TSEA26 — Design of Embedded DSP Processors
Lab Manual

Andreas Ehliar, Johan Eilert, Oscar Gustafsson, Per Karlstrom, Di Wu

November 25, 2021

Lab 0 — Introduction

This chapter will present important aspects of the lab environment. Read this chapter carefully and
use it as a reference if you get in trouble during the labs. You can also ask a lab assistant for help
if you cannot find the answer in the lab compendium.

0.1 Formatting

To assist in where to execute which command, background coloring is used. The options are:
e shell> command : Execute command in a shell prompt
e ModelSim> command : Execute command in ModelSim prompt

e sim> command : Execute command in the Senior simulator srsim

0.2 Lab Groups and Lab Examination

The labs are supposed to be done in groups consisting of up to two students. It is important that both
students in a lab group are active and take part in all aspects of the labs, including the preparations
and the oral examination. Since the labs are a part of the examination, cooperation between groups
is not allowed. If you have any questions about this, feel free to ask the lab assistants.

When you have finished a lab, you will have to show a lab assistant your work. At this point
both members of the lab group must be prepared to answer whatever questions the lab assistant
may have regarding your work!.

0.3 Get Started

Before you start you need to perform a number of steps to setup the correct environment to run the
labs. If you run into problems or suspicious error messages at any step described in this chapter, do
not hesitate to ask the lab assistants!

To get started, first you need to download the lab files from the course home page?. Unpacking
the downloaded file with

'Be aware that the lab assistant may choose to pass only one member in the group if only one member in the group
is able to answer questions about the lab work.
’http://www.da.isy.liu.se/courses/tsea26/

shell> tar zxvf tsea26.tar.gz

will create a sub directory called tsea26/. There are three directories in this file, one for lab 1, one
for labs 2 and 3, and one for lab 4. See Section 0.6 for more information about the directory for
labs 2 and 3.

You also need to execute

shell> module add courses/TSEA26

to get access to the assembler and the instruction set simulator used in this course. In addition, you
need to execute

shell> module add prog/matlab/2021a
to get access to MATLAB. In lab 2 and later labs you may also need to execute
shell> module add prog/modelsim

to get access to the RTL simulator ModelSim (this is necessary if you receive an error that vlib
cannot be found).

0.4 Senior Assembler (srasm)

The assembler takes as input a text file and translates it into a binary format that the processor
understands. To run the assembler is straightforward. For any file you want to assemble give the
following command:

shell> srasm anyfile.asm

The assembler will then output a file called anyfile.hex which contains the binary data for the
program memory.

0.5 Senior Simulator (srsim)

The simulator is used to simulate the programs in software before they are run on the processor.
The simulator takes as input a .hex file generated by Senior assembler.
To run the simulator for any program you want to test, give the following command:

shell> srsim file.hex

The simulator will now start, and you will see the simulator command line (sim>). Now try
the command sim> help (or sim> h) to get a list of available commands for you to use. For

example, the command sim> r 8 , will run the program for 8 clock cycles.

0.6 Setting Up Lab 2 and 3

The two most important directories for lab two and three are 1ab2-3/rtl/ where the RTL code
of the DSP processor can be found and 1ab2-3/asm/lab2/ where the assembly language program
templates resides.

You need to decide whether to use VHDL or Verilog by changing to the 1ab2-3/rtl/ directory
and executing

shell> make use_vhdl
or
shell> make use_verilog

This will move the template files for the selected language into the RTL directory and delete the
template files for the other language.

0.7 Verification with ModelSim

When you have implemented a new hardware module you need to test it to see if it works as
expected.

Testing your implementation can be initialized with the following command (to be executed in
the tsea26/1ab2-3 directory), where £ is the current lab number:

shell> make lab vsim TEST=labf/module .asm

This will assemble and run the program module.asm found in tsea26/1ab2-3/asm/lab&/ using
the instruction set simulator srsim.
For example, to test the saturation module in lab2, run the following command:

shell> make lab_vsim TEST=1ab2/saturation.asm

If the process stops with an error message, you must correct the assembly language program or
in the RTL code. The error message will hopefully give you enough information.

If there are no errors, the RTL simulator (ModelSim) will load. It will automatically load the test
program into the DSP program memory. You can start the RTL simulation with ModelSim> run -all .
The simulation will stop when the simulator encounters the instruction out 0x12,..., or when it
encounters the instruction out 0x11,... that outputs data that do not match that in the reference
file generated by the instruction set simulator.

Some people may find it useful to know what is actually happening during the execution of the
make command. The entire flow is also shown in Fig. 1.

1. First, the specified test program is assembled:

shell> srasm asm/lab&/module.asm test.hex

This creates test.hex which is the machine language version of your program.

2. Then, the instruction set simulator is run in batch (unattended) mode:
shell> srsim -r test.hex

For each “out 0x11,...”-instruction, the simulator will write a line to the file I0S0011.

file.asm (test program)

srasm (assembler)

test.hex (binary code)

(instruction

srsim .
set simulator)

reffile.hex
(from OUT 0x11,...) *.vhd

vsim (RTL simulator)

reports no error or
"difference found"

Figure 1: A graphical view of the verification flow described in Section 0.7.

3. Then, the output file is renamed:
shell> mv I0S0011 reffile.hex
This file is used by the RTL simulator as the reference file.

4. Then, all RTL files that have changed are compiled:
shell> make compile_rtl

This will run vcom and vlog to compile the VHDL and Verilog code, respectively.
5. Finally, the RTL simulator (ModelSim) is started:

shell> vsim dsp_system_top

The RTL simulator will load the test program (test.hex) and the reference output file
(reffile.hex). Every time the RTL simulator encounters an “out 0x11,...”"-instruction
during the execution of the program, the data is compared to that in the reference file. If
there is a mismatch, the RTL simulation will be stopped.

0.7.1 Going Step by Step

A step by step procedure for compiling the code and working with ModelSim is presented below. If
you want, you can try this procedure with a simple program called simple.asm residing in the direc-
tory asm/lab3. All commands require that you execute them from the root of the tsea26/1lab2-3
directory.

1. Assemble: Assemble simple.asm

shell> srasm asm/lab3/simple.asm test.hex

2. Simulate code: Simulate the generated asm/1ab3/simple.hex in batch mode

shell> srsim -r test.hex

3. Create reference file: Create the reference file for the test bench by renaming I0S0011 to
reffile.hex

shell> mv I0S0011 reffile.hex

4. Initialize VHDL/Verilog: If you have not done this before. Initialize the hardware with
either VHDL or Verilog skeleton files.

shell> make use_verilog

(for Verilog)

shell> make use_vhdl

10.

11.

12.

(for VDHL)

. Compile hardware: Compile all hardware modules.

shell> make compile_rtl

. Start ModelSim: Start ModelSim and load your design.

shell> make vsim

Note that this make rule also compiles all the files, thus the previous step was not really
necessary.

