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Abstract

This study aims to investigate different methods for knee cartilage segmentation from
quantitative magnetic resonance images. Images were acquired using a 3 Tesla machine
together with a knee coil. The data sets were in 3D with a slice thickness of three
millimeters. Image information from the three weighting scans T1, T2 and PD were used
and the complete algorithm operates on one image slice at a time, resulting in a specific
segmentation for each slice. The algorithm is based on several segmentation methods.
Initially, a bone segmentation is done by morphological and watershed segmentation.
This segmentation acts as a base for a slice specific bone contour mask. This mask
operates together with a cartilage mask, and describes which pixels are considered as
possible cartilage pixels in each slice. The classification of each pixel, as cartilage or non
cartilage, is done by a k-means classification. The classification is based on pretrained
centroids, generated from the clustering on data from several data sets. The setup used
in the final algorithm showed a recall of 0.8394, a precision of 0.2835 and a f1score of
0.4238. The resulting algorithm is concluded to be good enough for further development
but not yet ready for clinical use. The different parts of the method are implemented in
a way which makes it easy to exchange them if better alternatives are found.
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Terminology

Magnetic Resonance Imaging - Uses the magnetic properties of the hydrogen atoms
in the body of organisms (in this case humans) to generate several 2D slices by
applying different magnetic fields

TR - Time of repetition

TE - Time of echo

PD-weighted - Proton density weighted. Enhances areas and tissues containing high
amounts of protons. Created through using a long TR and short TE

T1-weighted - Enhances muscles and fat. Created through using a short TR and short
TE

T2-weighted - Enhances fluids and fat. Created through using a long TR and long TE

R1-weighted - A R1-weighted image is the inverse of the T1-weighted image

R2-weighted - A R2-weighted image is the inverse of the T2-weighted image
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1 Introduction

Magnetic Resonance Imaging, more often known as MRI, are medical images generated
through the usage of the magnetic property of the atomic cores within the human body.
Depending on how different magnetic fields are generated over the human body, different
weightings of the resulting images may be created. The most common ones are T1,
T2 and proton density weightings. MRI generates several image slices over the observed
object/human body part, which may be interpolated into a 3D-volume. Quantitative MRI
contains more information than normal MRI images. Meaningful physical or chemical
variables that can be measured in physical units and compared between tissue regions and
different patients as well as between different time occasions can be obtained (Pierpaoli
2010).

Cartilage is protecting bone tissues from damaging each other within the body. After a
knee injury it is interesting to monitor possible changes of the cartilage within the knee,
but manually observing images is expensive and time consuming. Due to this, it is of
interest to find a method that automatically can locate the cartilage in MRI images.

Automatic Knee Cartilage Segmentation using quantitative MRI is a project on behalf of
the company SyntheticMR. This project is a part of a research project that Synthet-
icMR is working on together with the local hospital in Linköping. In the project course
TSBB11 - Images and graphics the aim is to research and develop methods for automatic
segmentation of the cartilage in MRI images. The client has no previous working method
that solves this problem.

1.1 Problem description

The project will investigate different methods capable of automatically segmenting carti-
lage in knee MRI images. This is problematic due to the blurry appearance and unclear
contour of the cartilage, as well as the similarity in pixel values between cartilage and
muscle tissues in MRI.

1.2 Objectives

Several methods will be investigated and tested, as well as a combination of these methods
to try to reach an accuracy as high as possible.

The client’s wishes are that the group shall examine and compare different methods and
variations of steps to reach the goal of cartilage segmentation. The goal is not to achieve an
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application but to research the segmentation step by step to evaluate different algorithms
and their performance.

2 Method

There are currently several methods for image segmentation. Some examples are seeded
region growing segmentation (Abdelsamea 2014) and histogram based segmentation (De-
lon et al. 2017). The methods chosen for the cartilage segmentation, such as k-means
clustering and watershed segmentation, were chosen for their strong abilities on different
kinds of segmentation. In the following sections, several segmentation methods are de-
scribed in detail, with the last section describing how to combine them for a complete
segmentation.

2.1 Watershed segmentation and morphological operations

The watershed segmentation method segment objects from the background and from
each other by different river systems, see Figure 1. One can imagine that bright areas
(higher pixel values) are heights and dark areas (lower pixel values) are lower valleys. The
method finds the lines that run along the tops of ridges for a gray-scale image. The key is
to change the image into another image whose catchment basins are the objects desired
to identify. When the segmentation is done labels are assigned to each segment, which
gives opportunities for different kinds of identification.

