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Glossary

Emscripten Emscripten is a toolchain for compiling to asm.js and WebAssembly, built using LLVM,
that lets you run C and C++ on the web at near-native speed without plugins. Usually also refers
to the Emscripten Software Development Toolkit (EMSDK), a complementary set of tools to build
c++ apps on the web.

GLSL GL Shading Language. A programming language similar in syntax to C that is executed on the
GPU in the different render stages.

OpenGL Open Graphics Library, a cross-language, cross-platform application programming interface
(API) for rendering 2D and 3D vector graphics..

SVG Scalable Vector Graphics. A language for describing two-dimensional graphics. SVG allows for
three types of graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and
curves), images and text. Graphical objects can be grouped, styled, transformed and composited..



1. Introduction

Visualization systems for the import and export
of different resources are used as a tool by re-
searchers in climate science. These applications
are usually limited to a 2D view and viewing one
specific resource at a time.

The goal of this project is to improve upon these
existing applications by creating a 3D version
able to visualize multiple resources at a time. In
addition to just resources, indices such as GDP
will be displayed using a choropleth map. This
combined visualization of both resources and in-
dices aims to further aid the researchers, allowing
them to come to better conclusions.

1.1. Problem description

The project will investigate and implement meth-
ods for the visualization of import and export
data between countries, called trade flows, onto a
model of the earth rendered in 3D. This will result
in a web-based application in accordance with the
requirement specification.

1.2. Tools

The application source code is written in C++
and JavaScript, using the Emscripten toolchain
and the Emscripten Software Development Kit
(EMSDK). EMSDK allows for easy porting of
OpenGL and standard library routines to the
web from C++ source. The EMSDK compiler,
emcc, compiles C++ code to WebAssembly and
JavaScript glue code, allowing modules in C++ to
be run in a browser environment. The application
is mostly written by the project developers, but it
has some dependencies.

Table 1. Software dependencies of the application.
lodepng PNG file loading utility in

C/C++
rapidxml Generic XML-document parser

in C++
glfw Window and context library for

debug
glew GL extension loader library for

debug
VectorUtilities Linear algebra toolbox
GL utilities Utility library for common

OpenGL operations
jQuery Standard JavaScript library for

extended GUI functionality

All of the dependencies listed in table 1 are open
source software.

2. Background/Theory

This section will highlight important background
information and the essential theory needed to do
the project.

2.1. Sphere models

There are two common ways of creating a sphere
in computer graphics. The first way is to compute
vertical and horizontal lines, creating surface el-
ements defined by four sides. These quadrangles
can then be subdivided into triangles.

This sphere model is called the UV sphere, shown
in figure 1.

The problem with this model is that the polygons
around the equator are much bigger than the poly-
gons around the poles, creating an uneven distri-
bution of vertices.

The second model is called the icosphere, which
originates from a so called icosahedron, shown in
figure 2.
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Figure 1. The structure of a UV sphere.

Figure 2. An icosahedron and the golden rectangles
defining its vertices [1].

The icosahedron consists of 20 equilateral trian-
gles, defined by a total of 12 vertices. Each vertex
is surrounded by five neighbouring triangles.

The vertices can be seen as the corners of three
orthogonal golden rectangles intersecting each
other [1]. In other words, the ratio between the
long side and the short side of each rectangle is
the golden ratio (equation 1).

φ =
1 +
√

5

2
(1)

This property can be used to find the 12 vertices,
and this procedure will be described further in
section 3.4.1.

To create a better approximation of a sphere, the
icosahedron can be subdivided into smaller trian-
gles, creating a so called icosphere. This process
will be described in detail under section 3.4.2.

The icosphere does not have the problem of un-
evenly distributed vertices, so the ”resolution” is
the same wherever you are on the sphere. And all
polygons have the same area.

2.2. Vector Graphics

Vector Graphics is a type of image that, instead
of containing pixel values, contains commands
or mathematical statements to convey information
forming an image.

Vector graphics have many use cases, but one of
the more interesting ones for this project is that
country borders can be stored in a geometric file
like this.

One such file format is the Scalable Vector Graph-
ics (SVG) format [2], which contains what is
known as ”paths”, strings of characters containing
information that is read as sets of 4 points form-
ing a cubic bezier (it can store simpler shapes and
other data than paths, but these are of little use to
this project).

These paths are used to to draw different vector
graphics containing map data. Open source ex-
amples can be found at for example [3].

2.3. Cubic Beziers

Bezier curves have many interesting properties,
but the most useful property for an application
looking to draw bezier curves is the one described
by De Casteljou’s algorithm.

The property is described in [4], and can be used
to find points on a Bezier curve through subdivi-
sion by simply calculating the middle points be-
tween the control points of the Bezier curve, as
shown in figure 3.

2



Figure 3. Subdividing a cubic Bezier curve by its mid-
points. [5]

2.4. Cartesian Mapping of Earth

When working with coordinate systems of the
earth it is often a choice of working with different
projections. The equirectangular projection is an
especially useful projection for the case of com-
puting points on a plane corresponding points on
a rectangle.

x = (λ− λ0)cos(φ1) (2)

y = φ− φ1 (3)

Figure 5. Equirectangular projection of Earth. Also
known as the Mercator Projection.

Equations 2 and 3 describe the forward mapping
from the earth as a sphere into a rectangle with
coordinates x, y shown in figure 5. λ is the longi-
tude of the projection location, φ the latitude. φ1

is the standard parallels from south pole to north
pole where the scale of the projection is true. λ0
is the central meridian of the map.