View wave: ModelSim should now have started with no errors. If ModelSim did not start
or reported errors some of the previous steps were not properly completed. To view the wave
window, type the following in ModelSim

ModelSim> view wave

. Add signals: Add a number of useful signals to the wave window as follows:

ModelSim> do senior_signals.do

Simulate hardware: Run the simulation as follows:
ModelSim> run -all

Say No!: The simulation should run with no errors and ModelSim will prompt if you want
to finish. Answer no and look at the wave window. Almost at the top, under INSTR PIPE you
can find the current PC value and where the various instructions are in the pipeline. A number
of other useful signals has been recorded also. Look around here and familiarize yourself with
what signals has been added for you. Depending on your success with this lab you might have
to add a number of other signals

Rerun: If you discover an error in the RTL code, do not close ModelSim. Fix the error in
the RTL code, then run

shell> make compile_rtl

and restart the simulation in ModelSim.
ModelSim> restart -f
Finally run the simulation again (ModelSim> run -all)

A tip: It is often useful to log more signals than it is meaningful to have in the wave window
(avoid information overload). You can, if you logged more signals, run your simulation and
afterwards add the signals you need to look at. To accomplish this, you can use the log
command in ModelSim

ModelSim> log -r /*
It is often useful to perform a restart, log, and run all after each other:

ModelSim> restart -f; log -r /*; run -all

0.8 Important Makefile Rules

The procedures described in Section 0.7 is run using make with a Makefile in the root of the
tsea26/1ab2-3 directory. make is a tool often used when compiling programs. A Makefile has a
number of rules for how to reach a specific goal. You can think of a Makefile as a recipe for how
to cook programs and make as the chef. A more thorough description of how make works is outside
the scope of this course, but it is sufficient to know that you run make by typing

shell> make

and after make the rule you want make to run.
The most important make rules are presented here. There are more rules in the Makefile and
if you are interested in what they are, feel free to take a look in the Makefile.

compile rtl: Compiles all Verilog and VHDL files needed for RTL simulation.

shell> make compile rtl

vsim: Runs compile_rtl then starts ModelSim and loads dsp_system_top as the top module. Now
use ModelSim to simulate, view the wave window and so on.

shell> make vsim

decoder_vsim: Compiles and prepares all files necessary for simulating the full MPEG2 decoder
with the RTL code. ModelSim is then executed in batch mode and if the simulation is suc-
cessfully completed, the output from the RTL code is converted to rtlaudio.wav, which you
can listen to.

shell> make decoder_vsim

lab_vsim: Compiles and prepares all files necessary for simulating an assembly file specified by the
TEST variable. TEST must be the name of a file under the asm directory. If the test program
needs input data, a file named $TEST. in in the same directory as $TEST will be used for input.
ModelSim is then started with the dsp_system_top as the top module

shell> make lab_vsim TEST="lab directory"/"test program.asm"

use_verilog: Copies all relevant Verilog source code skeletons to the main RTL folder. Use this
rule if you want to work with Verilog code. This needs to be done once for each time you use
a new release of the lab package.

shell> make use_verilog

Instance Description

clock_generate | Generates a clock signal.

reset_generate | Generates a reset signal.

dsp_core The DSP processor Senior.

mem Models of all the memories; DMO0, DM1, and PM.

write_out_file | Writes data to rtloutput.hex through port 0x11

read_in file Reads data from I0S0010 through port 0x10

read ref file Reads reference data from reffile.hex when data is written through port 0x11

Table 1: Top level modules.

use_vhdl: Copies all relevant VHDL source code skeletons to the main RTL folder. Use this rule if
you want to work with VHDL code. This needs to be done once for each time you use a new
release of the lab package.

shell> make use_vhdl

0.9 The System

The processor is described in dsp_core.v. In order to run the processor core, additional hardware
is needed, i.e. memories and a clock generator etc. All this support hardware has been modeled
for you and are instantiated together with Senior in dsp_system_top.v. The instantiated modules
are briefly described in Table 1. It is advised that you take a look into dsp_system_top.v and
familiarize yourself with the simulation top level module.

Some things to note about dsp_system_top:

e The instruction pipeline is visible to ease debugging in ModelSim

e Two extra output ports are defined: port 0x21 and 0x22. Port 0x21 will output the value
written to the port to ModelSim but will not have any effect in srsim, writing to this port
will also cause the simulation to stop, in contrast to finish as would happen if writing to port
0x12. Port 0x22 will simply output a value to ModelSim, this is good to use when debugging
code for example.

e When writing to port 0x11 the data written will automatically be compared to data from
reffile.hex. If the data does not match, the simulation will stop and report the error. To
constantly output data makes the simulation run slower. Thus, if running the full decoder,
make sure to comment out the line reporting what is being compared.

Lab 1 — Firmware

1.1 General Description

Digital signal processing (DSP) is everywhere in our daily life. Meanwhile, DSP can be meant as
quite different things ranging from MATLAB programming to hardware implementation. In a real-
world project, engineers usually start from MATLAB modeling of the algorithm. However, this is
not enough because MATLAB models are usually not real-time. Therefore, the algorithm needs to
be implemented using for example DSP processors or fixed-functional hardware, which is one of the
major tasks of embedded system design.

The purpose of lab 1 is to go through the top-down flow from MATLAB modeling to assembly
programming using the DSP processor Senior presented in this course. Although the lab is based
on a simple example, the same flow can be applied to other more complicated DSP applications.
Through this lab, you should be able to learn basic skills of assembly programming using the Senior
instruction set. Furthermore, you should be aware of the finite-length error introduced in digital
signal processing in the real-world implementation.

1.2 Task 1: Use Matlab to Create a Lowpass Filter

Download and decompress the source code for lab 1 from the course web page. Start MATLAB by
typing
shell> matlab

Find the MATLAB file 1abl.m in the uncompressed directory. This file is a demonstration of how
50 Hz line noise can be removed from an ECG signal by using a lowpass filter.

Change labl.m so that the fir1() call creates the coefficients for a lowpass filter with a cut-off
frequency of 15 Hz. To see exactly how firl() works, type help firl in MATLAB, although the
following excerpt from the help page should be enough for this lab:

B = FIR1(N,Wn) designs an N’th order lowpass FIR digital filter and returns the
filter coefficients in length N+1 vector B. The cut-off frequency Wn must be between 0
< Wn < 1.0, with 1.0 corresponding to half the sample rate.

After you have changed the script, run the 1abl.m script. If everything is correct, you should see
two windows with a time domain and frequency domain analysis of the signals. In the time domain

window you should be able to see that the ECG signal has now been filtered and the frequency
domain analysis should also reflect the fact that virtually no energy remains at 50 Hz.

1.3 Task 2: Run and Modify a Simple Assembly Program

Find the assembly source file helloworld.asm which contains a small assembler program example.
Use the assembler to convert the assembly source file to the binary code which can be understood
and executed by the instruction set simulator.

Read through the example file, then try to use the srasm assembler (Section 0.4) to convert the
assembly source file to the binary code which can be understood and executed by the instruction
set simulator (Section 0.5).