Figure 1: The watershed river system. The figure to the left illustrates an example of variations of the
intensity, and the right how the watershed segmentation works. The pink and yellow area illustrates the
catchment basins which are the objects desired to segment, where the local maxima defines the watershed
ridge line, that separates the two objects from each other.
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Oversegmentation (too many regions) is common when using the watershed transform.
It is dependent on well defined structures and smoothness. The method used for the
purpose of bone segmentation is based on a method called ”Marker-controlled watershed
segmentation” (S.Beucher and F.Meyer 1990). The watershed transform is used in a com-
bination with several morphological operations where foreground objects and background
locations are marked to simplify the watershed segmentation.

2.1.1 Approach

The morphological segmentation was used in two different ways; segmenting the bones
to produce a bone mask and segmenting the cartilage. For the bone segmentation the
marker-controlled watershed segmentation was used, which follows this basic procedure:

1. The gradient magnitude of the image is calculated and used as a segmentation function.
This is an image whose dark regions are the objects to be segmented.

2. Foreground objects are marked and different kinds of morphological techniques will be
used to ”clean up” the image and create flat maximas inside each object.

3. Background objects are marked (pixels that are not part of any object). This is done
by using thresholding operations.

4. The segmentation function from step one is modified so that it only has minimas at
the foreground and background marker locations.

5. The watershed transform is computed.

2.1.1.1 Bone segmentation

The bone segmentation can be divided into two parts; tibia/femur segmentation and
patella segmentation. The parameter values differs for the two parts and the patella
segmentation is done after the tibia/femur segmentation.

In the list below each step of the bone segmentation is described:

• The image is changed into a gray-scale image and the contrast is modified by en-
hancing the local contrast to enhance the difference between the bones and the
surrounding tissues. To enhance the local contrast, the minimum intensity of the
edges that is to be left intact is needed, as well as the amount of enhancement that
is desired.

• The gradient magnitude is calculated for usage in a later step as a segmentation
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function. The result shows that the gradient is high at the edges of the objects and
low inside.

• A morphological structuring element is created. The flat binary shape is used in a
few different ways and the shape and size of it will give different results.

• A variety of procedures could be applied here to find the foreground marker. The op-
eration used in this case is opening-by-reconstruction. A new image is reconstructed
with the bones clearly highlighted. The difference between the original image and
the reconstructed image can be seen in Figure 2.

PD-weighted image

(a) The PD-weighted MRI image of the knee
without any processing.

Opening-by-reconstruction (Iobr)

(b) The PD-weighted image 2a has been recon-
structed using morphological operations.

Figure 2: The original image 2a and the morphological reconstructed image 2b. The reconstructed
image has the bones highlighted in comparison to the other tissues in the knee.

• The intensity is adjusted to highlight the image.

5



TSBB11
Automatic Knee Cartilage

Segmentation using Quantitative MRI December 13, 2017

Adjust (Ith cont)

Figure 3: The intensity is adjusted for image 2b. The bones are now even more highlighted and therefore
easier to separate from the rest of the image.

• The image in Figure 3 is then converted to a binary image with a threshold value
chosen with Otsu’s method. The threshold value differs between the tibia/femur
and the patellas.

• The binary images is then put through a shrinking operation to free the bones from
surrounding tissue. After that the holes are filled in.

Thresholded binary image

(a) Thresholded binary image

Shrunked and filled binary image

(b) Shrunken binary image

Figure 4: A threshold value is applied to remove everything with a pixel value beneath the threshold.
The image is then converted into a binary image (4a). The objects of the binary image is then shrunken
to free the bones from the surrounding tissue. If the bones is still connected to other tissue the watershed
segmentation will result in labels containing more than just bones (4b).
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• The distance transform is calculated from the binary image. The watershed trans-
formation is then applied on the new image.

• A new gradient magnitude is calculated by using the watershed transformed image,
the binary image and the first gradient magnitude with an imposed minima function.

gradmag2

Figure 5: The gradient magnitude is calculated using the watershed transformation. The image shows
the resulting gradient magnitude in black on top of the original image.

• The watershed transformation is applied on the new gradient magnitude image and
the bones receives labels as seen in Figure 6b.

