
Football Height Estimation from a Monocular Camera
TSBB11 Technical Report

Linnea Fridman
linfr737@student.liu.se

Karin Fritz
karfr040@student.liu.se

Angelina Johansson
angjo675@student.liu.se

Annette Lef
annle554@student.liu.se

Victoria Nordberg
vicno213@student.liu.se

Lukas Tegendal
lukte246@student.liu.se

Supervisor: Abdelrahman Eldesokey
abdelrahman.eldesokey@liu.se

ISY - The department of Electrical Engineering
December 20, 2018

Abstract

This project aims to determine if it is possible to es-
timate the height of a football from the ground using
a monocular camera. This will be tested with two dif-
ferent approaches, an analytic solution using geome-
try and a non analytic solution using neural networks.
To be able to test the methods, two types of data were
generated. Coordinates of trajectories were simulated
and projected to an image or synthetic images were
generated using a game engine. Experiments shows
that given the ball size in the input, both analytical
and non-analytical solutions performs well, but when
noise is added to the data the performance is reduced.
When the ball size is not available, a recurrent neu-
ral network gives good performance, even with noisy
data. When using synthetic images with a convolu-
tional neural network, the results were not satisfacto-
rily, probably due to the small size of the dataset.

1. Introduction

This project is a part of a project course at
Linköping University and the project task is given by
an external company, the customer. The customer de-
velops software used to provide real-time sport ana-
lytics for sport teams. Their software allows users to
track the ball during a game in real-time. This makes
it possible to analyze a lot of data, for example how
much time the ball spends on different sides of the
field and how many passes are made between play-
ers. For the football example, the image data is col-
lected from two cameras placed at the same longitudi-
nal side of the field. Each camera takes footage of one
half of the field, and the output from the two cameras
forms a complete image of the whole field. A draw-
back with the current method used by the customer is
that more parameters than the image coordinates has
to be known to be able to determine the 3D position
of the ball. In the current method the ball height is al-
ways set to zero even when the ball is in the air, which
creates a faulty image. The project task is to produce
an estimation of the height with the same camera setup
as the one currently used and preferably without using
the size of the ball as a parameter.

1



2. Problem formulation

The project aims to determine the 3D position of a
football in real-time using a 2D image sequence from
monocular cameras. Image coordinates of the ball
are assumed to be known. The problem that remains
and has to be solved is determining the height of the
ball relative to the ground using only 2D images and
the corresponding image coordinates of the ball. The
height above the ground of the ball should be estimated
by two different measures. One as a numerical value
and another as a classification with different intervals,
for example on the ground, reachable or unreachable.
The size of the ball can be used, but the final goal is
to estimate the ball’s height above the ground without
using its size.

The real data contains noise and therefore the model
should be robust to noisy data. There exists no anno-
tated real data, instead synthetic data will be created
and used.

3. System overview

The system has two main components: data gener-
ation module and ball height estimation module. The
input to the data generation module is a camera matrix
and the output is either trajectories consisting of sam-
pled ball coordinates or images with ball coordinates
generated with a gaming engine. The trajectories con-
sists of 3D coordinates, the size of the ball and the
corresponding 2D image coordinates.

The ball’s height above the ground is calculated
by an analytic method or estimated by models using
neural networks. Both solutions are implemented in
Python. The models using neural networks will be de-
veloped with Keras and consist of both regression and
classification models. To speed up the training of the
networks Google colaboratory was used [1]. Another
tool used to simplify the work with the networks was
to use Jupyter [2]. See figure 1 for an overview of the
system.

4. Creating synthetic data

Since no annotated real data is available, the first
task is to create synthetic data. The first type of data
is created by projecting coordinates from 3D trajec-
tories following parabolic curves. The generated data
will consist of 2D coordinates, the ball size and the

Figure 1. System overview.

height in 3D coordinates. The second data type is a
set of images portraying a football field with players,
goals, a football etc. This data should also contain both
3D world coordinates and 2D image coordinates of the
football in the images.