Start srsim and run one instruction at a time until the program is finished. This can be done
in the following way:

e Tell the simulator to run one cycle sim> r 1

o Press enter to repeat the last command. (Hold down enter to single step faster.) Notice that
some of the registers that have been printed to the screen have changed.

o If you want to see where the PC is located, you can use the 1 command to list the source code
surrounding the current program counter.

e You can see a few other commands that the simulator has by using the sim> h command.

e If you want to run the simulator until it reaches the end of the program, use the sim> g
command.

o Take note of how many clock cycles that were used.

e Press sim> q to exit the simulator when done.

Open the 1080011 file and verify that they contain the expected output, that is, all numbers
from 0 to 42.

Change the program so that a repeat-based loop is used instead of a loop which uses normal
conditional branches. When done correctly, you will be able to run the same program in less than
100 clock cycles.

1.4 Task 3: Implement a Single Sample 32-Tap FIR Filter in As-
sembler

In this task you are supposed to implement an interrupt handler friendly version of an FIR filter.
Being interrupt friendly means that the FIR filter may not modify any register unless it can restore
that register to its original value.

Open labl.asm and try to understand what the file is doing;:

1. Setup the stack pointer

10

2. Setup FIR kernel parameters
3. Initialize the sanity checker (which sets almost all registers to known values)

4. For 1000 samples, call the fir kernel subroutine. This subroutine should read one sample
from the input port (0x10), add this to the ring buffer, filter it using a 32-tap FIR filter, and
write one sample to the output port (0x11).

5. Run the sanity checker that makes sure that (almost) all registers contain the same value they
were set to in the beginning.

6. Quit the program (by writing to port 0x13)
In order to do this you need to perform at least the following tasks:

1. Convert the filter coefficients you created in MATLAB into suitable fixed point constants and
enter them into labl.asm

2. Finish the fir_kernel function
3. Assemble and run labl.asm

4. Verify that the output of the filter is correct. You can do this by running the labl.m script
in MATLAB. The relative error should be very small (less than 0.001) if everything works
correctly.

1.5 Task 4: Scaling the Coefficients

Once you have gotten the FIR filter working you should ensure that you get as small relative error
as possible. Two things are required for this: You need to scale the coefficients so that you utilize
as much as possible of the available 16 bits. You also need to round the coefficients correctly.

1.6 Task 5: Performance Measurement

You now need to measure the performance of your FIR filter under the assumption that it is running
as an interrupt handler. In other words, the clock cycles used by the top-level loop and the sanity-
check code is unimportant. You must thus separate how much time this code takes by running
labl.asm with an empty handle_sample which only contains a ret instruction.

0 If the processor is running at, say, 10 MHz, how much of the CPU time is used by the
interrupt handler?

e Discuss the latency of your signal processing system.

11

0
0 Senior Processor D/A L > Analog data

“lconverter
Port 0x10 Port Ox11 1
Analog data —> A/D 1 ax
converter
Interrupt Port 0x11
input Write enable

500 Hz
pulse
generator ——

Figure 1.1: The Senior processor as connected to an A/D and D/A converter.

Q Approximately how many clock cycles does it take from an interrupt is generated to the time
when a new sample is presented on the output of the D/A converter under the assumption
that the Senior Processor is connected as shown in Fig. 1.17

e Is the latency always the same in your implementation?

e Is there anything you can do to reduce the latency?

1.7 Task 6: Write a 10-Sample 32-Tap Block FIR Implementation

Modify the filter kernel so that the interrupt handler is responsible for processing ten samples during
the same interrupt. You can assume that the system is connected as shown in Fig. 1.2. That is,
the A/D converter part of the hardware contains a FIFO which stores up to ten incoming samples.
(The D/A converter part contains a similar FIFO.)

In order to test your filter kernel, you also need to modify the top level loop so that only 100
iterations are run instead of 1000.

e How much CPU time that is used by the interrupt handler?

e Discuss the latency of this implementation.

12

Senior Processor

10 entry FIFO
=t Port 0x10 Port Ox11 [|| conl?//:rter > Analog data
A/D WE

RD
converter RD =& :ortd0x10b|
WE_FIFO FULL] €ad enable

10 entry FIFO

Analog data —>

Interrupt Port Ox11
input Write enable

500 Hz
pulse
generator

Figure 1.2: The Senior processor as connected to a buffered A/D and D/A converter.

1.8 Task 7: Reality Check

Discuss the following:

e Under what circumstances would you want to use the single sample FIR filter?
e Under what circumstances would you want to use the block FIR filter?
e Under what circumstances would you want to run these in an interrupt handler?

e Based on your experience in this lab, are there any improvements you would want to make
to the Senior processor?

13

Lab 2 — Datapath

2.1 Overview

During lab 2 you will complete the RTL code of the ALU and MAC datapaths of the DSP core and
write a set of small test programs to verify your implementation. Most of the datapath code has
already been written and verified by us, but a few critical parts are either missing or implemented
in a suboptimal manner. You can use either VHDL or Verilog in this lab.

Besides datapath implementation, the lab also covers module level verification. In order to
verify your modules, you will need to implement and run assembly language programs that test
your modules. The programs will be executed both by the srsim instruction set simulator and on
the actual processor RTL code. The output from the instruction set simulator will be saved to a file
which is used by the RTL simulator to check that the RTL code produces the same results.

Note that the test programs cannot use jumps or any other kind of flow control instructions
since the control path in the processor is not finished yet (you will implement it in a later lab). For
now, the control path will always increment PC after each instruction and the effect of jumps is
undefined.

Section 2.2 gives a step-by-step list on how to do the implementation and testing.

Section 0.7 gives more details on the verification step.

Section 2.3 gives hints on how to write good test programs.

Section 2.4 gives a detailed specification of the modules.

2.2 Workflow

2.2.1 Implementing and Verifying (Testing) the Modules
The basic procedure for each module is as follows:
1. Choose a module that you wish to implement. The modules are described in Section 2.4.

2. Open the file module.v or module.vhd (depending on your previous choice between VHDL
and Verilog) and write your implementation. Note that the module input and output port
declarations are already present and should not be changed. The files are located in the
lab2-3/rtl/ directory.

3. Implement an assembly language program to test your module. There are a few template files
provided with the lab that you can use if you want. The test should be as thorough as possible

14

to test for as many different errors as possible so that you are sure that your module works
for “all possible” inputs.

The principle behind the verification is as follows. Perform a computation that uses the
module you want to test (for example, if you want to test the rounding module you should
use an instruction that performs rounding). Output the result to a file with an out 0x11,...-
instruction as shown in the template files. In this way the result from the rounding operation
can be compared between the instruction set simulator and the RTL code simulator.

Hints on how to write good test programs are given in Section 2.3.

4. Compile the module and run the assembly language program using the RTL simulator as
described in Section 0.7.

5. The RTL simulator will stop at the first mismatch between the instruction set simulator output
and the RTL simulator output, or when the assembly program has ended. A mismatch usually
means that the RTL code needs to be fixed.