Watershed

(a) Watershed transformation

Colored watershed label matrix (Lrgb)

(b) Colored labels from watershed transforma-
tion

Figure 6: The watershed transformation is applied to the gradient magnitude and results in an outlined
image 6a. To get a clearer picture of the labels they are given different colors 6b.
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Bone identification The watershed segmentation part gives each segment a label and
what remains is to identify which labels that contain bones. Three approaches were used
for this purpose: location, mean intensity and size. Depending on which bone part that
was intended to be identified (femur, tibia or patella), different parameters were used.
These steps are combined to produce a mask of the bones for each slice.

• Location
At first the centroids were calculated for each label. These centroids were useful in
the purpose of locating the bones. Since the tibia and femur bone is almost always
located in the center of the knee, bounderies were put in the x-direction of where
these two are likely to be located. Regions that are not within these limits will be
excluded.

In the case of the patella, the boundaries in x-direction were decided to be limited
to be between where the first non-zero value was found in the x-direction, starting
from the left (in the original image) and the starting point (looking from the left)
of the found femur or tibia. The method is dependent on knowing the direction of
the knee.

The limitations of both the tibia, femur bones and the patella can be seen in Figure
7 marked as green lines.

(a) Tibia and femur bone (b) patella

Figure 7: Boundaries for identification of tibia and femur bone (a) tibia and the patella (b).

• Area
If only the position dependent property is used, it is likely that some regions with
little or no interest will be found (see for example Figure 7b) and therefore the
property of area is added. This is useful to get rid of smaller or bigger regions that
does not belong to the bones.
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• Mean Intensity
As an extra property, the mean intensity were calculated for each label and added
as an extra restriction.

These steps are combined to produce a mask of the bones for each slice.

2.1.1.2 Cartilage segmentation

For the cartilage segmentation only the R2-weighted images are used as the cartilage
is easily discerned and bright in the image.

The cartilage segmentation is made by:

• First making the image into a gray-scaled one.

• Using contrast-limited adaptive histogram equalization to enhance the contrast.

Original Image

(a) Original R2-weighted image

Contrast-limited adaptive histogram equlization

(b) Adaptive histogram equlization

Figure 8: In the R2-weighted image the cartilage is a bright edge around the bones. A adaptive
histogram equalization is used to enhance the contrast to make the bright parts clearer (8b).

• Top-hat filtering the image.

• Adjusting the intensity.
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Tophat (Ith)

(a) Top-hat filtered

Adjust (Ith cont)

(b) Adjusted intensity

Figure 9: A morphological top-hat filtering is done (9a). The intensity of filtered image is adjusted
which highlights the brighter parts that contains the cartilage (9b).

• Using Otsu’s thresholding method in the purpose of making a binary image.

Binary image using Otsu threshold

Figure 10: The image is submitted to a treasholding that removes the darker parts of the image. The
resulting image is converted into a binary image.

• Then binary image is shrunk a bit and the small areas are removed.
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Small areas removed

(a) Small areas removed and the
contours shrunken.

Overlay perimiter

(b) The mask outlined in green on top of the
original image.

Figure 11: The final cartilage mask (11a). The resulting mask is then outlined in green to visualize the
result (11b).

2.2 Otsu thresholding

Otsu thresholding is a method which is based on the assumption that there are two kinds
of pixels in an image; those that belong to the background and those that belong to the
foreground. Otsu thresholding then estimate the optimal threshold to separate these two
kinds of pixels. Input to the Otsu thresholding method is a grayscale or binary image,
while the output is a binary image. (Patil et al. 2016)

2.2.1 Implementation

The implemented Otsu thresholding resulted in something different from a normal Otsu
thresholding. Instead of trying to separate the two kinds of pixels a more classical thresh-
olding was achieved, separating higher valued pixels from lower. In this case a separation
removing the bones from the rest of the image was desired since in PD-weighted images
bones have higher values than other tissues. To do this each row was normalized to try
to even out the image. After this the normal Otsu thresholding method was used, in-
creasing the contrasts in the image, making it binary, followed by connecting components.
Thereafter the image was labeled and one or more of the labels were chosen as the ones
of interest. Both the binary mask and the image with the mask applied onto it was the
final result.