4.1. Coordinates from a trajectory

To create the 3D trajectory, a start position, x0, a
velocity, v0 in x-, y-, and z-direction and a sampling
rate fs are defined. The time of flight of the ball is
calculated with equation 1 where vz is the velocity in
z-direction and g is the gravity. For each sample i,
during the time of flight, the 3D position of the ball is
calculated with equation 2.

t =
2vz
g

(1)

xi
yi
zi

 =

x0
y0
z0

+

v0x
v0y
v0z

 ti −

 0
0

0.5g

 t2i (2)

Multiple trajectories are created by randomizing the
start position and velocity. When making multiple tra-
jectories at the same time, the start position is chosen
to be the end position of the previous trajectory. This
is to make a long coherent sequence of trajectories.

To transform the 3D coordinates into 2D image co-
ordinates, a camera matrix is used to calculate the po-
sition of the ball in the image plane, see equation 3
where (u, v, 1)T are the homogeneous image coordi-
nates, (x, y, z, 1)T are the homogeneous world coor-
dinates K are the internal camera parameters, R is the
rotation of the camera and t is the translation of the
camera. The radius of the ball in the image is calcu-
lated by projecting the center of the ball and a point on

2



the edge of the ball into the image and calculating the
distance between those two points.

ui
vi
1

 = K
[
Rt
]

xi
yi
zi
1

 (3)

Examples of trajectories are shown in Figure 2. To
make the synthetic data resemble real data, noise is
added to 30% of the data. This value was selected
through a visual investigation and should simulate the
resolution uncertainty of the camera. When includ-
ing ball size in the model, the noise is added to ball
size. The noise is uniform in the range [0, 0.5max(s)),
where max(s) is the maximum ball size in image co-
ordinates, from all points in the data set. When the
ball size is not included, the noise is instead added to
the ball position. This noise is uniform in the range
[0, 0.05max(x)) and [0, 0.05max(y)). The noise is
set as uniform because in the real data the noise will
be in images and a quantization error can be compared
to noise with a uniform distribution. Data with noise
added to ball position is shown in Figure 3.

Figure 2. Trajectories without added noise to the coordi-
nates.

To simulate the ball being passed between play-
ers on the ground, 50% of all trajectories follows the
ground instead of moving through the air.

4.2. Images

For the second set of synthetic data, images are cre-
ated in the game engine Unity[3]. A world is created
to resemble a football field with players and a football.

Figure 3. Trajectories with added noise to the coordinates.

The players are programmed to move around on the
field to make the scene look as realistic as possible.
The ball is programmed to move in a direction speci-
fied by inputs from the keyboard. The keyboard input
“Space” will make the ball “jump” and move along a
parabolic trajectory. The height of this jump is pro-
grammed to be around 3 meters. See Figure 4 for a
sample of the image data set.

Figure 4. Sample from the image data set.

To generate image data with corresponding foot-
ball coordinates, a script in Unity is created to take
screenshots and save the football’s coordinates while
the game is running. To achieve this, a game camera
given in Unity is used and the football’s world coordi-
nates are saved and stored in a file with a specific ID
depending on when the screenshot was taken. Corre-
sponding screenshot is saved with the same ID and us-
ing these coordinates and the camera matrix, the foot-
ball’s position in image coordinates can be retrieved
by using equation 3.

5. Solutions

The problem was solved with two different ap-
proaches and three different types of inputs. The ap-

3



proaches was either analytic or non-analytic and the
different inputs were either coordinates with ball size,
coordinates without ball size or image data.

The non-analytic solutions are different types of
neural networks. When training the networks the data
is divided so that 80% is used as training data and 20%
is used as validation data. For the trajectory data, both
the training data and validation data are normalized ac-
cording to equation 4 where the mean and variances
are calculated on the training data.

data =
data−mean

variance
(4)

Different parameters such as number of nodes,
number of layers, types of loss functions etc. are tested
to see which network would give the highest accuracy
on the validation data. All networks are trained until
convergence.

