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Abstract

This technical documentation describes the work and re-
sults of the CDIO-project ”Classification of satellite im-
ages using Convolutional Neural Networks”. The aim of
the project was to detect and label airports in satellite im-
ages using machine learning. Two different neural networks
were used and evaluated in order to achieve this. The group
have found that the networks perform somewhat differently,
where DeepLabV3+ reached the best performance with an
Fl-score of 98.3% for non airport pixels and 75.3% for air-
port pixels. The project group conclude that airports are
a challenging target to classify by using neural networks.
This may be a result of the varied appearances of airports
around the world, as well as the look of airports tends to
have a similar appearance as urban surroundings.

1. Introduction

Accurate geodata is required when developing tomorrows
telecom network, where an increased demand are seen in
several fields such as video, 5G and IoT solutions. By
using geodata, it is possible to plan and design telecom
networks with optimal performance. Telecom networks
are often overloaded in crowded areas, and by localizing
social structures that contains a lot of people, it is possible
to distribute resources more efficiently.

This paper describes how deep convolutional networks can
be used for classification of social structures in satellite im-
ages. The project aims to classify airports in satellite images
with two different neural networks and to further evaluate
the both of them. The project originates from Carl Sun-
delius master thesis project at the company Vricon, and it
aims to develop on his thoughts and findings [[1].

1.1. Parties

The group consists of students from the course TSBB11.
The supervisor from LiU is Gustav Héger and the data and

Description

1 | The product should take inputs from five channels
(R, G, B, NDVI, DSM).

2 | The system should be able to handle
the image format ”.tif”.

3 | The system should be able to classify at least one
new class, preferable airports, from satellite images.
The F1-score should be at least 0.80.

4 | The results should be evaluated quantitatively using
F1-score and qualitatively by using visual evaluation.

5 | At least two networks with different architectures
should be compared. If there is time further

architectures should be implemented and compared.

Table 1. Requirements.

assignment are given from Vricon. Vricon also provided
guidance via Carl Sundelius.

1.2. Aims

The aim of this project is to train and evaluate two different
neural networks with the purpose to classify airports from
satellite images. The goal is to efficiently process satellite
images and for all pixels determine if they correspond to
airports or non-airports. The formal requirements are listed
in table [Tl

1.3. Definitions

e CNN: Convolutional neural network

e NDVI: Normalized difference vegetation index.
e DSM: Digital surface model

e RGB: Red, Green, Blue images

1.4. Restrictions

Throughout the project, data provided by Vricon will
be used for training, test and validation. The project
will be examining and using the networks ResNet50 and
DeepLabV3+. Also a simple test network will be imple-
mented and used as a reference of the training result. Two
classes will be used, airports respectively non-airports. The




implementation will be done using the Keras api for Tensor-
flow, coded in Python. The end product will be command-
line based and thus have no Graphical User Interface.

2. Theoretical background

This section aims to give the reader an overview of image
semantic segmentation and convolutional neural networks.
In[2:3]the two implemented networks are described in detail.

2.1. Convolutional Neural Network - CNN

The fundamental concept of a neural network is to mimic
the neurons in a biological brain. Thereby, a neural network
consists of neurons that are fed an input feature, which is
represented by a number. The feature is then multiplied
with the weight of the neuron, and the result is sent to the
final output stage of the neural network. There, the results
from all neurons are summed, and if a certain threshold
value is reached, the activation function will spark. This
is the basic concept of a binary classifier, a perceptron [2].
The network can then be trained to perform different tasks
dependent on the training data. This data is pre-labeled,
where each label corresponds to a previously known class.
The weights the neurons are assigned in the net may then
be randomized, and the network fed the training data. An
error is formed, based on the difference in given classes
from the network, and true classes from the training data.
The error in classifying may then be used in a gradient
descent algorithm, solving for the weights to minimize
the error. In that way, the neural network can be trained
to perform certain tasks, such as classifying if an image
portraits a cat or not [2].