11



TSBB11
Automatic Knee Cartilage

Segmentation using Quantitative MRI December 13, 2017

2.3 Clustering

Clustering is used to place data points into groups, where points within the same group,
or cluster, are more similar to each other in some measurable way compared to other
groups.

2.3.1 K-means

K-means clustering is a simple unsupervised machine learning algorithm. It can classify
data by identifying a given number of groups, or clusters, of data points. As Matteucci
(2017) explains, each classification label is represented with a centroid and each data
point is associated with the closest centroid. This means the positions of the centroids
are of most importance and this is also what changes every iteration of the algorithm.
The position update is based on an objective function that minimizes the error distance
between each data point and its corresponding centroid. The algorithm continues until
none of the centroids move.

Since a higher dimensional space allows for better separation of the data, all three channels
(R1, R2 and PD) where used when implementing the algorithm. This feature space can be
seen in Figure 12 below. This feature space is normally normalized but could be weighted
if one dimension contains more information, or in this case a possible better separation
of the cartilage from other tissues. Weighting would be stretching out one of the feature
axis, e.g. by multiplying it with a scalar. The feature space could also be expanded with
additional dimensions which could give more information and allow for a better separation
of the data points representing the cartilage.

(a) Original feature space (b) Labelled feature space, with 15 labels

Figure 12: Original and labelled feature space, where each axis describe what value the pixel has in
each channel (R1, R2 PD).

12



TSBB11
Automatic Knee Cartilage

Segmentation using Quantitative MRI December 13, 2017

It should be noted that using the three channels in this manner only works if each pixel in
one of the weighted images represents the same pixel in the images of the other weightings.
It should also be noted that k-means is not necessarily an algorithm that you pretrain
and later use to classify new data. This is however a possibility that can be reviewed.

Since the cartilage segmentation is supposed to be done on quantitative MR images, the
k-means algorithm produces similar centroid sets on different images. Of course there are
differences between patients and image slices but there are enough similarities, thanks to
the absolute scale of the quantitative MRI, to use the same centroids for different im-
ages. Avoiding the centroid generation on every image in the final cartilage segmentation
algorithm can also be seen as an optimization.

To use a set of centroids as a classifier, one could take the euclidean distance as a measure
on which centroid is closest to each data point. To avoid the computationally heavy
operation of the square root the square distance can be used instead. Each centroid
represents a label and each pixel in an image lies closest to one of the centroids in the
three dimensional space. The closest centroid determines the label for the pixel. In this
way, centroids can be pretrained using many images, of different patients and slices. Also,
different number of centroids in different centroid sets can be pretrained and used in a
final segmentation method.

2.3.2 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is another cluster-
ing method that instead of positioning centroids in the feature space finds clusters based
on density, i.e. it groups together points that have many nearby neighbours. Points that
do not end up in a cluster are labelled as noise. As described in the original paper by
Ester (1996), how the clusters are calculated, are determined by two parameters given to
the algorithm. The first parameter, epsilon, determines how large the neighborhood is
which will be searched for nearby points. The second parameter is the minimum num-
ber of points needed to define a cluster. The algorithm starts by selecting an arbitrary
point, and then checking if there are points within the range epsilon from this point. If
there are the minimum required points within this range, these points are defined as a
cluster. A new search for nearby points will start from each point in the cluster and the
cluster grows recursively. When no more points can be found, the algorithm takes a new
arbitrary point and continues until all points are labelled. A visualization tool for the al-
gorithm has been created by Harris (2015) and can be of help to understand the algorithm.
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2.4 Geometric methods

Cartilage is always placed next to, and in between, bones. This gives the opportunity to
use this fact to narrow down the area where the cartilage may be found. Two different
methods have been defined for this; one that locate a wide area close to the bone edges,
and one that uses a mask created from known cartilage patterns from other cases. Both
these methods are not made to find only the cartilage, but to narrow down the area where
the cartilage is searched to create a good base for other cartilage finding methods. The
two methods are used together with each other, the bone contour dilation mask followed
by the positioned cartilage mask.

2.4.1 Bone contour dilation mask

The contour dilation mask is a segmentation with the goal of creating a mask surround-
ing the cartilage and nearby tissue. The segmentation is based on the result of the bone
segmentation. It uses the mask from the bone segmentation to create two new masks, a
large one that is a dilated bone segmentation and a smaller one which is an eroded bone
segmentation. Thereafter, the smaller mask is subtracted from the larger one, leading to a
mask following the edges of the bones, both containing the inside of the bone edge and the
tissues surrounding the bone. This is made large enough to make sure that all cartilage is
within this area, even if that means that even more uninteresting tissue might be within
the segmented area as well. This is not supposed to find only the cartilage, but to narrow
down the interesting area where cartilage can be found to create a base for other methods.