The classifier models are evaluated based on the fi-
nal accuracy and loss on the validation data and the re-
gression models are evaluated based on the final mean
square error on the validation data. The results of the
classifiers are visualized by plotting both the ground
truth and the predictions for some of the projected
points from the validation data. The result of the re-
gression are visualized by plotting the height of the
ball for some of the points in the validation data, this
is done for both ground truth and predictions.

5.1. Solutions using the ball size

Initially, the problem is solved using the size of the
ball as part of the input.

5.1.1 Analytic solution

The analytic approach of determining the 3D position
x of the football is constructed by knowing the radius
of the ball r, the camera matrix C and the image coor-
dinates of the center and the edge of the ball yc and yr.
The geometry of the problem can be seen in Figure 5.
The solution can be found by following the lines lc and
lr, which have directions defined by equation 5, where
yi is a point in the image and cc is the camera center.
The 3D position of the football (in a camera centered
coordinate system) is found by following these lines
until the distance between them are equal to the radius
of the football. To transform these coordinates from

camera coordinates to world coordinates, the position
and orientation of the camera are used.

li = yi − cc (5)

Figure 5. Geometric model used for the analytic solution.

5.1.2 Fully connected networks using coordinates
from a trajectory

Another way to solve the problem is using a non-
analytical approach. Initially, a simple fully connected
network is created and trained with the coordinate vec-
tors retrieved from the trajectories. The inputs to the
network are the x-position, the y-position and the size
of the ball in the image. The ground truth is given by
the z-position, i.e. the height of the ball.

Both regression networks and classifiers are con-
structed since the height estimation is supposed to be
retrieved as a numerical value as well as one of the fol-
lowing classes; on ground, reachable and unreachable.

5.2. Solutions without using the ball size

Since the problem is based on deciding the height
of the football from an image during a real-time foot-
ball game, the size of the ball in the image can be very
noisy. Especially the size will be very small and there-
fore sensitive to noise. This gives us reason to find
solutions that would work without the use of the foot-
ball’s size.

5.2.1 Fully connected networks using coordinates
from a trajectory

The fully connected networks are also tested without
the use of the ball size. This to see if it is possible to

4



achieve a good result even with this simple network ar-
chitecture. The ball size is removed from the previous
fully connected networks. The training data and input
only consists of the ball position in image coordinates.

5.2.2 Networks using time dependencies

It is not possible to calculate the ball height analyti-
cally without knowing the ball size in image coordi-
nates. Using the camera model described in Section
5.1.1, the ball might be positioned anywhere on the
line lc. An alternative approach is to use temporal in-
formation from previous image frames to provide an
estimate of the height. In addition to the ball position
in the current frame, inputs from the n previous images
are used to estimate the ball height. The hypothesis is
that the movement pattern will provide enough infor-
mation to correctly classify the input. The data used
was the ball positions in image coordinates as train-
ing data and a binary classification of the ball height
(on the ground or in the air) as ground truth. Two
methods for performing binary classification were im-
plemented, one using a fully connected network with
multiple coordinates as input, and one using a recur-
rent neural network (RNN) with either LSTM or GRU
modules [4]. Both models use sequences of multiple
points as input. To classify the ball height at time t, in-
put xt, xt−1, ..., xt−n−1 are used, where xt is the ball
position in image coordinates at time t and n is the
number of time steps used as input. Given a long con-
tinuous sequence, shorter sequences of length n are
sampled randomly. This allows for a large number of
training data to be generated from a sequence of lim-
ited length.

The basic idea behind recurrent neural networks are
that they use the fact that data is dependent on previous
data [4]. RNN’s are built up of cells passing the tempo-
ral data through the network. These cells can contain
different transfer functions and can be connected into
different architectures. One such architecture is Long-
Short-Term-Memory (LSTM) which takes both long-
term and short-term dependencies into account. The
LSTM networks are here trained to classify whether
the ball is on the ground (within some interval) or in
the air. If multiple consecutive LSTM layers are used,
the LSTM modules can return sequences instead of
singular values. Another transfer function is gated re-

current unit (GRU) [4] and it can handle dependencies
in the data at different time scales.