2.5. Lines in 3D

The OpenGL ES 2.0 and by extension The We-
bGL 1 API is highly optimized to draw triangles
but it does have functionality to draw lines with
the GL Line primitive. However, this implemen-
tation suffers from some problems that give dis-
appointing visual results.

Many current browsers rarely implement the GL
directives such as glLineWidth with any other op-
tion than 1.0, i.e lines can only have a width of 1
pixel on the screen.

Figure 4. A set of rendered line primitives, displaying the disconnect and aliasing problems present. [6]
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No anti-aliasing or smoothing is used in the
draw implementation which means the line looks
jagged and bumpy. The draw call further makes
no attempts to join the line segments, meaning
there is a clear disconnect.

Figure 4 displays all of these problems with a set
of test lines.

2.6. Rendering Polygons

The common problem of rendering non convex
polygons by their contour have many solutions.
This documentation presents some of these ideas
relevant to the project.

2.6.1 Splitting polygons

Figure 6. The basic idea of polygon splitting.

To generate a mesh from polygons, the polygons
first have to be split up into several convex parts,
were they initially are concave. This is a limita-
tion of OpenGL, which prefers the triangle primi-
tive, and triangulation of concave polygons is best
formulated by splitting them. The basic method is
shown in figure 6.

Every polygon that is not convex is split into sev-
eral parts [4]. Figure 6 shows that at every turn
that is concave, the polygon is split into two new,
smaller polygons. This is done until the original
polygon is split up into only convex polygons.

When this is done, each convex part of the poly-
gon is split into many small triangles, based on a

center of mass point. The algorithms used in the
splitting procedure are the following.

• The signed area of a polygon:

1

2

n∑
i

(xiyi+1 − xi+1yi) (4)

The sign of this sum tells if the polygon goes
clockwise or counter clockwise.

• Crossproduct between two following lines:

(x1y2 − x2y1)ẑ (5)

Here the sign of the z component tells if the turn
between two lines is clockwise or counter clock-
wise.

• Intersection between two lines:

t = (x1−x3)(y3−y4)−(y1−y3)(x3−x4)
(x1−x2)(y3−y4)−(y1−y2)(x3−x4) (6)

u = − (x1−x2)(y1−y3)−(y1−y2)(x1−x3)
(x1−x2)(y3−y4)−(y1−y2)(x3−x4) (7)

Given two lines, one can calculate for which
scalar value, t for line 1 and u for line 2, the in-
tersection takes place on each respective line. If
0 ≤ t ≤ 1 the point of intersection takes place
somewhere on line 1, and if 0 ≤ u ≤ 1 the same
is true for line 2.

2.6.2 Tessellate polygons

Figure 7. Example of tesselation to smaller polygons.
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The splitting is done in a 2D-environment. What
is not taken into consideration however, is the fact
that the polygons need to be mapped to spherical
coordinates on the globe. This causes longer lines
between points in polygons to intersect the globes
crust.

Therefore, the polygons need to get higher reso-
lution. In this case, this is done by tessellating
the triangles that has lines that are longer than a
certain threshold.

The idea of this is displayed in figure 7. The tri-
angles in the red polygon are getting tessellated,
while the tessellation is not done in the blue poly-
gon, when comparing figure 7 with figure 6.

Each triangle that has a line that is larger than the
threshold is split up into 4 new smaller triangles,
by connecting each of the original triangles sides
middle points.

2.6.3 Filling Polygon by the Stencil Method

A completely different way of approaching the
problem of rendering arbitrary polygon shapes is
the Stencil Buffer method.

The stencil buffer is a (often) binary bitmask of
the surface on which drawing is done selectively,
dependent on the bit values in the buffer. It sup-
ports stencil functions that allow different logic to
be applied when rendering onto the stencil buffer.

The method of polygon filling is described in [7],
and involves rendering a triangle fan from an arbi-
trary point onto the contour points of the polygon.
If any point in the stencil buffer has been rendered
onto an even number of times, the test is failed.
If the point has been rendered an odd number of
times, it means the point is inside the polygon.

2.7. Picking

Picking is the common problem in computer
graphics. Given user input on the screen such

as a touch or a mouse-click, the expectation is to
be able to interact with the applications world in
some way.

While this problem can sometimes be very in-
volved, it can also be remarkably easy to solve.
Some methods are described in [4].

The relevant method related to this application
is Ray-Casting in model coordinate. This in-
volves transforming a clicked pixel coordinate
into model coordinates. However, since the ge-
ometry in the application is easily described by
function expressions, ray-sphere intersection tests
and ray-plane intersection tests can be used in-
stead of the suggested triangle tests to determine
where on the model a click was made.

Furthermore, point-in-polygon tests are relevant
to determine if a picked point falls within a poly-
gon contour. Since country borders are closed
polygons, the use of such a method should be ob-
vious.

In [4] there are 2 suggested methods. First, the
odd-even test, a method that simply counts the
number of intersections. If the number ends up
odd, the point is inside. Second, the zero winding
number test, which adds or subtracts 1 depending
on the ”winding”, or direction of the contour, to
a total sum. If the sum is non-zero, the point is
inside.

3. Method

This section will go through the most important
steps taken in the project and describe solutions
to the different problems.

3.1. File Loading

When it comes to data there are two main cate-
gories; trade and index. Trade data contain in-
formation about import and export of resources
between countries whereas index data correlates
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indices and countries, displayed in a choropleth
map.