The neural network can from here be expanded to solve
further tasks by letting the output of one layer of neurons
connect as the input to another layer [3]. This creates a
multi-layer perceptron, capable of performing tasks the
original perceptron design is incapable of [4]]. Letting the
output of every neuron in a layer connect as input to every
neuron in the next creates a fully-connected network, which
can be efficiently trained to perform many tasks [3l [3].

In image classification and semantic segmentation the stan-
dard methods for extracting features has for a long time
been hand-crafted algorithms, such as binary operations or
edge detection. These features are then fed to neural net-
works trained to use them as input to perform its task [6} [7].
To avoid the limitations of these hand-crafted algorithms, a
proposed alternative is to instead train the network to per-
form the feature extractions [7| [§]. This has shown to out-
perform traditional, fully-connected networks [9, [10]. The
features are extracted by using layers that are locally con-
nected, meaning that instead of letting the output from ev-
ery neuron in one layer be fed to the input of every neuron

on the next, only “spatially close” connections are formed.
This ensures that the feature of one corner of an image is
not affected by another corner. The resulting weights are
thus more similar to a 2D convolution kernel. This further
explains the feature-extraction, since a 2D convolution uti-
lizes spatial information in an image, which is considered
important in image classification and semantic segmenta-

tion [6].
2.2. Semantic segmentation

Semantic Segmentation describes the art of image classifi-
cation on a pixel level where one aims to assign each single
pixel with a certain class label [11]. The input is a natu-
ral image and the output a similar picture but with a de-
sired number of classes labeled, see figure [I] Common ap-
proaches to solve this task was for a long time to use for
example Random Decision Forests [[12] or Support Vector
Machines [13]], although the progress of deep Convolutional
Networks for the last few years have heavily outperformed
these previous state-of-the-art solutions. By using the archi-
tecture of a deep CNN but replace the top layer with fully
convolutional layers it is possible to predict classes in an
image from an image of arbitrary size [11]].

Figure 1. Previously classified image over Atlanta Airport where
different terrain are given different color codes

2.3. Residual net

An intuitive solution when tasked with difficult machine-
learning problems is to simply add more layers to the
network, since a deeper neural network should in theory
be better. However, it is shown that an increased depth
of the network may result in a decline of accuracy in the
performance [14] [T5]]. This behaviour has no correlation to



over-fitting neither over-training of the network, but rather
appears to be an effect of the structure of the network itself.
This seems to happen because of the network incapability
to create so called identity layers, simply layers with the
weight 1 and therefor with an input identical to its output
[14].

Assuming that y = F'(x) is the correct mapping of input
x to output y for a layer, let F(z) = F(z) 4+ «. Then it
is suggested to use F'(z) = F — x as the mapping for the
layer [[14]]. This rewritten mapping is believed to be easier
to optimize than the original one.

Thus, to achieve superior accuracy, residual nets employ
”skip” steps, where the input from a layer number n is
sometimes forwarded to the output from layer number n+1,
effectively letting layer n+ 1 have the output F'(x)+x. This
behaviour can be seen in figure 2]

2.4. F1-score

The Fl-score is an evaluation method that considers both
the precision and recall of the model and returns a weighted
average of these, according to equation 1 [16].

F1 — score — 2 preclis.ion * recall 0
precision + recall

A Fl-score is obtained for each class and the precision and
recall contribute equally to the score.

The precision is calculated as the number of true positives
divided by number of total positives (both true and false).
This tells us how many of the predicted positives that are
actually correct and gives a measurement of the networks
ability to not label a sample as positive when it is in fact
negative[16].

The recall is calculated as the number of true positives di-
vides by the number of total actual positives (both true pos-
itives and false negatives). This is a measurement of the
networks ability to find all positive samples [[16].

2.5. Network descriptions

This section aims to give the reader a more thorough un-
derstanding of where the used network originates from and
describe its functionality.