The downside with this method is that it relies on a good bone segmentation. If the
bone segmentation is bad, that will result in a mask which highly possibly will not con-
tain the cartilage.

2.4.2 Positioned cartilage mask

Since medical knowledge provides information on where the cartilage is located in the knee,
a mask can be derived containing all possible cartilage pixels. This can be generalized
to work on all patients and slices while still removing some areas, where cartilage can be
falsely segmented, when used together with the bone contour dilation mask. For example
the lower part of the segmented tibia never contains any cartilage, but is within the bone
contour dilation mask.

Even if the mask is big enough to cover all cartilage on any patient slice it still has to be
positioned to the correct location in the knee of the specific image set, since this varies
between MRI examinations. There are most likely many ways of doing this automatically
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but one way is to use the previously defined, and patient specific, bone contour dilation
mask. Since the knee does not move noticeably during the image acquisition it is enough
to position the mask according to one of the bone contour dilation masks. The best
choice of mask is one made from a bone segmentation that has revealed the tibia, femur
and patella in a good way. Then the cartilage mask can be position simply by locating
the position where the correlation between the masks is highest, i.e. where the overlap
between the masks is the biggest. To be noted is that this implementation relies on the
bone contour mask which, as mentioned in turn relies on the bone segmentation. Other
methods, not dependent on the bone segmentation, could make use of the cartilage mask
in a way that results in a more stable overall cartilage segmentation solution.

A suggested method that does not necessarily rely on the bone segmentation could be
Image Registration. As Zitová and Flusser (2003) explains, this method could be imple-
mented in both linear and nonlinear variations and will allow any transformation including
translation, rotation, shearing and scaling. This could be used to attain a motion trans-
formation for the cartilage mask, specific to each data set, to achieve optimal positioning.

2.5 Active contours - Snakes

Active contours, also called snakes, are methods which searches for contours and edges
over a number of iterations, creating base contours which shrink or grow depending on
different velocities or energies. Active contours may be a good choice in case that the
shape of the desired segmentation is somewhat known. The strength of active contours is
that it is good at finding the contours in an otherwise noisy image. (Kass et al. 1988)

The Chan-Vese algorithm was implemented during this project. Chan-Vese is a method
which belong to the active contour methods called levels. The reason for this is that
level based segmentation is stronger at clusters and unclear edges than normal snakes
(Getreuer 2012). Since the contour of the cartilage is very unclear, Chan-Vese is a good
choice.

2.6 The complete cartilage segmentation algorithm

The different methods explained above can be combined in several ways to achieve different
results. Some have already been mentioned, e.g. using the bone segmentation from the
watershed method to derive a slice specific bone contour mask.

The Otsu thresholding can be used to remove a lot of unwanted pixels in an image and
can be used as a preprocessing step in different situations, perhaps to optimize another
method by reducing the input data. The geometric methods could be used to determine
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were in the image it is likely for cartilage to exist, and used to remove the other areas
which could also reduce the input data. Both the watershed and k-means methods could
be used to segment both cartilage and other parts of the knee than those explained above.
This could lead to other combinations than those mentioned in this report. See Section 3.8
for the proposed method combination of this report.

3 Experiments

The experiments section will describe the parameters and implementation choices made
along with the result for each method. If the method or method combination was used for
direct cartilage detection the quantitative and qualitative result will be included as well.
All the experiments were conducted on images acquired from a 3 Tesla machine together
with a knee coil. The data sets were in 3D with a slice thickness of three millimeters.

3.1 Evaluation metrics

The evaluation metrics used were recall, precision and f1score. Recall is the fraction
of correctly labelled cartilage pixels out of all true cartilage pixels. Precision is the
fraction of correctly labelled cartilage pixels out of all pixels labelled as cartilage. f1score
is the harmonic average of precision and recall.

3.2 Watershed segmentation and morphological operations

The steps mentioned before results in a mask for the bones in each slice as can be seen
in Figure 13. This mask can be used for geometrical algorithms to find the cartilage.
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Figure 13: An example of the resulting bone mask. The femur and tibia identified first. The red star
represent the edge of the mask containing only the femur and tibia and is the reference point used to
identify the patella.