Files are loaded asynchronously through an Em-
scripten file system API. And in order for the API
to know which files are to be loaded it needs their
pathways, it cannot just load arbitrary files in a
folder. This is solved by specifying which files
to read by adding their filenames/pathways to a
separate text file.

3.2. Formatting new files

To add new data, a formatted Excel file is saved
as a comma-separated value file (.csv), stored in a
specific data folder with its filename added to the
former mentioned text file with the others.

Regarding formatting, each file requires a sepa-
rate header at the top where trade or index is spec-
ified, name of resource or index, unit if it was
trade and lastly which year is concerned.

In the case of a trade file, following its header
shown in table 2, it contain ISO 3 codes of coun-
tries that import the specified resource along the
next row, countries that export along the first col-
umn and the amounts in between.

Table 2. Header used in a trade file.
Type:Trade Name:Soy Unit:Ton Year:2018

An index file with its header displayed in table 3
is followed by all ISO 3 codes in the first column
and corresponding index values in the second col-
umn.

Table 3. Header used in an index file.
Type:Index Name:GDP Year:2018

3.3. Data Management

When all files have been loaded, processing of
their content begin. This is handled differently de-
pending on if the given file has trade or index data,

but ultimately results in the processed content be-
ing stored in a data registry. This registry will then
contain trade and index information between each
and every country in a specialized STL map that
can be accessed and then visualized.

3.4. Creating the sphere

When it comes to the choice of sphere model, the
icosphere was chosen over the UV sphere, mostly
because of the uniform distribution of vertices.

The vertices of the sphere are used in many calcu-
lations (for example the cube mapping), so having
an evenly distributed set of vertices, the level of
detail will be constant across the whole globe.

3.4.1 Defining the first vertices

As described in section 2.1, the icosphere starts
off as an icosahedron (thus the name), which then
can be subdivided. So the vertices of the icosahe-
dron must be defined to begin with.

If we look at one of the icosahedron’s golden rect-
angles (shown in figure 2) from the side, we get
something like figure 8. And to make things eas-
ier, the rectangle is centered in the origin, with a
distance to each corner equalling to 1.

Figure 8. A golden rectangle, touching the unit sphere.
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Then we can imagine a unit sphere touching all
corners of the rectangle. This is the sphere we
want to create (or get close to).

Since we know that the rectangle has the golden
ratio (equation 1), we directly get the relationship
in equation 8. And also, we get equation 9 from
Pythagoras’ theorem.

h

w
=

1 +
√

5

2
(8)

h2 + w2 = 1 (9)

Solving this system of equations, we get the ex-
act dimensions of our rectangle (equations 10 and
11).

h =
1 +
√

5√
4 + (1 +

√
5)2

= 0.85065... (10)

w =
2√

4 + (1 +
√

5)2
= 0.52573... (11)

Now, with figure 2 as guidance, the vertices of
the icosahedron can easily be determined. And
then you just need to define the connectivity of
the triangles.

Figure 9 shows the icosahedron with an applied
texture.

Figure 9. Earth as an icosahedron.

3.4.2 Making the sphere smooth

When the icosahedron is all set up, the next step is
to turn it more into a sphere. This is done by sub-
dividing every triangle into four smaller triangles,
as seen in figure 10.

Figure 10. The idea of subdividing a triangle.

The new vertices are calculated as the midpoints
of the edges in the original triangle. Then, these
vertices need to be normalized (in order to end up
on the unit sphere). So the vertex we’re looking
for is given by equation 12, where v0 and v1 are
the two vertices spanning up the edge.

vmid =
v0 + v1
|v0 + v1|

(12)

Now, if we were to loop through all the trian-
gles and create the midpoint for every edge, all
the new vertices would be duplicated (since ev-
ery edge is shared by two neighbouring triangles).
This would not be runtime efficient.

The problem is illustrated in figure 11, here only
for four triangles.

The vertices marked in yellow would be dupli-
cated, if no control was made.

This was solved by using a lookup table that keeps
track of all the new vertices and what edge they
belong to. And if we come to an edge where a
midpoint has already been created, we reuse that
vertex, instead of creating a new one.

When all of the icosahedron’s triangles have been
subdivided, the starting number of 20 has now
turned into 80. See figure 12 for the result.
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Figure 11. The duplication problem.

Figure 12. The icosphere after one subdivision.

Then you can use these new triangles to subdivide
again, multiplying the number of triangles by four
every time.

We found that about seven iterations gives us the
result we want, while still not being too computa-
tionally heavy. This gives us a total of 20 · 47 =
327 680 triangles. See figure 13 for the result.

3.5. Texturing a Sphere

When texturing a sphere there are two alterna-
tives, wrapping a 2D texture or using environ-
ment mapping. As the 2D approach will create a
squeezed appearance on the top and bottom of the
sphere the environment mapping approach was
used.

Figure 13. The icosphere after seven subdivisions.

Environment mapping is done by placing a vir-
tual bounding box around the sphere. This box is
then textured and the texture is then rendered onto
the sphere by calculating a ray from the projection
point to the bounding box by reflecting it on the
sphere, as seen in figure 14 [4].

Figure 14. Enviroment mapping from PFNP [4].

OpenGL has a environment mapping method
called cube mapping built in. This means that
the bounding box takes the shape of a cube and
simply requires a texture to function. This texture
consists of six images, one for each face of the
cube, where the textures have a slight distortion
to compensate for the shape of the sphere, as seen
in figure 15.

3.6. Generating Country Borders

The country borders that are generated for the ap-
plication is done in 2 steps: the initial raw vector
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Figure 15. The cubemap texture.

data is read from the SVG file paths. This is fol-
lowed by subdividing the resulting bezier curves
using a distance error as stop criterion.