5.2.3 Networks with image input

Using images as input to the network can provide some
additional information that will make it possible to de-
termine the height of the ball without the size parame-
ter. Such information could be relations between ball
height and the height of football players. When us-
ing images as inputs, the networks used are convolu-
tional neural networks (CNN). A CNN is a neural net-
work that has one or more convolutional layers, fol-
lowed by one or more fully connected layers. CNN’s
are often used for image inputs. They are also easier
to train since they have fewer parameters than a fully
connected network with the same number of hidden
units. [5]

To make it possible to combine both images and the
extracted x and y image coordinate of the ball as in-
puts, a fourth dimension of the image is added. This
dimension consists of a heat map with a Gaussian bell
that has its maximum centered around the position of
the football. This adds a feature to the network provid-
ing information about the position of the ball.

Both a regression type of network and a classifier
will be constructed and evaluated with CNN. The ac-
tual height of the football is of higher interest when us-
ing image data, the classifier will have a larger amount
of classes than the other classifiers. This is done to
create a classifier that in some way can be resembled
to a regression type of network. The continuous values
are more interesting when using images as input. The
additional information provided by the images should
allow for a more accurate estimates, not possible using
only the ball position.

6. Result

The following section will present the result of the
different methods.

6.1. Solutions using the ball size

The results given in this subsection are produced by
methods using the ball size as a parameter.

5



6.1.1 Analytic solution

The analytic solution is able to solve the problem and
give an exact value of the 3D position of the ball as
long as the camera is oriented in such way that it is
”looking“ at the ball.

6.1.2 Fully connected networks for classification
using coordinates from a trajectory

A simple fully connected network that worked well for
the classification problem was constructed as in Figure
6. Fc stands for fully connected and the number beside
indicates the number of neurons in the layer. The input
to the network is the x-coordinate, y-coordinate and
ball size in the image and the output is the probabili-
ties of which height class it belongs to. The loss that
was used was categorical cross entropy and the used
optimizer was Adam with a batch size of 128. The fi-
nal accuracy after 30 epochs on the validation data was
99%.

x, y, size

fc 3
activation: softmax

fc 20
activation: relu

fc 40
activation: relu

fc 20
activation: relu

Figure 6. Architecture of the simple fully connected net-
work for classification.

The ground truth and predictions from the model
are plotted for some of the points. The points in the
plots are the 3D world points of some of the trajecto-
ries projected in an image. These can be seen in Fig-
ure 7 and 8. The different colors of the points indi-
cates which class it belongs to, green is ground, blue is
reachable and grey is non-reachable. As can be seen,
the points that are misclassified are the ones that are
on the border between classes.

Different depths and sizes of the layers were also

Figure 7. Ground truth for the simple fully connected net-
work for classification.

Figure 8. Prediction for the simple fully connected network
for classification.

Figure 9. Prediction for the simple fully connected network
for classification with noisy ball size.

6



tested. A smaller network gave lower accuracy. A
larger network gave a slight increase in accuracy. The
result when using different activation functions were
approximately the same. When using stochastic gra-
dient descent as optimizer the accuracy gets 84%.
Changing the batch size and learning rate had low im-
pact on the result.

Since the result from the classifier was good, noise
was added to the ball size and the same network ar-
chitecture was tested again. The prediction for some
of the points are plotted in Figure 9, which should be
compared to the ground truth in Figure 7. The predic-
tion for noisy data has worse result than the network
that trained without noisy data.

6.1.3 Fully connected networks for regression us-
ing coordinates from a trajectory

A network architecture that worked well for the re-
gression problem can be seen in Figure 10. As for
the classification problem the input to the network
is the x-coordinate, y-coordinate and ball size in the
image. The output is however the ball height, i.e.
the z-coordinate. The loss that was used was mean
squared error and optimizer Adam with batch size of
128. The final mean squared error on the validation
data was 0.11. The ground truth and predictions, i.e.
the heights, from the model are plotted for some of the
points, see Figure 11.

x, y, size

fc 1
activation: relu

fc 20
activation: relu

fc 40
activation: relu

fc 20
activation: relu

Figure 10. Architecture of the simple fully connected net-
work for regression.