2.5.1 ResNet50

Resnet50 is a residual network that in 2015 won the
ILSVRC challenge for Large Scale Visual Recognition. It
is a development of the previous deep CNN AlexNet that
won the same challenge in 2012 [17]] and VGGNet that won
the challenge in 2014. During the challenge, participants

main focus was to come up with new CNN architectures
that could outperform the existing ones. VGGNet was at
its time both deeper and bigger than its ancestor with 16
respectively 19 layers, which at the time was considered to
be very deep [18]]. ResNet, with an architecture of up to
152 layers, was presented the following year as a response
to the proven theory that deeper network performed better.
The number of parameters could be reduced thanks to the
use of global average pooling rather than fully connected
layers. Apart from the more accurate prediction, a problem
with such deep network aligned with overfitting. He et al,
the creators of ResNet50, introduced the residual blocks as
skip connections between layers as illustrated in figure [2]to
get around this problem [14].
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Figure 2. Residual skipping, as described in 2.3

ResNet allows an input of arbitrary size and downsamples
the output from each layer until it in the final layer equals
the number of classes to predict which in this case solely
equals a binary classification [14].

2.5.2 DeepLab

Deeplabv3+ is based on the previous DeepLabv3 but with
a simple decoder module to improve the segmentation
along object boundaries [20]. DeepLabv3 applies Atrous
Spatial Pyramid Pooling (ASPP), which is several parallel
convolutions with different pooling rates, see figure
[20, [19]. This allows for capturing contextual information
at multiple scales, which give much information of the
semantics in the last feature map. The result does however
lack detailed information of object boundaries due to the
down sampling of the image along the neural network [20].

To improve segmentation at object boundaries DeepLabv3+
employes ASPP with a encoder-decoder structure. Figure 4]
below shows the ASPP module, Encoder-Decoder structure
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and the Encoder-Decoder together with ASPP. Encoder-
decoder networks does typically contain one encoder
module that reduces the feature map with convolution
layers and pooling in order to extract semantic information.
To receive a result with the same resolution as the input
the decoder gradually recover the spatial information to the
encoded image [20]].

The segmentation is performed using an adapted Xception
model where depthwise separable convolution is applied
on both ASPP module and decoder module. Deeplabv3+
is also using pre-trained weights from the PASCAL VOC
2012 dataset to boost the perfromance of the model [20].

3. Method

This section aims to give an overview of the method used in
the project. The group was given a framework from Vricon
with useful functions. Provided functions were for example
creating and saving models, training locally and on Google
Cloud. Further the group had to implement networks that
was suitable for this frame as well as generating functions
for prediction and evaluation.

3.1. Preprocessing of data

The satellite images the group received from Vricon were
in the format of tif-images (Tagged Image File) and were
of three different types. One image contained the RGB
channels, one contained the NDVI and one contained the
DSM. The images had various sizes but all of them were
quite large (for example 7054x7814 pixels) and were thus
too large to be used directly as input to the networks. It was
also preferable to arrange the data into numpy arrays con-
taining certain layers so that it would work properly with
the training code that the group was given. Because of this,
preprocessing of the images were necessary. The input im-
ages were chosen to contain seven different layers; R, G, B,

NVDI, normlized DSM, labels and a weight mask. Below
the different preprocessing parts are described briefly.

3.1.1 Normalize DSM

The given DSM tif-images were not normalized and also
had values of approximately -32800 in pixels were data was
missing. To not let this interfere and mess up the train-
ing, zeros were placed in these pixels. Then lowest point in
the tif-image was set to zero and the other pixels obtained
values relative to this lowest point. In this way the image
height-values were normalized between 0 and 1.

3.1.2 Label airports

Since there was not any images in which airports had been
labeled the group had to label the airports in the tif-images
manually. This was done by using the image editor pro-
gram GIMP2. The airports were marked in a red color and
everything that was not an airport in black. Then the images
were modified so that airport pixels obtained the value 1 and
non-airport pixels the value 0. These images were saved as
tif-images.