3.2.1 Parameters

An important part of the setup is the choice of parameters. In the bone segmentation
there are a few different parameters that can be modified and that differs between the
different parts. The parameters that are used to modify the method is the shape and
size of the morphological structuring element, the level that determines which values
that should become black and which should become white in the binary image and the
size that should be shrunken and dilated. All the changeable parameters is part of the
morphological segmentation.

The parameters that were used in the final algorithm are:

Part Morphological structuring
element

Binary threshold
level

Erode Dilate

Tibia/
femur

Rectangle, [15 20] 0.55 ones
(15,15)

ones
(4,4)

Patella Rectangle, [10 15] 0.65 ones
(10,10)

ones
(4,4)

Table 1: Parameter values used for the bone segmentation.
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For the identification part the parameters that is not calculated but set is for the inten-
sity and the area. The mean intensity should be between 0.5 and 0.7 and the area for
tibia/femur between 5000 and 55000 and for the patella between 300 and 9000.

Many parameter values were tried and tested for the final algorithm. The chosen values
were the ones that gave the best results looking at the different data sets at hand. There
is no numerical proof of this as it would have demanded correctly labeled sets of the bone
for all of the data sets, which was not at hand. All the test were evaluated by appearance
alone.

3.2.2 Qualitative results

When executing the full function of the bone segmentation, including the parameters
for tibia/femur and patella bones, as well as the different methods of identification, the
results in Figures 14, 15, 16 and 17 are achieved.

The result of the bone mask function differs between patients and between slices depending
on the clarity of the image and how well defined the bones are in the image. In Figure
14 the corresponding bone mask contains all three bones correctly labeled, but in Figures
15, 16 and 17 the bone mask are faulty or incomplete.

PD-weighted image

(a) PD weighted image (b) Bone mask

Figure 14: The original image and the resulting bone mask.
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PD-weighted image

(a) PD weighted image (b) Bone mask

Figure 15: The original image and the resulting bone mask. The tibia in the mask is not completely
separated from surrounding tissue.

PD-weighted image

(a) PD weighted image (b) Bone mask

Figure 16: The original image and the resulting bone mask. The bone mask is missing the femur.
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(a) PD weighted image (b) Bone mask

Figure 17: The original image and the resulting bone mask. The algorithm gives a false label for the
patella.

3.3 Morphological operations - Cartilage

The cartilage segmentation method using morphological operations was not used in the
final complete algorithm but is an alternative in a future solution.

Different morphological operations were applied to the R2-weighted images, as mentioned
in the Methods section. All of these operations needs input values that is up to the user
to set. In this case the values and the Matlab functions were:

• adapthisteq - ’NumTiles’,[10 10]

• imtophat - strel(’disk’,15)

• imerode - strel(’disk’, 1)

• bwareaopen - 100

3.3.1 Results

The resulting mask does contain more than only the cartilage and is not a complete
solution to the problem by itself. In Figure 18 the resulting mask for the above mentioned
input values can be seen. The mask looks like it contains most if not all the cartilage as
well as much of the muscles.
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Small areas removed

(a) Resulting cartilage mask.

Overlay perimiter

(b) Cartilage mask outlined in green on the orig-
inal image.

Figure 18: The resulting mask as a binary image and visualized in green on top of the original image.

3.4 Otsu thresholding

Otsu thresholding is usually done through separating the foreground from the background.
But after trying this, it fairly soon showed that this method did not deliver what was
desired. Due to this a kind of normalization was done over the rows of the input image,
where each pixel value was divided with the sum of its row, to the power of 1.5. This
specific normalization was found through testing. After that the contrasts within the
image was increased through the function imadjust followed by binarizing the new image
with a global image threshold, using the function imbinarize. The function bwconncomp
finds connected points within an image, where the connectivity was set to 4, meaning that
each pixel will look for connections in the x- and y-direction, not diagonally. Thereafter,
the image was labeled based on the connectivity and the label which corresponds to the
connectivity of the pixels. This does most often divide the image into two labels, one
containing the bones and muscles (and some more tissue) and the other one the rest of
the tissues. Therefore, the one not containing the bones or muscle was chosen and both
the mask and the mask applied on the input image was returned as the result. The only
input to the created Otsu thresholding function is a gray scaled image. Since Otsu was
not able to find only the cartilage, the goal was to make it a preprocessing step for other
methods, removing parts of the image that do not contain any cartilage.
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3.4.1 Results

First a normal Otsu thresholding was implemented, which is presented in the figure below.
As can be seen, the labeled image is quite noisy and does not create any label that contain
all cartilage. One label is fairly close (the one colored orange) but that one also contains
muscle tissue, which has intensity values that are almost the same as cartilage, which
might make future separation of the two tissues harder.