To parse this SVG file, a simple parser was im-
plemented conforming to a useful (to the project)
subset of the SVG standard. This parsing results
in a dataset loaded into the application containing
geometric country data, expressed as sets of cubic
bezier curves forming closed polygons.

Since a country’s border often consists of mul-
tiple closed polygons, an abstraction was put
in place to gather these polygons in a simple
binary-search-tree, where related polygons share
the same key. The key in this case is the ISO-3
code as a string.

Figure 16. The border data set visualized as an SVG
image rendered in HTML. The map projection is the
equirectangular projection from the set of SVG files at
[3].

As has been mentioned, the parsed data that de-
scribes the image in figure 16 is further processed.

The program employs an implementation of sub-
dividing the curve data points to generate smooth
looking line segments for rendering in OpenGL.

Table 4. Variables and notation in algorithm 1.
p1, p2, p3, p4 Control points
p12, p23, p34, Mid-points (see figure 3)
p123, p234, p1234

εmin Error tolerance
addPoint(·) Method to add new point
ε(·) Error measure
subdivide(·) subdivision method

Algorithm 1 Recursive Subdivision of Bezier
Curve

1: for all curves: {p1, p2, p3, p4} do
2: addPoint(p1)
3: subdivide(p1,p2,p3,p4)
4: addPoint(p4)
5: end for
6: procedure subdivide(p1, p2, p3, p4)
7: p12 = (p1 + p2)/2
8: p23 = (p2 + p3)/2
9: p34 = (p3 + p4)/2

10: p123 = (p12 + p23)/2
11: p234 = (p23 + p34)/2
12: p1234 = (p123 + p234)/2
13: if ε(p1,p2,p3,p4) < εmin then
14: addPoint(p1234)
15: else
16: subdivide(p1,p12,p123, p1234)
17: subdivide(p1234,p234,p34, p4)
18: end if
19: end procedure

Algorithm 1 operates by recursively subdividing
the cubic beziers by its midpoint. The only detail
worth exploring further in this algorithm is the er-
ror measure ε(·). It is needed to describe how well
the points from algorithm 1 matches the analytic
polynom, and be robust.

Preferably it should also be fast, as any lengthy
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initial computations punishes the load time of the
application. The L1-norm of the difference of the
control points p2,p3 and the midpoints p13,p24

proved to be sufficient.

ε = |p1 + p3 − 2p2|1 + |p2 + p4 − 2p3|1 (13)

Equation 13 provides the implemented error func-
tion. Note that the terms are multiplied by 2. The
motivation for equation 13 is as follows: the opti-
mal approximation of the curve as a line segment
occurs when enough subdivision has taken place
so that all 4 control points lie evenly spaced on a
straight line.

When this flatness is achieved, further subdivision
has little meaning. The choice of εmin depends
on the original coordinate system boundaries used
in the SVG file, which are 2752.766 × 1537.631
’units’ (SVG images are not defined in pixels).

That said, the choice was mostly dependent on the
number of points to be provided to the triangu-
lation of the overlay mesh, as the computational
load (not surprisingly) of that implementation far
exceeded any computational time that the imple-
mentation of algorithm 1 takes. Therefore, εmin

was set to 1.994.

3.7. Drawing 3D lines

Given a set of points forming line segments, a so-
lution to the thickness problem is to tessellate a
mesh of triangles consisting of duplicates of the
original points.

From a line segment l represented as two 2D
points a0, b0, a wide line segment is generated
by duplicating these points producing the set
a1, a2, b1, b2 forming the triangles (a1, a2, b1) and
(b1, b2, a2).

To attain width, the points are ”pushed” along the
line segments normal direction n with half the de-
sired line width w/2.

Figure 17. Tessellation of a line segment.

With this simple procedure illustrated in figure
17, line meshes can be generated from the same
points that defined an openGL line primitive.

If the normals were calculated using (a0, b0), the
problem of disconnect apparent in 4 would still be
present. As a matter of fact, so would the aliasing.
The method only achieves arbitrary width, which
only (partly) solves one of the problems with the
original primitive.

To attain all of the desired traits of the lines, the
method of line drawing requires multiple imple-
mentation steps:

1. Attain arbitrary width.

2. Join the segments.

3. Perform anti-aliasing.

The line widths could really be defined in any co-
ordinate system. Our implementation defines the
line widths in pixels on the screen. This choice
was to make the zooming function of the applica-
tion not make the lines hard to see on the screen.
The implementation is similar to that of the bill-
board described in [4].
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Table 5. Variables and notation in algorithm 2
v Projected vertice coordinate
vndc Vertice in NDC
vin Input vertice
vout Output vertice
n Normal of line
MVP Model-View-Projection matrix
P Projection Matrix
wpx Line width in pixels
wndc Line width in NDC
a Pixel size ratio

Algorithm 2 Line width computation
1: for all vertices: vin do
2: v = MVPvin
3: vndc = ( vx

vw
, vy
vw

)

4: wndc = wpxvwP11a
2

5: vout = (vndcx + wndcnx, v
ndc
y + wndcny)

6: end for

The computations constituting algorithm 2 is per-
formed in the vertex shader. By projecting v to
normalized screen coordinates, the width compu-
tation can be performed by the method in figure
17, if the width w is also computed in this coordi-
nate system, which is done on line 4 in algorithm
2.