3.1.3 Creating weight mask

The ratio between the two classes (airport and non-airport)
vary widely between the images. If the test set is very un-
balanced (i.e a ratio of 10:100000) the network could get
a good accuracy by only predicting non-airport for all pix-
els, although this is not desirable since the interest lies in
classifying the airports. To overcome the problem (or at
least make the problem less significant) a weight mask that
weights the importance of every pixel was created to be
used during training. The pixels containing airports got the
value 1 and the value of the non-airport pixels was set to a
value according to the following:

number of airport pixels

W r s =
ren=arport T imber of non — airport pixels
Pixels that were not supposed to be used in the training were
set to zero. It is the ratio between the pixels in the weight
mask that are important to make the training more efficient.

3.1.4 Splitting into smaller patches

As mentioned earlier the tif-images were too large to be
used directly as input data. After obtaining the normalized
DSM, labeled tif-image and weight mask the images
were converted into numpy arrays and split into 512x512
patches. Then the seven different layers were added
together and only the patches containing airport or parts of
an airport was saved. Each of these patches then got a size
of 512x512x7 and were ready to be used as input to the
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Figure 4. Encoder-Decoder and ASPP [20]

networks.

The training data were then added to the storage on Google
cloud were 2/3 was used for the training and 1/3 for the
validation. Some of the images was saved to be used as test
to evaluate the result.

3.1.5 Augmentation of data

A large amount of training data is usually required in order
for the network to learn efficiently [21]. In this case the
group had a limited amount of labeled training data so data
augmentation became relevant. Each image was randomly
rotated 90, 180 or 270° right before they were chosen
for training or validation. The network was then feed the
several different rotated versions of the same image. The
rotational difference was perceived by the network as new
data, and thus more training data was “created”.

3.2. Implementation of Network

This section describes the implementation of the networks
and how they have been tweaked to fit the set requirements.
Two different networks were supposed to be tested where
the system should be able to use .tif images as input and out-
put. Each network should be able to take a patch of 512x512
pixels with five channels as input.

3.2.1 ResNet50

The ResNet50 model used was taken from Keras Applica-
tions, which is a library with multiple deep learning models
available together with pre-trained weights [22]. Parts of the
model was pre-trained on weights from ImageNet, in order
to achieve better initialization for the weights. The Ima-
geNet weights available were ment to be used with a net-
work taking 224x224 RGB images as input and clasify the
images. Therefore, some modification to the network was

neccesary. This was done to achieve an architecture which
supported the desired input and output (that is, 512x512x5
and 512x512x2). To achieve this, two ResNet50 mod-
els were created. The first of them contained pre-trained
weights from ImageNet on all layers. The second had a
removed input-layer, which allowed for an arbitrary input
size, and randomized weights. The weights from the first
model was then copied onto the second model, with the
exception for the non-existent input-layer. This effectively
creates a ResNet50 model with pretrained weights for the
RGB-channels. The output from the final convolutional
layer from this model was then taken and connceted to a
convolutional layer, outputting a 512x512x2 tensor. This
was finaly fed to a softmax-layer, performing the final pixel-
wise classification.

3.2.2 DeepLabV3+

The DeepLabV3+ model was found as Keras compatible
open source and was retrieved from GitHub [23]]. The
model was created with pre-trained weights from the PAS-
CAL VOC dataset. The pre-trained weights were trained
on 3 channel images (R, G, B) and therefore the model
needed to be modified to fit the images with 5 channels.

To handle the problem with channels, the first layer in the
model was modified by changing the kernel size and name
of the layer. By loading the PASCAL VOC weights by
name they were loaded into all layers except the first one.
The weights of the first layer was instead initiated with
random weights.

Since a cross entropy loss function was used the output of
the model needed to be scaled between [0, 1]. To solve this
a final softmax activation function was added. Finally the
output was reshaped to fit the weight mask described above.