2.2.2 File List
You must modify the following files:
saturation.v or saturation.vhd: The RTL code of the saturation module
saturation.asm: Assembly language code to test the saturation module
mac_dp.v or mac_dp.vhd: The RTL code of the datapath of the MAC unit
rounding vector.asm: Assembly language code to test the rounding code
adder_ctrl.v or adder_ctrl.vhd: The RTL code of the adder multiplexers control module

min max_ctrl.v or minmax ctrl.vhd: The RTL code of the MIN/MAX multiplexers control
module

alu test.asm: Assembly language code to test the adder multiplexers and MIN/MAX control
modules

You should not need to modify any other existing files, but you can create more assembly
language test programs if you need.

2.3 Module Verification

Module verification is to try to prove the correct function of a module versus the specification. This
can be approached by comparing against a “known good” implementation like in this lab. The
results from the RTL code can be compared to those of the instruction set simulator.

An important concept in module verification is that of corner cases. Basically, the corner cases
are the set of inputs that trigger or very nearly trigger special cases in the implementation or inputs
that are near the numerical limits. The purpose of testing the corner cases is to make sure that the

15

special cases are triggered when they should and only then. Writing good test programs for module
verification is very much about identifying corner cases.

For example, for a 16-bit absolute value computation the corner cases would be the very largest
positive value 0x7fff, the largest negative value 0x8000 (should trigger the special case saturation),
the almost-largest negative value 0x8001 (should not trigger saturation). It can also be good idea
to try zero and one positive and one negative “arbitrary” values such as 123 and -123 to cover the
general cases. An absolute function that gives the correct result in all these cases is likely to be
correctly implemented.

Another important aspect of testing is that each test should give as much information as possible,
or in the worst case at least give some information.

Tests should have as few false positives as possible

For example, to test whether the ADD instruction really performs an addition it is not very
useful to try 4+ 0 since this input will give identical results for ADD, SUB, or OR. A more suitable
test case could be 4 + 6.

Test only relevant things

This goes without saying really. Things that are not relevant to the module does not need
to be tested at this point. For example, in this lab you will mostly implement control signals
for multiplexers and that is what should be tested, it is not necessary to test if the adder can
produce a correct carry-out signal or not.

Test every possible corner of the implementation

Ideally all possible bugs should be tested for. This can be achieved by applying all possible
input combinations to each possible internal state of the module. In practice this is usually
impossible to do because it would take far too long time. Instead corner cases and random
testing is used to speed up the testing while still giving very high test coverage.

Investigate code coverage to find missing corner cases

Code coverage is a feature which is present in many simulation tools which allows you to
determine whether all statements in a source file have been executed. If a certain line has
not been executed this may indicate that you have missed a corner case in your test bench.
(However, some statements should not be executed, such as assertions or other error handling
code.) Of course, merely executing all statements is not a guarantee that the module is correct,
your test benches needs to take this into account and output data so that all functionality is
tested.

In the Makefile which is used for lab 2 and 3, the coverage option is enabled for branches,

conditions, statements, and signal toggling when ModelSim is started. After running a test

case you can inspect the code coverage by looking at the coverage window in ModelSim.
Test things once

Redundant tests will not give any extra information, they will not uncover any additional bugs
that were not already found by earlier tests. In practice this is nearly impossible to satisfy.

16

function_i operand B operand A function_i

3 16 16 Jy(3 Adder mux
- = = = { - contjol module

opb_sign_i MSBe®

1
opa_sign_i MSB o i ; ! '

MIN/MAX mux carry_i *MSB | opa_sign_t | 92 :
control module SRRRLAERTRLERS SO0 mx_opa_inv_o | ,

|- -------- ' 0 1.~ 1 1

1 L iy M 1 1

1 L -

.) ; . 2

' , . 0 .

! P I A A 00<=— mx_ci_o

bemmeganasd Uy

=10 S e | o carry fla
mx_minmax_o 1 0. carry out . + ca.rryﬁ 10=— yiae
Result of Part of Result of /ﬁ
MIN, MAX resultof ADD, ADDC, SUB,
CMP SUBC, ABS

Figure 2.1: The Arithmetic Unit and MIN/MAX modules.

For example, even though corner cases are designed to have at least some non-overlapping test
coverage, they also often have a large overlap on other parts. (However, it is of course better
to include some tests that you think may be redundant than to forget about an important
corner case.)

2.4 Description of The Modules

2.4.1 Modules adder_ctrl and min max _ctrl

The first task is to implement two modules that generate control signals for three multiplexers in
the arithmetic data path. In order to solve this task, you need to know how a single adder can be
multiplexed to perform various functions such as addition, subtraction, absolute value, minimum,
and maximum.

In the first part, you will implement the control signals for the adder input multiplexers and
the carry-in selection multiplexer. In the second part, you will implement the multiplexers control
signal for the MIN and MAX instructions. Note that the MIN and MAX instructions use the adder to
compare the numbers.

For all operations, the inputs a and b shall be treated as two’s complement (signed) numbers.

Note that the calculation of absolute value shall not perform saturation. This is performed by
another circuit not shown here. Also not shown is that the operand b will automatically be set
appropriately for those operations that require a constant.

All outputs not related to the currently computed function are don’t-care signals. For example,
the value at the MIN/MAX output is irrelevant when an ADD or SUB operation is requested.

A schematic is given in Fig. 2.1. A list of the ALU functions is given in Table 2.1. A list of
input and output signals for the adder input multiplexers is given in Table 2.2, and a list of input
and output signals for the MIN/MAX multiplexers is given in Table 2.3.

You shall also write assembler code to test the functionality of your ALU. At a minimum, you
shall aim for 100% statement coverage in adder_ctrl and min max_ctrl, although some code (such

17

Code | Mnemonic | Description Operation
000 ADD Add b+a
001 ADDC Add with carry b+a+C
010 SUB Subtract b—a
011 SUBC Subtract, add carry b—a—1+4+C
100 ABS Absolute value (no saturation) |al
101 CMP Compare (subtract, set flags only) | b —a
110 MAX Select maximum value (signed) max (b, a)
111 MIN Select minimum value (signed) min(b, a)
Table 2.1: The functions supported by the ALU.

Signal Dir | Size (bits)

function_i in 3

opa_sign_i in 1

mx_opa_inv_o | out 1

mx_ci_o out 2

Table 2.2: Input and output signals of the adder_ctrl module.

Signal Dir | Size (bits)
function_i in 3
opa_sign_i in 1
opb_sign_i in 1
carry_i in 1
mx_minmax_o | out 1

Table 2.3: Input and output signals of the min max_ctrl module.

18

value_i do_sat_i

40

Saturation module
1

value o did sat o

Figure 2.2: The saturation module.

as assertions) can be excluded from the coverage metrics. Depending on how you write your code
you may also need to look at the other coverage types as well.

2.4.2 Module saturation

The second task is to create the saturation module in the multiply-and-accumulate unit, the MAC.
To solve this task, you need to know about saturation and when and how it is performed.