To join the line segments, the normals n have to
be calculated differently dependent on if they are
the end of a line or a segment of a line. To perform
the joining of lines, the vertex shader needs to be
aware of if it is assigning width to a line segment
or line end.

Shader programs are executed completely paral-
lel, which means there is no way to peek at the
next or previously processed vertex in the pro-
gram. The solution to this problem is, given a set
of duplicated vertices V forming a tessellated line
mesh, make right and left shifted versions of these
points, Vnext and Vprevious. Provide these point
sets to the vertex shader as well, and determine
if the vertex under consideration is a segment or

an end.

To resolve the sign of the normal, a set of alter-
nating scalar signs d ∈ {1,−1, 1...1,−1} are pro-
vided to the vertex shader.

Table 6. Variables and notation in algorithm 3.
v Vertex coordinate
vprevious Left shifted vertex coordinate
vnext Right shifted vertex coordinate
n Normal of line
t Tangent to line
d Direction scalar

Algorithm 3 Line join (normal) computation
1: for all vertices: {v, vnext, vprevious} do
2: if v = vnext then
3: t = v− vprevious
4: else if v = vprevious then
5: t = vnext − v
6: else
7: t = v−vprevious

||v−vprevious|| + vnext−v
||vnext−v||

8: end if
9: t̂ = t

||t||
10: n = (−t̂y, t̂x)d
11: end for

Algorithm 3 is also implemented in a vertex
shader. Note that all the computations are per-
formed in NDC space. The 2D vector t̂ is the
normalized tangent to the line in NDC space at
v. The tangent is then used to find the normal.

An implementation detail appears on lines 2-6 in
algorithm 3. If a vertex is an end, the vertex in V
has been copied into the same position in either
Vnext or Vprevious where the shift would otherwise
be out of range, allowing for the equality check.

Achieving anti-aliasing of the correctly joined
and arbitrarily wide meshes attained by applying
algorithms 2 and 3 is a simpler matter. Utilizing
the varying pass into the fragment shader to inter-
polate between the alternating scalars d gives us
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the signed and normalized distance from the frag-
ment to the middle of the line mesh.

By assigning an opacity gradient value at some
distance from the the line mesh edge, the edge
will appear smooth.

Table 7. Variables and notation in algorithm 4.
wpx Line width in pixels
d̃ Interpolated direction scalar
f Gradient width value in pixels
fmax Gradient max position in pixels
fmin Gradient min position in pixels
α Opacity
δ Distance from line middle in pixels

Algorithm 4 Anti-alias of line
1: for all fragments do
2: δ = |d̃|wpx
3: fmin = wpx − f
4: fmax = wpx + f
5: if δ < fmin then
6: α = 1.0
7: else
8: α = 1.0− δ−fmin

fmax−fmin

9: end if
10: end for

The anti-aliasing in the fragment shader is applied
with an f value of 0.5, which means the width
of the fading out gradient is 1 pixel. This choice
means that only when jagged edges from rasteri-
zation are present, the opacity α will be not 1.0.

The combination of algorithm 2, 3 and 4 becomes
the implementation of line drawing used to pro-
duce country borders and lines representing flow
in the final application.

3.8. Assigning widths to flow lines

To visualize differences in trade amounts, the flow
lines are scaled depending on the amount. The

width in pixels for a flow line is computed with
equation 14.

wpx = wmin + q(wmax − wmin) (14)

Here, wmin is the minimum width a line should
be able to get, and wmax is the maximum. These
were set to 1 and 8 pixels respectively.

The variable q is a quotient, saying how big the
trade amount is in relation to the biggest trade
amount for that resource.

3.8.1 Linear scaling

The application offers two ways of scaling the
flow lines: linear and logarithmic scaling.

The scaling determines how the quotient q, men-
tioned above, is calculated.

For the linear scaling, q is given by equation 15,
where V is the current trade amount and M is the
biggest trade amount for the resource.

q =
V

M
(15)

3.8.2 Logarithmic scaling

For the logarithmic scaling, the quotient q is given
by equation 16, with V andM defined in the same
way as for the linear scaling.

q =
ln(1 + V )

ln(1 +M)
(16)

In short, the logarithmic scaling makes the
smaller trades appear bigger, while the linear scal-
ing can be seen as the true scaling.

3.9. Drawing Flow Lines

To generate the necessary set of points {pn}N1 as
an arc on the surface of a sphere two things are
needed: a starting point a and an end point b. By

12



normalizing a = a
|a| and b = b

|b| and then taking
the cross-product, a× b, a third vector c is gener-
ated, this is the rotation axis.

θ =
a · b
|a||b|

(17)

The angle to be rotated is given by equation 17.
Point pn can then be found by rotating point a by

the angle
θ

n
around c.

To find an arc over the sphere surface each point
on the line had a ”lift” term added to it.

The curve is parameterized by s ∈ [0, 1]. This s
can then be used to find an elevation term for each
point. However, the line should be an arc and land
safely on the sphere at its end. This means that the
latter half has to decrease in height.

Figure 18. The ”lift” function. Strikingly similar to
the quadratic bezier blending function for the middle
control point.[4]

The function of s is shown in figure 18. The
resulting function output should be added to the
points pn in the radial direction of the sphere. Due
to how pn is computed, this is a simple multipli-
cation.

pliftedn = pn(1 + dh(1− sn)sn) (18)

In equation 18, h is a static height factor of 0.25.
The distance between points a, b is also added as
a factor d to lift longer lines further away from the
sphere. N was set to 51d, meaning the number of
points to sample the curve relates linearly to the

distance between a and b. a and b are found by
computing the centroids of the point sets gener-
ated by algorithm 1.