3.2.3 Simple Net

A small randomized Neural Network was created as a ref-
erence net and was used to see whether DeepLabV3+ and
ResNet50 performed better than solely randomized convo-
lutions layers. The simple network contained only 10 con-
volutions layers.

3.3. Training

The training was performed using a Google cloud compute
engine with GPU support.

As the learning rate of a network can greatly affect its per-
formance, finding the optimal learning rate for each network
was deemed crucial. This was done by letting the network
train 10 epochs with different learning rates, ranging from
1073 to 107, The validation loss from each training run
was then noted and the learning rate that generated the low-
est validiation loss was selected to run the final training with
400 epochs or until the model could not improve any more.
By using early stopping the training was stopped when
the validation loss was not marginally improved between
epochs and the model was as good as possible. The used
batch size was 5 which was the highest possible due to a
limited amount of VRAM.

Two training sets were created, one with and one without
the weight mask. Both models were trained with both sets
to evaluate how the weight mask affected the final results.

3.4. Prediction

The trained model was used to perform classification on
new images that had not been used in training. The used
implementation for this was a predict function provided
by Keras [24]. predict returns an 512x512 array with same
depth as the number of classes, i.e. 2 (one for airport and
one for not airport). The sum of the values in both layers
are always 1 in each pixel. By selecting the highest value
of the two layers each pixel gets their classification.

To be able to use the Keras implementation the first step was
to transform the .tif images into a 5-layers array as in the
preprocessing step. The array was then divided into patches
with size 512x512 pixels and each of the patches were pre-
dicted one by one. The predicted result of each patch was
then added to an array with same shape as the .tif images
but with one layer.

3.5. Evaluation

The evaluation method used to evaluate the networks is the
F1-score. This method was chosen since it takes both the
precision and recall into account, which was considered

important to get a fair and sensible evaluation.

Since two Fl-scores was obtained, one for airports and one
for non-airports, an average F1-score was calculated as the
average of the two scores. This was done to get a measure-
ment of the overall performance of the networks.

4. Results
This section presents the result of the project.

4.1. Learning rates

The results from the learning rate test are displayed i the ta-
bles below. Tabel 2] shows the results from the DeeplabV3+
implementation, tabel [3| shows the results for the ResNet50
implementation and the results for the simple test network
are shown in tabel 4]

Learning Rate Validation Loss

1073 0.67421
1074 0.31869
1075 0.32248
1076 0.55617
1077 0.56366
1078 0.65102
107° 0.6498

Table 2. Validation loss with varying learning rate for DeepLab

Learning Rate Validation Loss

103 0.34905
10~4 0.2595
10—° 0.49204
10-6 0.4125
107 0.611
108 0.64025
10~9 0.6493

Table 3. Validation loss with varying learning rate for ResNet50

Learning Rate Validation Loss

10-3 4.345
10~4 4.345
10~5 4.339
10~ 3.522
1077 4.325
10-8 6.056
1079 6.264

Table 4. Validation loss with varying learning rate for the simple
test network

As can be noted in table 2] and table [3] the lowest valida-
tion loss for both implementations was obtained when the
learning rate was set to 10~4. This learning rate was thus
deemed optimal and used in further training. The test also



showed that the simple test neural network performed way
worse than the designed ones.

4.2. Prediction and evaluation of DeepLabV3+

The results of the predictions with the DeepLabV3+ model
of three different images are shown in the figures below.
The pink color corresponds to the predicted airport pixels.
Random rotation for data augmentation was used.

Figure 5. Minneapolis predicted with DeepLabV3+, no weight

No airport | Airport
No airport | 11825736 | 312400
Airport 90775 616145

Table 6. Confusion matrix {

rom prediction of the image in figure[§]

The F1-score for the prediction in figure[6]is 98.3 % for non
airport pixels and 75.3 % for airport pixels, with an average
F1-score of 86.8 %.

mask used.