The input to the saturation unit is a 40-bit value (8 guard bits and 32 data bits) and a “perform
saturation” signal (1 bit) that selects between the two function of the saturation circuit: perform
saturation (1) or pass the data through unmodified (0). The output is also a 40-bit value. When
saturation is performed the nine most significant bits of the output will be equal (that is, nine
“zeros” or nine “ones”). There is also an output that indicates whether saturation was performed or
not. This output shall be one when saturation is performed and the data is modified by the module,
it is zero when the data is unmodified. The output must be purely combinational, there must be no
flip-flops in the module.

A schematic overview is given in Fig. 2.2. A list of input and output signals is given in Table 2.4.
Finally, you need to write assembler code to test your saturation module. At a minimum, your
assembler code should provide suitable stimuli so that your saturation unit gets 100% statement
coverage.

2.4.3 Module mac_dp

The final task in lab 2 is to minimize the area of the MAC unit contained in the file mac_dp.v or
mac_dp.vhd. As it is currently written, the datapath uses three adders. Your goal is to modify
the datapath shown in Fig. 2.3 so that all operations listed in Table 2.5 can be implemented even
though only one adder is used. Note that the operation names do not always correspond exactly

19

Signal Dir | Size (bits)
value_i in 40
do_sat_i in 1
value_o out 40
did_sat_o | out 1

Table 2.4: Input and output signals of the saturation module.

Operation name | opcode | Explanation

CLR 0 mac_result = 0

ADD 1 mac_result = mac_operanda + mac_operandb

SUB 2 mac_result = mac_operanda - mac_operandb

CMP 3 mac_result = mac_operanda - mac_operandb

NEG 4 mac_result = 0 - mac_operandb

ABS) mac_result = abs(mac_operandb)

MUL 6 mac_result = mul_opa * mul_opb

MAC 7 mac_result = mac_operanda + mul_opa * mul_opb
MDM 8 mac_result = mac_operanda - mul_opa * mul_opb
MOVE 9 mac_result = mac_operandb

MOVE_ROUND 10 mac_result = round(mac_operandb)

NOP 11 mac_result = 0

Table 2.5: All operations supported by the mac_dp module.

to an assembler instruction. For example, the MOVE operation in mac_dp is used for both the move,
movel, and postop instruction. Similarly, the ADD operation is used for the addl instruction.

In order to finish this task, you will first need to create a schematic which shows how you plan
to modify the datapath.

o Bring this schematic to the lab so that you can show it to the lab assistant.

You should probably also familiarize yourself with the MAC unit source code and identify all
parts in Fig. 2.3.
Determine the area of the MAC unit by synthesizing it using the command

shell> make synth_macdp
to run the synthesis script. You may need to run the command
shell> module add synopsys/dc2019.03

before it will work. If you are feeling ambitious you may also want to look into the TCL script used
by the synthesis tool and change the timing constraints. This will allow you to determine whether
the timing constraints have an impact on the final area or not.

After determining the area of the unoptimized module you need to modify the RTL code so
that it matches the schematic you created previously. Once this is done you need to verify that

20

mul_opa mul_opb

mac_operandb p mul_guarded

0

c_opbsel 0 1 2
40

> Scale 4&—c_scalefactor
40

mac_operanda

0

c_opasel 0 1 \ 0 1

40 40

mac_result

Figure 2.3: The unoptimized mac_dp module. (Not shown: logic for the control table and the
overflow flag.)

21

your changed module works correctly by creating one or several test cases in assembler. Similar to
the other modules in this lab, you should, at a minimum, aim for 100% statement coverage of the
mac_dp module.

Finally, once you have verified that the module works correctly you should synthesize the module
again to determine whether your changes have improved the area, and if so, how much. You could
also look at the timing report to see whether you can still fulfill the timing requirements.

22

Lab 3 — Program Flow

3.1 Introduction

In this lab you will learn more about what special considerations are needed when designing logic
for program flow instructions.

3.2 General Description

After finishing lab 2 all building blocks of the processor are completed. It is now time to put all the
parts together. In a pipelined processor this is not as easy as it first might seem. The parts must
not only fit together in the topological aspect of connecting the right wire to the right input. The
parts must also fit together in time. In Senior this task is complicated by the fact that there are
three different pipeline depths in the processor, the pipeline depth depends on the instruction being
executed. A pipeline will also make all kinds of program flow instructions troublesome as will be
shown later in this exercise.

During all execution, instructions are fetched from the program memory (PM) using the program
counter (PC) as the address. An instruction decides the values of all the control signals in the
processor. An instruction usually has fewer bits than there are control signals in a processor, thus
the instruction must be converted into its control signals before it is of any use. And that is the task
of the instruction decoder. The instruction decoder, situated in pipeline stage P2 in the processor
according to Fig. 3.1, has two sub modules; id_decode_logic and id_pipeline_logic. Verify this
by open instruction_decoder.v. Your first task is to briefly describe what the two modules do.
It is important that you understand how the pipeline in Fig. 3.1 works to complete this lab.

In lab 2 you have been running the entire processor, but not necessarily had to investigate it in
any detail. In this lab it is advised that you familiarize yourself a bit more with the processor and
the system supporting it, see Section 0.9.

23

1 -1
pcf peadd opa_sel PC FSM

[

T 1
0 1
|
4e 2
T3]

3456 pfc_pe sel

Ic_pc_loob
ise
stack bus

ctrl_c3

ctrl_c2

ctrl_cl

PC

1
IR
5
NOP
l_ inst_nop
1
E
(8]
Y
> |
o 1

c
S
:
-] '8‘
o
£
RF 2
4& | OP. SEL | | AGU |
i — 1 '
] | | | |
| ALU * DMO DM1 | fﬁ?fkl*
— | | | l
IE SAufags] [:] =] = |

ACR, MAC flags [N/
I +

Figure 3.1: The normal pipeline, including PFC details.

3.3 Task 1: Instruction Decoding Hardware

Q What is the function of the modules id_pipeline_logic and id_decode_logic?.

@ Their functionality is not far from their names.

Jumps, calls, and returns are essentially the same operation and will be referred to as just jumps
if the distinction is not important.

PO P1 P2 P3 P4
PC+ | PC(instr) IR
1 0(A) — — —
2 1(B) A — —
3 | 2(JMP 0) B A —
3 3(C) | JMPo| B A
3 3(C) C |JMPO| B
0 3(C) C nop | JMP O
1 0(A) C nop nop
2 1(B) A nop nop
3 2(JMP 0) B A nop
4 3(C) |JMPO| B A
5 3(C) C JMP 0 B
and so on

Table 3.1: Pipeline table for jump instruction.

3.4 Understanding Delay Slots

Due to the pipeline the actual PC update in a jump cannot and will not happen immediately.
The previous instruction must have reached and set the ALU flags in pipeline stage P4 to make
conditional jumps work correctly. MAC flags will be set one cycle later and if using them to jump
on the programmer must ensure they are set correctly. Waiting for the correct flags to be set means
that a number of instructions after the jump instructions will be fetched and executed. The question
is then what to do with them. There are two extreme options. The first extreme option is to let
the processor execute them as they are fetched, and it is the programmers responsibility to make
sure that the instructions after the jump instruction are useful. Instructions after the jump are
said to reside in the jumps delay slots. The safe way to handle delay slots is to insert only NOP:s
in all slots. The other extreme option is to let the processor deal with this and always insert NOP
instructions in place of the fetched instructions. In Senior you can chose what you want to do with
the ds directive. Thus when using ds1 with a jump instruction the instruction following the jump
will execute but the other two instructions will be forced to NOP:s by the processor. This is the
reason for the pfc_inst nop_o signals from the PC FSM. If it is set high, the decoder will see a NOP
instruction instead of the instruction fetched from PM.