3.10. Picking

Picking is implemented as a chain of transforma-
tions and intersection tests to determine where on
the globe the user tried to interact. Figure 19 dis-
plays the complete idea.

First, the interaction point is found on the screen
and transformed into model coordinates. This is
followed by an intersection test of the model. This
point is then further transformed into map coordi-
nates. Lastly, the coordinate is tested against the
polygons of the country borders.

3.10.1 Picking on Simple Geometry

mray = M−1P−1ncoordinates (19)

To be able to interact with the globe, e.g.
to be able to select a country or hover over
it to highlight it, an interaction ray casted
from the mouse was implemented. The
creation chain for the ray is done in the
order screen-coordinates→normalized-screen-
coordinates→eye-view-coordinates→world-
view-coordinates, equation 19.

Where mray is the mouse ray, ncoordinates are the
mouse coordinates normalized between -1 and 1,
and P−1 and M−1 are the inverted projection and
world to view matrices.

After the multiplication with the projection ma-
trix, the z value in the result are set to -1, before
multiplying with the world to view matrix, to rep-
resent the ray going into the screen.

a = mray ·mray

b = 2(mray · (pC − cS))
c = cS · cS + pC · pC − 2(cS · pC)− r2

(20)
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t =
−b±

√
b2 − 4ac

2a
(21)

The casted mouse ray is then used to find where in
the world the mouse is currently hovering. A line-
spehere-intersection is used to find if, and in that
case where, the mouse ray intersects the globe,
equations 20, 21.

The variables pC is the position of the camera, cS
is the center of the sphere and r is the radius of
the sphere. While a, b and c are used to see if a
line intersects a sphere according to the following
conditions:

b2 − 4ac > 0, intersection
b2 − 4ac = 0, tangency
b2 − 4ac < 0, no intersection

In equation 21, t describes the scale factor for the
traverse along the mouse ray from the cameras po-
sition to the intersection(s).

3.10.2 Picking on Closed Polygon

For testing if a point is inside a country poly-
gon, it is first transformed into normalized coor-
dinates u and v, using the intersection coordinate
p = mrayt by

u = 1
2
− arctan(py, px)

2π

v = 1
2
− sin−1(pz)

π

(22)

These coordinates are then tested by the zero
winding rule test mentioned in section 2.7. The
implementation relies on an ”is left” rule, where
the point (u, v) is tested against every edge
(ax, ay), (bx, by) by computing

l = (bx − ax)(v − ay)− (u− ax)(by − ay) (23)

granted that ay < v < by, the sign of l is added to
the winding number sum.

3.11. Rendering Polygons

Below the implementations of techniques previ-
ously discussed for rendering polygons of arbi-
trary shape are presented.

3.11.1 Concave Polygon Splitting into Convex Parts

The common approach of divide and conquer,
splitting a concave contour into its convex subdi-
visions. Each country is based on a set of points,
representing the borders of the country. This data
comes from the SVG-file mentioned in previous
sections

Table 8. Variables and notation in algorithm 5
{cn}N1 Coordinate set for a polygon
cnck The edge cn − ck
s Splitting Vector
is Splitting index
ii Intersect index
t Scalar value for splitting line (eq 6)
u Scalar value for intersecting line (eq 7)
pintersect Point of intersection

Figure 19. The chain of operations required to perform picking.
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Algorithm 5 Split polygon
1: for all n ∈ [1, ..., N ] do
2: if cncn−1 × cn+1cn > 0 then
3: s = cncn−1
4: is = n− 1
5: break
6: end if
7: end for
8: for all n ∈ [1, ..., N ] do
9: if s /∈ [cn−1cn−2, cncn−1, cncn+1] then

10: if t > 1 and 0 ≤ u ≤ 1 then
11: pintersect = cn−1 + u ∗ cncn−1
12: ii = n− 1
13: end if
14: end if
15: end for

Firstly, investigation is done, with the help of
equation 4, whether the country polygon is de-
fined clockwise or counter clockwise in terms of
point order. If it is not clockwise, the coordinate-
list is flipped so that the polygon is clockwise.

Secondly, if that country or country part is not
convex, this is investigated with the help of equa-
tion 5, that part is run through the splitting algo-
rithm 5.

Table 9. Variables and notation in algorithm 6
{cn}N1 Coordinate set for a polygon
is Splitting index
ii Intersect index
pintersect Point of intersection
polygon1 New polygon 1
polygon2 New polygon 2

Algorithm 6 Create new polygons
1: if ii < is then
2: add cis to polygon1

3: add pintersect to polygon1

4: for all n ∈ [ii + 1, ..., is − 1] do
5: add cn to polygon1

6: end for
7: for all n ∈ [0, ..., ii] do
8: add cn to polygon2

9: end for
10: add pintersect to polygon2

11: for all n ∈ [is, ..., N ] do
12: add cn to polygon2

13: end for
14: else if ii > is then
15: for all n ∈ [is, ..., ii] do
16: add cn to polygon1

17: end for
18: add pintersect to polygon1

19: for all n ∈ [0, ..., is] do
20: add cn to polygon2

21: end for
22: add pintersect to polygon2

23: for all n ∈ [ii + 1, ..., N ] do
24: add cn to polygon2

25: end for
26: end if

The variables is, ii and pintersect are used to create
the new polygons according to algorithm 6

The new polygons are in turn checked if they are
convex, if they are not, they are each run through
algorithm 5 and thus algorithms 5 and 6 works
in a iterative manner. If a polygon is convex it is
saved to a list of convex parts that the country will
consist of.