Table 5. Confusion matrix from prediction of the image in figure[3]

The Fl-score for the prediction in figure[3]is 99.0 % for non
airport pixels and 31.9 % for airport pixels, with an average

Figure 7. Atlanta airport predicted with DeepLabV3+, weight
mask used.

No airport | Airport
No airport | 11826059 | 304909
Airport 90452 616468

F1-score of 65.5 %.

Figure 6. Atlanta airport predicted with DeepLabV3+, no weight
mask used.

No airport | Airport
No airport | 5443907 | 6472604
Airport 28388 900157

Table 7. Confusion matrix from prediction of the image in figure[7]

The Fl1-score for the prediction in figure[7)is 62.6% for non

airport pixels and 21.7% for airport pixels, with an average
Fl-score of 42.1 %.

Figure 8. Singapore airports predicted with DeepLabV3+, no
weight mask used.



No airport | Airport
No airport | 52310497 | 2127110
Airport 29493 58852

No airport | Airport
No airport | 11848815 | 512913
Airport 67696 415632

Table 8. Confusion matrix from prediction of the image in figure[§]

The Fl1-score for the prediction in figure[8]is 97.9 % for non
airport pixels and 5.2 % for airport pixels, with an average
F1-score of 51.6 %.

4.3. Prediction and evaluation of ResNet50

Figure 9. Atlanta airport predicted with ResNet50, learningrate
0.001 no weight mask used.

No airport | Airport
No airport | 11205873 | 710638
Airport 245679 675698

Table 9. Confusion matrix from prediction of the image in figure[J]

The F1-score for the prediction in figure[9]is 95.9 % for non
airport pixels and 58.6 % for airport pixels, with an average
F1-score of 77.3 %.

Figure 10. Atlanta airport predicted with ResNet50, learningrate
0.001 weight mask used.

Table 10. Confusion matrix from prediction of the image in figure

The F1-score for the prediction in figure [I0]is 97.6 % for
non airport pixels and 58.9 % for airport pixels, with an
average Fl-score of 78.3 %.

Figure 11. Minneapolis airport predicted with ResNet50, learn-
ingrate 0.001 no weight mask used.

No airport | Airport
No airport | 44827415 | 492760
Airport 527593 289576

Table 11. Confusion matrix from prediction of the image in figure

I8l

The F1-score for the prediction in figure [T1]is 98.9 % for
non airport pixels and 36.2 % for airport pixels, with an
average F1-score of 67.6 %.

Figure 12. Minneapolis airport predicted with ResNet50, learn-
ingrate 0.001 weight mask used.



No airport | Airport
No airport | 45311092 | 1766714
Airport 461131 356038

Table 12. Confusion matrix from prediction of the image in figure
12l

The Fl-score for the prediction in figure [12]is 99.2 % for
non airport pixels and 13.7 % for airport pixels, with an
average F1-score of 56.5%.

Figure 13. Singapore airport predicted with ResNet50, learn-
ingrate 0.01 weight mask not used.

No airport | Airport
No airport | 52271382 | 68608
Airport 2120426 65536

Table 13. Confusion matrix from prediction of the image in figure

@3

The F1-score for the prediction in figure [13]is 98.0 % for
non airport pixels and 5.6 % for airport pixels, with an av-
erage Fl-score of 51.8 %.

Figure 14. Singapore airport predicted with ResNet50, learn-
ingrate 0.001 weight mask used.

No airport | Airport
No airport | 51877166 | 462824
Airport 2105042 80920

Table 14. Confusion matrix from prediction of the image in figure

!

The F1-score for the prediction in figure [T4]is 97.6 % for
non airport pixels and 6.0 % for airport pixels, with an av-
erage Fl-score of 51.8 %.

5. Discussion

Below follows a discussion regarding the performance of
the two different networks and possible reasons why the re-
sults look like they do. Also future possible improvements
of the system and networks are discussed in this section.