3.5 Pipeline Table

To fully understand what is going on in the pipeline of a processor it is useful do draw a pipeline
table as shown in Table 3.1. This example shows how a jump instruction is executed. In the PO
column the next PC value is listed, in P1 the actual PC value together with the instruction at that
address in the program memory is listed, in P2 to P4 the instruction is simply propagated through
the pipeline. Here it is clearly seen how, in P3 and P4, three extra instructions are executed (C,
D, and E), that is if nothing is done about it, i.e. inserting NOPs as described earlier. If you find

25

it troublesome completing the PC FSM, it is recommended that you draw a pipeline table for all
program flow instructions, i.e. JUMP, CALL, RET.

3.6 Task 2: Pipeline Table of a Small Program

In Listing 3.1 a small program is defined. Your task is to fill out a pipeline table as described in
Section 3.5. Detailing how the instructions progress in the pipeline. You can refer to the instructions
as the line number they are defined on in Listing 3.1. Set PC to zero for the first instruction (on
line 2). When doing this exercise look at the pipeline of the processor, shown in Fig. 3.1, and think
about what instructions are in each pipeline stage.

Also answer the following questions:

9 Which instructions get executed and which instructions get flushed?

e What are the differences between a return and any other jump instruction?

® The value of the return PC must be fetched from the stack.

Listing 3.1: A small program, 1lab3_ex.asm

PC
.code
0: set r1,0x0001
1: set r2,0x0001
2: sub r0,r1,r2
3: jump.eq start
4: add r13,r1,r2
start
5: add ri1,r1,r2
6: jump ds2 11
7: add ri1,r1,r2
8: add r2,r1,r2
9: add r3,r1,r2
11

10: call ds3 f1
11: add r4,rl1,r2
12: add r5,r1,r2
13: add r6,r1,r2
14: move r7,r2
15: out 0x12,r0

26

f1

16: move r3,rl
17: ret dsi

18: add r9,r1,r2
19: add r10,r1,r2
20: add ri11,r1,r2
21: add ri12,r1,r2

3.6.1 Task 2: Summary

Create a pipeline table of the program in Listing 3.1 and answer the questions.

3.7 Task 3: Program Counting

Before any instruction decoding or pipelining can take place the instruction to use must be fetched.
This is done by taking the value of the program counter as an address into the program memory. In a
processor with no flow control, the program counter logic is easy. Just increment it by one instruction
each clock cycle. However, in a useful processor some form of flow control must be implemented.
Before solving this task, the program counter will only increment its value by one each clock cycle
and executing any form of program flow instructions will result in undefined behavior.

3.7.1 The PC FSM

Your task is to complete the finite state machine responsible for selecting what the next value of the
program counter shall be. Large parts of the FSM has been implemented in pc_fsm.v(hd). Your
task is to complete the FSM. You need to make sure that the FSM jumps to the correct state and
also in each state sets the correct output signals.

As shown in Fig. 3.1, the PC FSM takes inputs from the instruction decoder (the ctrl signal)
and the condition checker (the jump_decision signal). It outputs two signals, pc_add_opa_sel and
pc-sel to the program counter (next PC block). The program counter will update the PC value
according to these two control signals from PC FSM.

In order to complete this task you must understand the architecture of the program counter
(program_counter.v), shown in Fig. 3.2 with descriptions of the control signal shown in Table ??.
Worth noting about the program counter architecture is that two of the output signals from the
PC FSM is used to select the next PC.

Control Signal Naming Convention

The control signals names in the modules is named as follows: ctrl {Avy. Where £ is _i or _cp,
where 1 is an integer representing how much the control signals has been delayed locally in the
module. A is the control signal name delimiter, ~ in Verilog or _ in VHDL, and + is the control
signal name. For example, from Table 3.3, ctrl_c2 PFC_RET (VHDL), corresponds to the signal
ctrl_i PFC_RET delayed two clock ticks.

27

1
I
0

- —a

pcf pcadd opa_sel ir——

hyd

01 23456—<pr})05611

ise i

Ic_pc loob i
stack bus i

ta i

>Pc

to program memory

Figure 3.2: Next PC selection block diagram

Signal Width | Description

ise i 16 | interrupt address (not used)
lc_pc_loopb_i 16 | start address of repeat loop (not used)
tai 16 | target address of a jump or call

stack bus_i 16 | top of hardware stack, used for returns
pfc_pcadd opa sel i 1 | inc/dec PC

pfc_pcsel i 3 | next PC multiplexer selection

Table 3.2: Next PC selection signal descriptions

Furthermore, you must understand how the PC FSM works. The PC FSM is of Mealy type,
which means that both the next state and the output is a function of the current state and the input
signals. The general architecture of a Mealy machine is shown in Fig. 3.3.

The state transition graph for the PC FSM is shown in Fig. 3.4. Worth noting are the five
different paths going from SO. There are four different paths for jumps depending on how many
delay slots are used. Finally, there is one path for normal PC increment.

There are two subtasks in getting the PC FSM to work. One task is to get all the transitions
right and the other task is to make sure that each state outputs the correct values. It is not necessary
to solve one task before the other, it might be easier to solve them together, one instruction at a

input _
> next state —> output output
———» logic - —— logic
/\
state

Figure 3.3: General architecture of a Mealy-type FSM.

28

Signal Width | Description

jump_decision_i 1 | high if jump shall be taken.

lc_pfc_loope i 16 | end address of repeat loop (not used)

lc pfc_loop_flag i 1 | high if loopn register is 0 (not used)
pc-addr_bus_i 16 | current PC value

ctrl i 6 | control signals from the instruction decoder
ctrl_i PFC_REPEAT X 1 | high if repeat of only = instructions (not used)
ctrl_i PFC_JUMP 1 | high if executing a jump instruction

ctrl_i PFC_DELAY_SLOT 2 | number of delay slots after a jump

ctrl_i PFC_RET 1 | high if executing a return instruction

Table 3.3: PC FSM input signals. The signal ctrl_i is divided into 4 fields.

Figure 3.4: The PC FSM.

29

Signal Width | Description

pfc_pc_add opa_sel o 1 | what to add to PC (see Fig. 3.2)

pfc_pc_sel o 3 | final PC selection (see Fig. 3.2)

pfc_inst_nop_o 1 | if high, inserts a NOP instruction
pfc_lc_loopn_sel o 1 | if high, decrement the loop counter register (not used)

Table 3.4: PC FSM output signals.

time. To solve both these subtasks you must understand the meaning of the input and output
signals to/from the PC FSM, the signals are listed in Tables 3.3 and 3.4.