As for the classification network, different depths
and sizes of the layers were also tested. Both a smaller

Figure 11. Prediction vs. ground truth for the simple fully
connected network for regression.

and a larger network gave higher mean squared error.
The result when using different activation functions,
learning rates and batch sizes were approximately the
same.

As for the classification network noise were added
to the ball size after finding an architecture that worked
well. Predictions and ground truth from the model are
plotted for some of the points in Figure 12. As can be
seen, the predicted points follow the curve of ground
truth, but are not able to determine when the ball is on
ground since the points are most of the time predicted
to be above height zero.

Figure 12. Prediction vs. ground truth for the simple fully
connected network for regression with noisy ball size.

7



6.2. Solutions without using the ball size

The results given in this subsection are produced by
methods which are not using the ball size as a param-
eter.

6.2.1 Fully connected networks for classification
using coordinates from a trajectory

The same network architecture that was used with the
size of the ball was tested when removing the ball size
from the input to see if the network could solve the
problem without the ball size. The prediction of some
of the points can be seen in Figure 13, which should
be compared to the ground truth in Figure 14. When
not including the ball size, no points are classified as
reachable and a lot as ground.

Figure 13. Prediction for the simple fully connected net-
work for classification without ball size.

6.2.2 Fully connected networks for regression us-
ing coordinates from a trajectory

The ball size was also removed from the input of the
fully connected regression network to see if the net-
work could solve the problem without using the ball
size. The final mean squared error on the validation
data was 22.9 and the ground truth and predictions for
some of the points can be seen in Figure 15. The model
is able to follow some of the trajectories while some is
more close to the ground than the actual trajectory.

Figure 14. Ground truth for the simple fully connected net-
work for classification.

Figure 15. Prediction vs. ground truth for the simple fully
connected network for regression without ball size.

6.2.3 Networks using time dependencies

Given the same training data, different LSTM network
architectures and using different optimizers gave simi-
lar results. In following section, the result from one of
the networks will be described but the same result was
achieved with other architectures. Also the result from
one network built with GRU layers will be presented.

Using LSTM layers the network could perform
classification satisfactorily with some problems with
low trajectories. Low trajectories were sometimes
classified as ”ground” even though the height really
was in the ”air” interval.

The layers of the network for where the perfor-
mance will be shown can be seen in Figure 16. The
first and second layer are LSTM layers with 32 nodes,

8



and have ”return sequences” set to true. The third
layer is also a LSTM layer with 32 nodes but with ”re-
turn sequences” set to false. Lastly, the fourth layer is
a dense layer with one output.

The input to the LSTM was an array of 15 coordi-
nates and the output was an array containing zeros and
ones representing the classes ”ground” and ”air”. The
batch size used was 100, the optimizer was rmsprop
and the loss function was binary crossentropy. 150000
training sequences were sampled from a dataset of
10000 trajectories. After 50 epochs the accuracy was
95%. Figure 17 and 18 shows a prediction and ground
truth for a part of the validation data.

Figure 16. Architecture of the LSTM network.

Figure 17. Ground truth for the LSTM network and GRU
network.

The Figures 17 and 19 show the prediction and

Figure 18. Prediction made by the LSTM network.

Figure 19. Prediction made by the GRU network.

Figure 20. Predicion made by the LSTM network on noisy
data.

ground truth made with a RNN using GRU. The net-

9



Size
Training
samples

Validation
samples

Training
sequence

Validation
sequences

100% 689043 174511 40000 10000
10% 69804 17451 40000 10000

Table 1. Datasets sizes used for evaluation

Dataset
Accuracy
Fully connected

Accuracy
LSTM

100%, without noise 93.62% 94.25%
10%, without noise 94.26% 93.23%
100%, with noise 88.84% 92.4%
10%, with noise 88.6% 91.35%

Table 2. Results for multiple point input models.

work has the same architecture as the LSTM network
except that the LSTM layers are exchanged to GRU
layers. After 50 epochs the accuracy was 96%.