5.1. Labeling of data

The amount of labeled data is probably the main problem
when it comes to classification using a neural network.
The labeled data consist of totally 60 satellite images with
airports where all airports have different shapes and sizes -
some airports are bigger than others, some have more grass
around/between the runways, they might have multiple
runways or a single runway, they might be surrounded by
many or almost no buildings at all, etc.

The group has labeled the data in GIMP2 and had some-
times problem to localize the right areas according to
their appearances and had to use Google maps to find
their locations. It was also hard to decide what should
be included in the airport labeling and what should not.
Since all group members took part in the labeling process
it is also possible that what was labeled as airports varied
depending on which group member performed the labeling.
Further on, when labeling, the group found that it was often
hard to see the difference between runway and big roads
with houses surrounding it. It is possible that the models
experienced the same difficulties.

Since both networks has several million parameters it
would take a lot of time to train them from scratch and
because of this pre-trained weights was needed. This
means that the network has already learned some universal
features and this will then speed up the training process.
Even though the pre-trained weights are used it still seemed
like the amount of training data was to small to obtain the
desired results. One possible bad impact on the result cloud
be that the first layer did have random start weights, which
may have been badly initialized.



5.2. Discussion of result

The results of the predicted images shown in the result sec-
tion are here discussed and analyzed, both for DeepLabV3+
and ResNet50.

5.2.1 DeeplabV3+

The network trained with the DeepLabV3+ model produced
a good result on the Atlanta airport shown in figure[6] The
good result of that prediction might be because the airport
had a similar appearance as many of the other airports that
was used in the training set. Another reason could be that
the airport was large in size.

A bad prediction with the network is seen in figure [§]
that illustrate Singapore airport. The reason for this was
probably that the airport does not look similar to most other
airports the network used for training. The surroundings
of the runways was in this case brown and not green. To
learn the network to find airports with different appearance
like this, more training data with a larger variety of the
appearances of airports are needed.

From the result of the predictions for both ResNet50 and
DeepLabV3+ it is clear that the prediction of Atlanta airport
got a higher average F1-score compared to the prediction of
Minneapolis. A reason for this could be that the size of the
airport matters and that larger airports are easier to find. By
looking at the Minneapolis prediction that actually contains
two airports, one larger that are easily seen and one smaller
in the lower left corner, only the larger airport are predicted
as airport.

5.2.2 ResNet50

As can be seen in figure[9] and figure[T1] the ResNet50 im-
plementation appears to perform acceptably on the Atlanta
airport and the Minneapolis airport. This is attributed to the
clear contrast between the airports and their surroundings,
as well as their “typical” appearance. This indicates that
the ResNet50 implementation can perform well, but that it
requires sufficient training data and is restricted to identify-
ing airports with a certain ”look”. This is further illustrated
in figure [I3] and figure [T4] where the airport in Singapore
is clearly not detected, and that several other places instead
are wrongly marked. This may indicate that more training
data is needed to generalize the ResNet50 implementation
to include airports such as the one in Singapore. A possible
explanation of the currently poor performance of this air-
port is the lack of similar airports in the training data, that
is, coastal airports with similarly colored surroundings.
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5.3. Weight mask

A notable difference was found in performance between
networks when weight masks was used and when it was not
used. As seen in figure[d] it is clear that when DeepLabV 3+
is trained with the weigh mask, the networks labels pixels
as airports more aggressively than without the weight mask,
which gives a worse result. This is in accordance with the
theory presented in section Since airport pixels have
higher weights than non-airport pixels, the network predicts
more of them. The weight mask would probably be more
useful when predicting more classes than two. Worth notic-
ing is that the learning rate seems to play an important role
when one decides whether a weight mask should be used
or not. A clear example of this is to be seen in figure
which even performed somewhat better than without mask.
If the learning rate is to high it is common that the model
diverges and predicts the highest weighted class, which in
our case is the airport. This behaviour was also seen for the
ResNet50 model, where the showcased results with weight
mask solely could be reached with this certain learning rate.