It is important to note that all modules involved in program counting get their control signals
unpipelined from the instruction decoder. This in effect means that the loop controller and PC FSM
gets their control signals in pipeline stage P2.

PC FSM Transitions
As can be noted in your skeleton file SO will only jump to itself. This is obviously not correct, and

you must select which state to jump to from SO.

@ Look for the “What is the next state?” comment.

PC FSM Output

All the output signals from the PC FSM are listed in Table 3.4 and it is your task to make sure
they are set correctly in each state.

3.7.2 Testing the PC FSM

There are a number of assembler files prepared for you to test the RTL code you have written.
These are listed in Table 3.5. It is suggested that you run the test programs in the order they are
listed in Table 3.5 since the later programs might assume that some program flow instructions are
working. To run the test programs, just follow the procedure outlined in Section 0.7.

File Description
pfc_jump.asm Tests jump.
pfc_cond_jump.asm | Tests conditional jump.
pfc_call.asm Tests call and ret.

Table 3.5: PC FSM test programs.

3.7.3 Debugging Hints

If you encounter any bugs in your PC FSM it is much easier to debug them if you create your
own test programs. (For example, by copying one of the test benches provided by us and removing
everything but one test.)

30

Another common issue in this lab is that you may create a combinational loop which is fairly
hard to find. If your simulation time suddenly stops advancing you have probably managed to create
a combinational loop.

@ Look at Fig. 3.1 and determine whether you are setting the control signal for the NOP
multiplexer correctly.

We have also noticed that missing signals in the sensitivity list in a process is a relatively common
issue which can cause all sort of weird bugs.

3.7.4 Task 3: Summary

Complete the HDL code for the PC FSM as outlined above. Then test it using the test programs
listed in Table 3.5.

3.8 What to Answer

When you have completed all lab tasks, demonstrate your design, show the code you have written,
and be prepared to answer questions on how your design works.

31

I

Lab 4 — Prototyping ASIP Instructions

The purpose of this lab is to acquaint yourself with the structure of a simple instruction set simulator.
You should know how you can simulate some of the effects of a pipeline in a simple simulator even
though the pipeline itself is not implemented in the simulator. You should know how you can use
such a simulator to quickly evaluate a proposed ASIP instruction, as one of the most important
choices when constructing an ASIP is to choose what to accelerate in specialized instructions.

4.1 Introduction to Motion Estimation

In this lab, we will investigate how to accelerate a motion estimation algorithm commonly used
in video coding applications. By dividing frames into smaller blocks and sending the translation
(apparent motion) of each block it is possible to compress a video signal significantly. (In practice
it is also necessary to send additional correction information as information about 2D motion is
insufficient to reconstruct most video sequences adequately.)

The idea behind motion estimation is to first select a block in the new frame and then compare
it with a number of blocks in the old frame. The metric which we will use in this lab is the sum
of absolute difference (SAD). The comparison is done by taking the absolute value of the difference
between each pixel in the old and new block. These values are then added to each other. The block
with the lowest total sum is selected as the location for the new block in the old frame. If the lowest
sum is 0, we have found a perfect match. However, most of the time we will not be able to find
perfectly matching blocks in the new frame due to for example noise and non 2D-motion such as
scaling and rotation. This procedure is repeated for each block in the new frame.

This idea is illustrated in Fig. 4.1. In this case only two blocks are investigated and the block
on the right is the best match. In the lab we will investigate many possible locations around the
original location. As test data we are using two frames from the src6_ref__625.yuv test stream
from the Video Quality Expert Group. The video sequence was clipped to 176 x 144 pixels to reduce
runtime and memory usage.

The pseudo code in Listing 4.1 shows how motion estimation using SAD can be done.

Listing 4.1: Pseudo code for motion estimation.
for each block in the image{ // 4x4 blocks
best_sad = Inf;
for each candidate position{
sad = compare_blocks(candidate_block, target_block);

32

New frame Old frame

Block to search
for in old frame

Absolute differends[2]
between new an ol 2]
old block
The sum of the absolute
difference is 12

5]17]6]7 2] 31 4] 71.7] 6| 1] 1
2 6 1]2]1 7 1|1
1 7 543|1 6]
A71717 8]5]7]6]7]8
41919)2]1]2

Absolute difference
between new and
old block

The sum of the absolute
difference is 4

Figure 4.1: Block search using sum of absolute difference.

33

© 00 J & Ot

10
11
12
13
14
15
16
17
18
19
20
21

© 00 J O Ot i W N -

[
N = O

if (sad < best_sad) {
best_sad = sad;
best_block = candidate_block;
}
}
output_position(best_block);
}

// This is the kernel algorithm which we are interested in
compare_blocks(a,b)q{
sum = O;
for each pixel p { // 16 pixels
difference = a[p] - blp]l;
sum += abs(difference);
}
return sum;

}

4.2 Assembly Code

For this lab, the entire assembly program for a motion estimation algorithm has already been written.
The program divides the images into blocks of 4 x 4 pixels and does an exhaustive search for the
best match in a large region around each 4 x 4-block in the original frame.

You can find the program in sad.asm. The kernel part is listed below in Listing 4.2.

Listing 4.2: The kernel part of sad.asm.

repeat sad_kernel_end,16
sad_kernel_start

1d0 10, (ar3++) ; Load displacement in image
nop

1d0 r2, (ar0,r0) ; Load pixel in original image
1d1 rl,(ar1,r0) ; Load pixel in new image

nop

sub rl,rl,r2 ; Calculate difference

abs ri,rl ; Take absolute value

add rd,rd,rl ; Sum of absolute difference

To understand the kernel part, you need to know what the address registers are used for:
e ar0 is a pointer to the upper left corner of the original block

e arl is a pointer to the upper left corner of a block in the new image

34

e ar3 is a pointer to a table with displacement values that are used to access the individual
pixels in the 4 x 4-blocks (16 entries all in all)

4.3 Possible ASIP Instructions

Your task in this lab is to evaluate how this SAD kernel can be accelerated through the use of two
custom instructions.

4.3.1 accel_sad

The first instruction you will implement is called accel_sad. It takes two registers as arguments.
An example is given below:

accel_sad rD,rA

e Load vall from memory 0 at location ar0 + rA

e Load val2 from memory 1 at location arl + rA

o Calculate the absolute difference between vall and val2

o Accumulate the absolute difference in a special SAD accumulation register (sr31)

o Write the current value of the SAD accumulation register into register rD. (The same value
you just wrote into sr31.)

The implementation shall be pipelined so that it is possible to issue accel_sad instructions
directly after each other.
The binary encoding of the accel_sad instruction is:

11000000 00ddddda aaaa0000 00000000

where ddddd is the destination register (rD) and aaaaa is the source operand register (rA). (The
destination and source register are located in the same place of the binary code as for other Senior
instructions.)

This instruction is to be implemented in the Senior processor by putting it in the pipeline stage
after the memory access. Full register forwarding must be used for the result.