Figure 20 shows predicted trajectories using the
LSTM network on noisy data. The accuracy was 93%
after 50 epochs.

LSTM networks were also trained using input data
in arrays containing one coordinate (instead of 15).
This gave a converging accuracy of 80%. The plots
corresponding to the ones in Figures 17 and 18 but for
this input showed that the network classified the whole
trajectories as air.

To evaluate how dependent the methods are to the
amount of training data, the networks with multiple
inputs were tested with different amounts of training
data. The same amount of sequences were sampled
from the different sized datasets. The dataset sizes
used are shown in Table 1. The full dataset (100%)
corresponds to 10000 trajectories.

Two different models were evaluated. One with 3
fully connected layers, batch normalization and 20%
dropout, and one model with 3 LSTM layers. The re-
sults are shown in Table 2. When the dataset does not
contain noise, both models show similar performance.
When adding noise, the LSTM model performs bet-
ter than the one with fully connected layers, with only
a small loss in accuracy compared to the noise free
dataset. Using the smaller dataset only has a marginal
effect on the results. The accuracy is for the LSTM
network is slightly lower than the results obtained dur-
ing the qualitative analysis. This is likely because less
training sequences were sampled from the dataset.

6.2.4 Networks with image input

Different CNN architectures were tested to create a
network that uses the 4D images to solve the regres-
sion problem. The ground truth and predictions for
some of the points can be seen in Figure 21 and 22.
These figures shows result using the same network but
for different intervals of the validation data. Figure
21 shows the result for sample 1 to 100 and Figure
22 shows the result for sample 200 to 300. The net-
work architecture is shown in Figure 25 where the out-
put is the estimated height. The chosen optimizer and
loss function are the same as for the fully connected
network described in Section 6.1.3, that is Adam and
mean square error. The final mean square error on the
validation data, using this network was 0.94.

Figure 21. Prediction made by a regression CNN for sample
1 to 100.

Figure 22. Prediction made by a regression CNN for sample
200 to 300.

10



The ground truth and prediction for the classifica-
tion problem can be seen in Figure 23 and Figure 24.
The network layers are represented in Figure 26 and
the output is given as a probability vector with six
classes of height intervals. The loss that was used was
categorical cross entropy and Adam was used as opti-
mizer together with learning rate 0.0001 and batch size
20. The final accuracy after 40 epochs was 40%.

Figure 23. Ground truth for the classification CNN.

Figure 24. Prediction made by a classification CNN.

7. Discussion

This section will present a discussion about the re-
sult.

7.1. Solutions using the ball size

The result when the problem is solved using the size
of the ball as a part of the input is good. However, both
methods have a hard time handling noise in the input.

Figure 25. Architecture of the CNN regression network.

Figure 26. Architecture of the CNN classification network.

11



7.1.1 Analytic solution

The analytic solution solves the problem accurately, as
expected. However, it would only work for this spe-
cific case. It cannot handle noisy data and would not
work if the ball is not visible. Therefore this is not an
approach that works well for the given problem, since
the data will be noisy and the ball can be obscured by
a player. Also the accuracy of the ball size could be
hard to extract from the real data since it depends on
the resolution of the images.

7.1.2 Fully connected networks using coordinates
from a trajectory

As can be seen by comparing Figure 7 and 8 the classi-
fication using a fully connected network worked well.
The points that have a greater uncertainty in getting
correctly classified is the ones close to the boarder be-
tween classes. These points are expected to have a
lower accuracy and does not affect the overall result
significantly.

By making the network architecture larger the ac-
curacy was slightly increased. But since the result was
still very close to the previous network, the extra depth
and complexity of the network did not seem to be mo-
tivated.

From Figure 11 we can establish that the network
for regression worked well. The predictions are very
close to the ground truth.

When adding noise to the ball size both the classi-
fier and the regression performed worse. This is ex-
pected since the network probably solves the problem
in a similar way as the analytic solution.