This method was used to generate the overlay
mesh, which in turn is used to draw chloropleth
maps ontop of the globe model.
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Figure 20. The stencil buffer polygon fill method. Red indicates an odd bit, green an even. 1) The contour of a
polygon, and the triangle fan anchor p. 2) Midway of first pass rendering step, the edge of the polygon is used to
draw a triangle fan from p. 3) The resulting bitmask generated by the stencil function after entire first pass. 4) The
resulting filled in polygon by the second pass.

3.11.2 Filling by the Stencil Buffer Method

Using the contours generated by algorithm 1, the
fill method that was briefly mentioned in the back-
ground section was implemented to highlight the
countries on mouse hover in the application.

The method operates in 2 passes. The first pass
renders onto the stencil buffer, applying the sten-
cil functions which assures that whenever a tri-
angle in the triangle fan originating from point p
is rendered, the bit is set to the opposite value to
what it was currently in the buffer.

The result is an odd-even bitmask. This corre-
sponds to the OpenGL method
glStencilOp(GL KEEP, GL KEEP, GL INVERT).

The second pass simply uses the mask generated
by the first pass, rendering a quad fit over the
screen, using the stencil to test for bits set to odd.
Figure 20 is a 4 step representation of the method.
For this method to work, depth testing has to be
disabled.

The last detail to implement the method is the
choice of p. The only requirement is that p lies in
the viewing frustum. As such, the camera point-
of-interest (or look-at-point) is a natural choice
for p.

3.12. Shader Animations

All animations of the application are implemented
as functions in the shader programs.

3.12.1 2D-3D Transition Animation

The transition animation from the two different
views is implemented as a fairly simple vertex
shader program. The idea is that since the two
geometries that are to be transitioned between are
described by very simple mathematical surfaces,
the sphere S, and the rectangle P in the xy-plane.

The mapping f : S → P is a solved problem
and is described in [4], but the application of the
mapping is texture mapping of a sphere.

The transition also have the added criterion that
the mapping should be an animation, which
means the mapping needs to be function that is
continuous by some parameter τ .

The solution is found by simple mathemathics.
Let a point on the surface s ∈ S be described in
spherical coordinates. The mapping f : S → P
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of s to a point p ∈ P is found by

p = f(s) =

{ px = arctan(sy, sx)
py = sin−1( sz

||s||)

pz = 0

(24)

The arctan(·, ·) two-argument function is defined
in [4]. Using equation 24, describing any point on
the intermediate surface v ∈ V between the two
surfaces can be done as a function of the parame-
ter τ if τ ∈ [0, 1] and the point s by

v(s; τ) = s− τ(s− f(s)) (25)

As τ nears 1, the surface V becomes more and
more reminiscent of P . If τ is 0, V will be equal
to S.

This functionality is implemented in all vertex
shaders that are required to deal with geometry
following the transition animation.

Some care had to be taken with points close to
the anti-meridian and poles, as geometry gets
stretched and warped in these areas, due to the
boundaries of equation 24.

3.12.2 Flowline Directions

The flowlines are animated to give an indication
of which direction the flow is heading to make
distinguishing between import/export easy.

The animation uses the opacity value of the
4-component color vector to produce a visible
change in the appearance of the flows. The opac-
ity value is a position dependent scalar that also
varies over time.

α = 0.5 + sin(t− p) (26)

The exact formula is found in equation 26 and
uses the elapsed time t in a sine to create peri-
odicity.

To generate a shift for equation 26 for each po-
sition, a position based parameter p is used that
assigns each point in the flow to the range [0, 1].

Then to increase the speed at which the line
”moves” and how many particles are moving,
scale factors can be multiplied with t and p re-
spectively. We chose a factor of 7.5 for t and 50
for p.

The end result of this is the appearance of parti-
cles travelling along the flowline.

3.13. User interface

The user interface was implemented using
HTML, CSS, JavaScript and a little bit of jQuery.

The HTML creates all the elements the website
should contain. The CSS defines the styling of
these elements. And the JavaScript can be seen as
the engine of the frontend, defining all the func-
tions that should be executed when the user does
something.

The jQuery was only used for the filtering slider
described in section 3.13.4.

The main components of the interface are:

• The canvas element that OpenGL renders all
the graphics into.

• The side menu where the user can make se-
lections and change settings.

• The switch between 2D and 3D view.

• The info-box that displays information when
hovering on a country.

3.13.1 Connecting JavaScript and C++

To be able to send information from the frontend
to the backend (and vice versa), you need to be
able to call functions between the two.
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To call C++ functions from JavaScript, we use
something called Embind, that comes with the
Emscripten package. Embind exposes C++ func-
tions to JavaScript, so that they can be called in a
normal way.

The compiled Emscripten code also provides a
global JavaScript object called Module, that can
be used to access the exposed C++ functions.

To call JavaScript functions from C++, we use
something called EM JS, that pretty much creates
a JavaScript function library for us. These func-
tions can then be directly executed from the C++
code.

For a more detailed description, see the Em-
scripten documentation [8].

3.13.2 Filling the drop-down lists with data

Since the data is loaded in the backend, we need
to send everything to the frontend (to fill the lists
of countries and resources).

So initially, the drop-down lists are empty, and
when the loading is complete, the data is received
via EM JS, as described in section 3.13.1. The
different options are then appended to an HTML
div that expands in size, however becoming scrol-
lable after a certain maximum.