4.3.2 repeat_sad

This instruction works just like the regular repeat instruction except that it will abort the repeat
loop early if the current block is obviously worse than the best block which we have found to date.
This is done by keeping the current best SAD value in a special register (sr30) and comparing
the value of the SAD accumulation register with sr30. If the SAD accumulation register is larger
or equal, we abort the loop.
When implemented in the Senior processor, the PC FSM must use combinational logic to com-
pare sr30 and sr31.

35

4.4 The Simplified Senior Simulator

In this lab you will work with a simplified simulator of Senior where only the instructions required
in this lab have been implemented. The error checking is also not quite as rigorous as the one in
srsim. You will find the main part of the simulator in sim.c.

4.4.1 Quick Tour of sim.c

In the beginning of sim.c, there are several global variables used by the simulator to keep track of
the values of the various registers in the processor. Perhaps the most important are rf and rf_busy.
The latter keeps track of if a particular register is busy or not. rf_busy is used to simulate the effect
of the pipeline even though sim.c is not a pipeline true simulator. For example, in the following
sequence, rf_busy is used to make sure that r9 is not accessed during the nop:

set r9,53
nop
add r2,r9,r3

Most of the other global variables are self-explanatory.

advance_cycles()

This function is used to tell the simulation that a certain number of clock cycles have passed. It is
used in the main simulation loop each time an instruction is fetched. It is also used in advance_pc()
whenever a jump occurs which will stall the processor for a number of cycles.

repeat_sad _stop()

This is a helper function which tells the repeat loop to stop repeating in a certain number of clock
cycles if it is using the repeat_sad mode.

sx()

Sign-extend a number with a certain number of bits.

get_opa() and get_opb()

get_opa() returns the 16-bit value of opa by looking at the binary instruction code. The function
also checks if it is legal to access this register in this clock cycle by looking at rf_busy. get_opb()
works similarly but may also return an immediate value instead of a value from the register file.

set_reg()

This function writes a value to the specified register in the register file. You must also specify in
how many clock cycles the user is allowed to use the value. (Basically, how many nop instructions
the user will have to issue between the current instruction and the instruction which is trying to use
the written value.)

36

abs16()

Takes the absolute value of a 16-bit two’s-complement number.

insn_...(Q)

All functions that implement the execution of a certain instruction group begins with insn_. For
example, insn_iterative_op implements all iterative instructions.

advance pc()

Advances the program counter one step taking into account both jumps, delay slots and loops.

run_insn()

Fetches and executes one instruction. The main simulation loop calls this function until an error is
flagged or a specified number of instructions have been executed.

load images()

This function is responsible for loading the example images used by the SAD. (In a production
simulator this would not be hard coded but configurable through a configuration file.)
memO_read() and meml_read()

There are a number of support functions in files besides sim.c. For the lab, the most important
support functions are located in memory.c. memO_read() is used to read a specified memory address
in memory 0. mem1_read() is used to read a specified memory address in memory 1.

4.4.2 Instruction Decoding in the Simulator

The instruction decoding starts in run_insn() which is using a switch statement to look at the type
field of the instruction to decide which kind of instruction it is. For example, when a program flow
instruction is encountered insn_pfc() is called, which in turn is using a switch statement to decide
what kind of PFC instruction it is dealing with.

You can follow the program flow for accelerated instructions to figure out where to add your
changes when implementing accel_sad.

4.5 Makefile Targets
The following targets are defined in the Makefile:

e sim: Build the simulator
e clean: Remove all generated files

e test: Assemble sad.asm and run the simulator on the resulting hex file

37

4.6

prof_report: Generate a profiling report which outputs how many times each line in the
source code was executed.

Lab Preparation Tasks

Investigate and understand the structure of sim.c.

Draw a hardware schematic where you show how your SAD unit could be implemented. (Do
not forget the signal to the PC FSM for repeat_sad!) You need this figure to know how
many registers there are in the SAD unit and where they are located in the pipeline before
you can finish the lab.

Draw a pipeline table where you show what happens in the various pipeline stages when
using your accel_sad instruction (based on the hardware schematic you have drawn) in
conjunction with repeat_sad. For an example of what a pipeline table looks like, see Tables
14.5-14.7 in the textbook.

Use the pipeline figure and your hardware schematic to figure out the delay values you will
use in set_reg() and repeat_sad_stop.

. Investigate and understand the structure of sim.c.

. Draw a hardware schematic where you show how your SAD unit could be implemented. (Do

not forget the signal to the PC FSM for repeat_sad!) You need this figure to know how many
registers there are in the SAD unit and where they are located in the pipeline before you can
finish the lab.

. Draw a pipeline table! where you show what happens in the various pipeline stages when using

your accel_sad instruction (based on the hardware schematic you have drawn) in conjunction
with repeat_sad.

. Use the pipeline figure and your hardware schematic to figure out the delay values you will

use in set_reg() and repeat_sad_stop.

The lab assistant will ask you to show and explain your drawings during the lab examination!

'For an example of what a pipeline table looks like, see Tables 14.5-14.7 in the textbook.

38

4.7 Lab Tasks

In this lab you do not have to modify the RTL code at all, we will instead modify a simple instruction
set simulator by adding a couple of instructions to it. You should only have to modify the function
responsible for executing accelerated instructions in sim.c.

The most important task of this lab is to evaluate the accel_sad and repeat_sad instructions
in a realistic fashion. This means that the delay values that you use in the set_reg() and the
repeat_sad_stop() function should be based on your modifications to the processor pipeline. If you
set these delay values too large, your evaluation of these instructions is likely to be too pessimistic.
On the other hand, if you set these values too small, your evaluation will be too optimistic.

o Note that checking your results.hex for correctness is not a guarantee that your delay
values are correct.

You will have to figure out the delays yourself by knowing where the SAD unit is located in the
pipeline, as described in Section 4.3.1.

Support for the repeat_sad instruction is almost finished. The easiest way to get it working is
to call repeat_sad _stop() if appropriate when executing the accel _sad instruction. (Once again
with the correct value...)

After implementing these instructions, you should modify sad.asm to take advantage of the new
instructions and measure the speed improvement of using accel_sad alone and in conjunction with
repeat_sad.

4.7.1 Lab Hints

Do not forget that you must write appropriate values to sr30 and sr31 in the appropriate place
around the SAD kernel when modifying sad.asm.

If you are interested in seeing the motion compensation in action, use the MATLAB script
motion.m. There is going to be a huge black rectangle around the motion compensated image
as we for simplicity reasons do not care about the borders, as special care must be taken not to
search outside the borders of the original image. While it is of course possible to implement code
to deal with this we do not bother about this to make sad.asm easier to understand for you.

The simulator outputs the results in results.hex. The output when running your accelerated
assembly program should be identical to the output of an unmodified sim.c and sad.asm. It is a
good idea to run the simulator immediately before making any modifications to sim.c and sad.asm
and save results.hex as reference.hex.

You can compare two files in a shell prompt using the command

shell> diff filel file2

If there are no differences, this command will print nothing. Otherwise, the differences will be
printed to the terminal.

39

