Flow Control

Instruction decoding
Handling control hazards

I Option 3 - Consider it a
”feature”

I The add is executed in
the delay slot of the jump

I This is very common for
simple RISC-like
processors

I Option 4 - Use branch
prediction to avoid the
problem

I Not really a part of this
course

Andreas Ehliar 07 - Program Flow Control

What about conditional jumps?

The flag is available late in
the pipeline

CMP r0,r5

JMP.EQ 0x57

Andreas Ehliar 07 - Program Flow Control

Program Counter with support for conditional jumps

Andreas Ehliar 07 - Program Flow Control

Program Counter with support for conditional jumps

// Control signals, execute stage

always @* begin

ctrl_jump_checkflag = 0;

ctrl_jump_mode = 0;

case(ex_insn[15:12])

4’b0101: begin // JMP.EQ

ctrl_jump_checkflag = 1;

ctrl_jump_mode = 1;

end

4’b0110: begin // JMP.NE

ctrl_jump_checkflag = 1;

ctrl_jump_mode = 0;

end

endcase

end

Andreas Ehliar 07 - Program Flow Control

Program Counter with support for conditional jumps

I Two delay slots for conditional jumps
I In a real processor the flags will probably be available even

later in the pipeline

I Ways to avoid this - Predict not taken
I Always start instructions after branch
I Flush the pipeline if the flag test is negative

I For arithmetic instructions this can be done by disabling
writeback

I Slightly more advanced
I Use a bit in the instruction word to predict taken/not-taken

Andreas Ehliar 07 - Program Flow Control

Great! We have solved all problems. Or...?

I Are there any other problems?

Andreas Ehliar 07 - Program Flow Control

Data hazards

I Consider the following
instruction sequence

add r0,r1,r2
add r4,r0,r3

New r0

Old r0

Andreas Ehliar 07 - Program Flow Control

Handling data hazards

I One solution - ”This is also a feature”
I Also known as ”the lazy solution”
I Can actually be a real feature in some way since it allows you

to use the pipeline registers as temporary storage
I Don’t do this if you can avoid it!
I I did. I regretted it just a year later when I wanted to add

interrupts...

I Better variant: Consider this undefined behavior
I Simulator or assembler disallows code like this (e.g. srsim)

Andreas Ehliar 07 - Program Flow Control

Handling data hazards

I Stall the pipeline
I Stop the pipeline above the decode stage
I Let the decode stage insert NOP instructions until the result is

ready.

Andreas Ehliar 07 - Program Flow Control

Handling data hazards

I Register forwarding (also
known as register bypass)

I Bypass register file using
muxes

I Most elegant solution

I Could limit clockrate
I Not possible to do in all

cases
I Notably memories and

other instructions with
long pipelines

Andreas Ehliar 07 - Program Flow Control

Structural hazards

I If two resources are used at
the same time

I Example to the right
I Memory access pipeline is

one clock cycle longer
than ALU

load r0,[r1]

add r2,r3,r4

Andreas Ehliar 07 - Program Flow Control

Dealing with structural hazards

I The usual suspects: Stall or simply consider it a ”feature”
I Another solution: add more hardware to simply avoid the

problem
I Example: Extra write-port on the register file
I Example: Extra forwarding paths
I Drawback: Can be very expensive

Andreas Ehliar 07 - Program Flow Control

Pipeline hazards summary

I Control hazard
I Cannot determine jump address and/or jump condition early

enough

I Data hazard
I An instruction is not finished by the time an instruction tries

to access the result (or possibly, write a new result)

I Structural hazard
I Two instructions tries to utilize the same unit at the same

time from different locations in the pipeline

Andreas Ehliar 07 - Program Flow Control

Diminishing returns when adding pipeline stages

Best speedup

Pipeline
1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[Liu2008]
Andreas Ehliar 07 - Program Flow Control

Instruction decoder tricks

I The instruction decoder handles timing critical signals first in
an optimistic fashion

IR

Instruction
Decoder

(using don't
cares)

Timing critical
control signals

Illegal instruction
decoder

Generate Exception
and annul unwanted

behavior

I Will make verification harder! (More corner cases)

Andreas Ehliar 07 - Program Flow Control

Instruction decoder tricks

I Other ways
I Ignore the (hopefully slight) performance hit. (Recommended

if at all possible.)
I Trust users never to use “undefined” instructions (Hah!)
I If you use an instruction cache: change undefined instructions

into specific “trap” instructions. (This is simple if all
instructions are the same length, impossible otherwise (in the
general case).)

Andreas Ehliar 07 - Program Flow Control

Predecoding

I Predecoding can also help in other cases
I A few extra bits in the instruction cache (or instruction word)

can be beneficial for other cases
I Conditional/unconditional branches
I Hazard detection

Andreas Ehliar 07 - Program Flow Control

Instruction encoding problems

I Goal: As many instructions in as few bits as possible
I Challenges

I Space for future expansion (look at x86 for a scary example...)
I Space for immediate data (including jump addresses)
I Should be easy for the instruction decoder to parse

Andreas Ehliar 07 - Program Flow Control

Instruction encoding problems

I Immediate data
I Alternative 1: Enough space for native data width
I Alternative 2: Not wide enough. Need two instructions to set

a register to a constant (sethi/setlo)

Andreas Ehliar 07 - Program Flow Control

Instruction encoding problems

I Branch target address
I Relative addressing (saves bits, typically enough)
I Absolute addressing (probably required for unconditional

branches and subroutine calls)