7.2. Solutions without using the ball size

The methods tested without the use of the ball size
as input have varying results. One of the methods were
able to provide a satisfactory result, proving that it is
possible to provide a solution without the dependency
of the ball size.

7.2.1 Fully connected networks using coordinates
from a trajectory

When removing the ball size from the input both the
classifier and the regression performed worse com-
pared to when the ball size was included. This is ex-

pected since the network have less information to use
and proves that the ball size is necessary for this type
of network in the same way as it is necessary in the
analytic solution.

7.2.2 Networks using time dependencies

The classification using networks with LSTM-layers
worked well. There were some problems with trajec-
tories with low heights, see for example the difference
between Figure 17 and 18 in the lower left corner. The
ball should be classified as ground according to the
ground truth image but is classified as air. The net-
work using GRU appear to have the same problem. It
also has some problems with the long trajectory at the
top of the image.

The prediction worked for the RNN’s when the data
used for training and validation was consisting of se-
quences of coordinates, and did not work when the
data was just one point. This shows that the time de-
pendency is critical for this solution. Another result
which validates the time dependency as critical is the
result for the fully connected networks when trained
on data without ball size.

The prediction made with LSTM networks with
noisy data works almost as well as with data with-
out noise. Comparing Figure 18 and Figure 20, they
perform better on different parts of the trajectories.
The network trained on noisy data could predict some
ground in the lower left corner where the network
trained on data without noise failed.

The models seems to be robust to using smaller
dataset sizes. This means that less data would have
to be annotated if implemented using real data, saving
time and reducing costs.

7.2.3 Networks with image input

As can be seen in Figure 21 and Figure 22, the network
works well for for the first interval but not as well for
the second. This might be due to that the network is
well trained for some positions in the image and un-
familiar with other positions. Overall, the regression
networks were able to get somewhat good result and
have potential to get better if training with more data
and fine tuning the parameters.

The networks that were tried for solving the prob-
lem by classification did not give any good results.

12



This is probably due to the small amount of training
data and this can lead to overfitting. Several network
architectures were tested but none of these gave a good
result.

The biggest drawback for the networks using im-
ages as input is probably the size of the data set. We
were able to train the network with a maximum of
3000 images but any larger input vector would make
the memory limit to be reached. A basic rule of train-
ing networks is that there can never be too much data.
One possible approach to be able to use a larger train-
ing data set is to eliminate one RGB-layer of the 4D
images.

8. Conclusions

It is possible to determine the height of a ball with-
out using its size, using a non-analytical method with a
high accuracy. The best results were given when using
the RNN’s and that is probably because of the extra
information given by the time dependence. A CNN
regression is a possible way of getting the height di-
rectly from image input, and it is probably possible to
get good results if a larger data set could be used for
training.

For this specific problem, it is recommended to use
coordinates rather than images since these give a more
accurate estimation of the height of the ball and require
less computing power.

9. Future work

There are many more adaptations and tests that can
be done on the datasets than what has been represented
here. Some of the suggestions are implementing CNN
with LSTM in order to retrieve a network that can pre-
dict data without a delay in the output. It is also pos-
sible to use pre-trained networks and fine tune some
parameters to make it fit wanted data. There are end-
less combinations of layer structures and parameters
that can be tweaked, it is not guaranteed that the opti-
mal networks have been obtained in this project.

References
[1] Google colaboratory this is an awful solution buhu.

https://colab.research.google.com/
notebooks/welcome.ipynb.

[2] Jupyter. https://jupyter.org.
[3] Unity. https://unity3d.com/.
[4] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer,

A. Rizzi, and R. Jenssen. Recurrent Neural Net-
works for Short-Term Load Forecasting. 2017.
https://link.springer.com/content/pdf/
10.1007%2F978-3-319-70338-1.pdf.

[5] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates,
A. Maas, A. Hannun, B. Huval, T. Wang, and S. Tan-
don. UFLDL Tutorial - Convolutional Neural Network.
http://deeplearning.stanford.edu/tutorial/
supervised/ConvolutionalNeuralNetwork/.

13