3.13.3 Selection handling

When the user makes a selection in the menu, this
action is forwarded (via the Module object) to the
backend. Then there’s a class called selection-
handler that keeps track of all the selections, and
based on that, calculates the new possible options.
These options are then sent back to the frontend,
updating the drop-down lists.

An example of this would be when the user selects
a resource, and the countrylist should be short-

ened to only those countries who have data for
that resource.

The selectionhandler also makes sure that the flow
visualization is only showing trades for the cur-
rently selected resources and countries.

3.13.4 Filtering of flows

In the side menu, there is a slider that allows the
user to filter out flow lines, which can be useful
if you for example only care about the big flows,
and there are a lot of smaller flows making it hard
to see.

The slider has two handles, so the user can specify
an interval in which a trade amount needs to lie
within for it to be rendered as a flow line.

If for example the first handle is at 20% and the
second handle is at 80%, a trade will only be vi-
sualized if the quotient q (described in section 3.8)
is in the interval 0.2 < q ≤ 0.8.

3.13.5 Zooming

The zoom function gets its input from the mouse
scroll. These values are positive or negative inte-
gers.

The input values are used to move the position
of the camera by moving its position along the
position vector, e.g. the vector from the center of
the globe to the position of the camera.

3.13.6 Rotating the camera

The camera is rotated with the change in the
mouse’s x- and y-coordinates as input. The cam-
eras position p is changed based on a φ- and a
θ-angle according to equation 27.

px = |p|cos(φ+ ∆φ)sin(θ + ∆θ)
py = |p|cos(θ + ∆θ)
pz = |p|sin(φ+ ∆φ)sin(θ + ∆θ)

(27)
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Here, ∆φ is the change in the mouse’s x-position
and ∆θ the change in the mouse’s y-position.

4. Results

In the following section the results will be pre-
sented, a variety of the available visualization op-
tions will be selected and presented as figures.

As the figures will be static images none of the
animations will be availible, these can at the time
of writing be seen live on www.resflow.se.

4.1. Polygon splitting and tesselation

Figure 21. Angola consisting of convex polygons.

In figure 21 the results from the polygon splitting
algorithm used on Angola can be seen. Each tri-
angle corresponds to a set of points with indices
that are drawn in the program.

Figure 22. Tesselated version of Angola.

Figure 22 shows the tesselated version of Angola,
here can clearly be seen that the number of trian-
gles increased, thus leading to higher resolution.

Because of the disconnect between the poly-
gons after the split, in terms of coordinates, gaps
caused by newly created points on the split line
after the split can occur. This is currently fixed by
having a sufficently high resolution threshold and
by making the triangles a bit bigger, so that they
overlap and hide these gaps.

4.2. Visualisation of data

Figure 23. Import flows of soy, gold and cotton for one
country

The import and export data is visualized as lines
around the globe, called flows. The flows are ani-
mated to give an indication of direction for import
or export.
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If multiple resources are selected, their flows will
be shown at the same time with different colors.
The colors are matched to a resource in a legend
in the lower left corner. An example of this can
be seen in figure 23.

Figure 24. 2D view of the world with import of soy

If an overview of the entire world is desired the
2D view can be toggled. The currently selected
flows are retained and remain shown as can be
seen in figure 24

4.3. Visualisation of Indices

Figure 25. Transnational Climate Impact index shown
with the blue color scale

The ability to visualize different indices as choro-
pleth maps is also possible. If an index is selected
the countries are colored accordingly, seen in fig-
ure 25

Figure 26. Selection of index color range

The application also allows the user to select be-
tween three color scales by clicking on the color
legend. The menu drops down as shown in figure
26.

4.4. Combining the visualizations

The visualizations can be combined to draw con-
clusions about import from potentially unstable
countries according to some index.

The previously mentioned color selection for the
indices here allows for a clearer view as can be
seen in figure 27.

Figure 27. TCI and import of Soy to several countries

5. Discussion

The following sections will discuss some of the
issues with the application, what could be done to
improve them and implementation of features that
lie further in the future.
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5.1. Optimization

The current application is at times slow, most no-
ticeably at the start. This first delay is mainly
the result of the slow generation of convex coun-
trymeshes.

Another issue that is as visible as this is when the
user selects all countries and the corresponding
flows has to be drawn, this produces a noticeable
stutter on most machines.

An easy way to improve the drawing based de-
lays would be to find a way to reduce the amount
of points that are created for the convex meshes
while retaining the same visual appearance, previ-
ously having fewer points led to gaps in the mesh
so this is a problem that would have to be solved.

A possible solution to this could be to have a
look up table when generating the meshes, which
lets the algorithm know of the connection line be-
tween the two newly created polygons during a
split.

This has to work in the manner that it reduces the
number of points in the total country mesh and
connects the indices to the right coordinates.

5.2. Implementation for touch screen devices

The current application runs on all devices that
are WebGL compatible, the interface however is
severely lacking.

The implementation of a touch-device compati-
ble user interface would increase the number of
compatible devices greatly at a small implementa-
tion cost. This is because the Emscripten API has
touch event handlers that only have to be linked
to functions that handle the input, which already
exist in the code.

5.3. Exporting the data

Another way to improve the application would
be to add the ability to export data and graphics

based on the current selections as either separate
files or as a single report.

The selected data would be formatted into a set of
predetermined plots and diagrams that then will
be exported as images. If more detail is requested
the raw data could be exported as a text file.

Another type of export is a still image of the vi-
sualization with the current selections included.
This could make it easier to back up claims that
were found by using the application.
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