The results from the ResNet comparison with and without
weight mask is somewhat contradictory to what is men-
tioned in This is since the weights are supposed to
make sure that airport pixels are correctly labeled, caring
less about the non-airport pixels. Based on the theory pre-
sented in section[3.1.3] the networks without masks should
have created more false-negatives and less false-positives,
since an easy way to achieve high accuracy is to think of
everything as non-airports. This is, as mentioned, observed
in the DeepLabV3+ networks. Since the observed result
for ResNet50 points to the contrary, it is believed that more
training data is needed to let the weights have effect, and
that further research in general is needed.

5.4. Comparison between the networks

As seen in table [4| the simple test network performed way
worse than the designed ones and the result can be seen as
a passed sanity test for the project. The test result assured
that the complex structure of ResNet50 and DeeplabV3+
actually added something to the segmentation process.

The results shows that the best performance from the
DeepLabV3+ implementation is an average Fl-score of
86.8 %. This is achieved on the Atlanta airport with learn-
ing rate 10~2 and no weight mask. This can be compared
to the best performance of the ResNet50 implementation,
with an average F1-score of 78.3 %. This is achieved on the
Atlanta airport using a learning rate of 10~ and a weight
mask.

Based on these results, it can be argued that the



DeepLabV3+ implementation performs better than the
ResNet50 implementation, since the achieved F1-scores are
higher for both airports and non-airports. This is attributed
to the fact that DeepLabV3+ is developed to perform
semantic segmentation, while ResNet50 is developed to
perform image classification. This is believed to cause
DeepLabV3+ to perform better than ResNet50 given the
same training data. This fact is believed to be a result
of the groups tampering with ResNet50, and the made
modifications to allow it to perform semantic segmentation.
The modifications made by the group did not result in a
network design of the same quality as DeepLabV3, a result
of the groups inexperience and time-limit.

The fact that both implementations have a very low ac-
curacy when applied to the Singapore airport is explained
with a lack of training data. It is argued that more images,
with similar background and environments as the Singapore
one, would allow both networks to perform better.

As discussed in section a difference between the
networks is how they perform with weight masks and
without. DeepLabV3+ clearly supports the theory pre-
sented in section [3.1.3] labeling more pixels as airports
with the weight mask than without. The use of weight
mask on DeepLabV3+ lowered the networks total accuracy.
ResNet50, on the other hand, labeled less pixels as airports
with the weight mask, and achieved a higher total accuracy
with the weight mask. This inconsistency is deemed inter-
esting, and worth further investigation, based on the fact
that the networks behaved similary otherwise.

5.5. Possible improvements

One possible improvement could be to postprocess the
predicted images. As seen in the results the predicted
images contains many small areas that are marked as
airports but that are not in fact airports. Since airports
usually have a large size it would be possible to remove
predicted airports that are only a few pixels or that not
are large enough to airports. This would probably give an
overall better F1-score and accuracy, but could also risk to
accidentally remove very small airports or runways from
the predicted images

Future work could also be to not calculate the amount of
detected airport pixel, but rather number of airports and an
estimation of where they are. Airports would then be found
where the model has detected a cluster of airport pixels.
That would require post-processing of the result similar as
described above, where clusters that are to small or to big
to be an airport are removed.

One other improvement could be to use more rotation an-

gels and use different scaling of the images when doing the
data augmentation. To solve the main problem more labeled
airports would be the best solution though.

6. Conclusion

The conclusion that can be drawn from this project is that
airports are a challenging type to classify, possibly because
of their variety in appearance as well as similarity to other
social structures. The experiment does however show that it
is possible to train these models to find larger airports, but
with an insufficient reliability. The best average F1-score
for DeepLabV3+ achieved a result higher than the required
of 0.80, while the ResNet50 implementation did not. To get
a more accurate classification it is obvious that a much large
set of training data is required, not at least when training a
neural network that has millions of parameters.
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