Andreas Ehliar 07 - Program Flow Control

The program counter module

P
ro

gr
am

m
em

or
y

P
C

F
SM

In
st

ru
ct

io
n

de
co

de
r

To register file

To ALU

To MAC

To AGU

From I-decoder

From register file

From stack

To memories

Immediate data

finish

start

S
ta

ck

To stack

L
oo

p
co

nt
ro

lle
r

Boot dataBoot
FSM

Boot
address

PC

Write enableBoot

In
st

ru
ct

io
n

Code source

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

PC FSM

Stack pop

Jum p taken
PC <= Jum p

target address
reset

Default
To loop

in loopPC <= PC

H old reset

reset

PC <= stack

PC <= 0 Defau lt state :
PC <= PC +1

PC <= In te rrup t
serv ice en try

A ccept
in terrupt

PC <=
Excep tion

excep tion

reset

rese t reset

reset

reset

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

PC Example

PC

“0”

Stack pop

“+1”

Jump
decision

Flags

Conditional jump

Next PC control logicStack pop control

Target address control

Jump taken

Interrupt service entry

Exception service entry

Target
address

generator

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

What kind of jumps do we need?

I Absolute
I PC = Immediate from instruction word
I PC = REG (Note: used for function pointers!)

I Relative
I PC = PC + Immediate
I PC = PC + REG (Necessary for PIC (Position independent

code))

Andreas Ehliar 07 - Program Flow Control

Loop controller

+” -1”

Loop initial
va lue

L
oo

p
co

un
te

r

=0

Loop
finish
flag

M UX1
MU X2

0

1

0

1

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

PC FSM supporting loop instruction

else Stack pop

Jump taken PC <= Jump
target address

else

else

reset

To loop

In simple loop

PC <= PC

else
Hold reset

reset

PC <= stack

PC <= 0 Default state:
PC <= PC +1

PC <= Interrupt
service entry

Accept
interrupt

PC <=
Exception

exception
else

reset

reset reset

reset

reset

PC <=
LoopStart

reset
MC==0 &
LC<>0

else

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

Loop controller

+”−1”

L
C

MUX4 MUX5

0

1

0
1

+”−1” M
C

MUX2

00
01
1xM

0
1M

MUX1
=0

N
=0

LoopFlag

or ZeroFlag
LoadN

1
0

MUX3

Number of instructions

Number of iterations

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

Handling subroutines

I Return address can be pushed to
I Special call/return stack in PC FSM

I Example: Small embedded processors (e.g. PIC12/PIC16)

I Normal memory
I CISC-like general purpose processors (e.g. 68000, x86)

I Register
I RISC-like processors (e.g. MIPS, ARM)
I Up to the subroutine to save the return address if another

subroutine call is made

Andreas Ehliar 07 - Program Flow Control

PC with hardware stack

3b
it

s
S

P
R

“0”

pop

“−1”

M1<=1 IF Push & SPR[2:0]=000;
M2<=1 IF Push & SPR[2:0]=001;
M3<=1 IF Push & SPR[2:0]=010;
M4<=1 IF Push & SPR[2:0]=011;

M1 M2 M3 M4

Push in data

Overflow <= Push & SPR [2]

Underflow <= Pop & SPR=000
OpError <= Pop & Push

error

push
“+1”

pop
push
reset

M1

M2

M3

M4

If reset C = 11
Elseif pop or push C= 01
Else C= 00

C

1
0

00
01
11

1
0

1
0

1
0

1
0

Else M1 <= M2 <= M3 <= M4<=0;

01

10

11

00

S1R

S2R

S3R

S4R

Pop data

SPR [1:0]

[Liu2008]

Andreas Ehliar 07 - Program Flow Control

Dealing with interrupts

I Desirable features from the user:
I Low latency
I Configurable priority for different interrupt sources

I Desirable features from the hardware designer
I Easy to verify

Andreas Ehliar 07 - Program Flow Control

Handling low latency interrupts

I Save only PC and Status register
I Interrupt handlers must be written to use as few registers as

possible to avoid having to save/restore such registers

I Save many registers in hardware
I Convenient for programmer
I More complex hardware/interrupt handling

I Shadow registers
I A processor with 16 user visible registers (r0-r15) may actually

have 24 registers in the register file.
I r0-r7 is replaced by r16-r23 during an interrupt

Andreas Ehliar 07 - Program Flow Control

Handling low latency interrupts

I Reserved registers
I Certain registers are reserved for the interrupt handler and may

not be used by regular programs
I See MIPS ABI
I More generally, this can be done in GCC if you are careful

I register int interrupt handler reserved asm ("r5");
I All code needs to be recompiled with this declaration visible!

Andreas Ehliar 07 - Program Flow Control

Reducing verification time

I Disallow interrupts at certain times
I Typically branch delay slots
I Introduces jitter in interrupt response
I Can be handled by introducing a delay in interrupt-handling

when handling interrupts happening outside delay slots

Andreas Ehliar 07 - Program Flow Control

Interrupts in delay slots

I WARNING: Ensure that the following kind of code doesn’t
hang your processor:

loop:

jump ds3 loop

nop

nop

nop

Andreas Ehliar 07 - Program Flow Control

Interrupts in delay slots

I Disallow interrupts at certain times
I What about the following?

loop:

jump ds3 loop

jump ds3 loop ; Typically not allowed by

nop ; the specification, but you

nop ; probably don’t want code

nop ; like this to hang the system.

; (See the Cyrix COMA bug for

; a similar example.)

Andreas Ehliar 07 - Program Flow Control