Figure 19: To the left, the input image. To the right, the labeled image. Created by separating the
foreground from the background through Otsu thresholding.

Secondly, the implementation was changed into something that more applied to narrow
down the area where cartilage can be found. As seen in the figure below, the cyan colored
label remove most bone and muscle tissue while still containing all of the cartilage. This
can then be used as a preprocessing step for other algorithms and methods, since a lot
of incorrect tissue has been removed. And even though the black background (original
image) is within the cyan label, this part will also be removed when the mask is applied
on the input image, since that black area has zero intensity.
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Figure 20: To the left, the input image. To the right, the labeled image. Created by normalizing each
row followed by using a global threshold.

3.5 Clustering

Many different pretrained centroid sets were examined. Varying numbers of centroids on
different images, both with and without a preprocessing step using Otsu thresholding.
Also pretraining on different amounts of training data was tested. The centroid set that
seemed most reliable on different image sets and slices was the five centroids created using
ten images from three different patients, using different slices near the center of the knee
and preprocessed using Otsu thresholding.

The centroid set was then used for each image slice, with channels R1, R2 and PD, in
an implemented function that used the square distance to label each pixel. Later the
cartilage is picked out using the label color of the cartilage pixels.

3.5.1 Results

The results of the k-means are based on the results of the complete cartilage segmentation
algorithm described in Section 3.8 below. Different parameters for the k-means classifier in
the complete cartilage algorithm was evaluated. One comparison using different number
of symaps to pretrain the k-means centroids was examined. The result is shown below in
Table 2.
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# training symaps Recall Precision F1score
10 0.6452 0.3133 0.4218
20 0.6019 0.3038 0.4038

Table 2: Mean recall and mean precision for k-means pretrained with different number of symaps.

The number of labels in the k-means classifier, and different number of labels that rep-
resented cartilage was also evaluated. Again the result was evaluated by running the
complete cartilage segmentation algorithm, with differently trained centroid sets. The
result can be seen in Table 3 below.

# labels # cartilage labels Recall Precision F1score
5 1 0.5641 0.2119 0.3081
5 2 0.8995 0.2673 0.4121
4 1 0.4873 0.5136 0.5001
8 2 0.8082 0.3223 0.4608
12 1 0.3951 0.5459 0.4584
12 2 0.6878 0.4576 0.5496

Table 3: Mean recall and mean precision for k-means pretrained with different number of labels and
different number of labels chosen to represent cartilage.

The k-means classifier was also evaluated with different weightings of the feature space.
The result can be seen in Table 4 below.

R1 weight R2 weight PD weight Recall Precision F1score
1 1 1 0.5603 0.4995 0.5282
3 1 1 0.5776 0.2914 0.3874
1 3 1 0.5638 0.4431 0.4962
1 1 3 0.8777 0.3179 0.4667
1 2 3 0.4508 0.5154 0.4809

Table 4: Mean recall and mean precision for k-means pretrained with different weighting of feature
space.

3.6 Geometric methods

Two different geometric algorithms were created. Both of these do not find the cartilage
by itself, but are preprocessing steps for further algorithms.
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3.6.1 Bone contour dilation mask

The contour dilation mask is not used for direct cartilage segmentation, but for simplifying
the cartilage segmentation for other methods through making the area of interest smaller.

3.6.1.1 Setup

The function has five in-parameters which controls how much the contour of the in-
image should be dilated as well as if pixels within the mask close to the top or bottom
should be removed. For the final results, outwards dilation is set to 60 pixels with the
Matlab-function imdilate and erosion is set to 10 pixels with the Matlab-function imerode.
Neither top or bottom pixels are removed. Figure 23 below shows the three steps of cre-
ating the contour mask, the eroded bone contour, the dilated bone contour and then the
final mask which is the difference between the two masks.

Figure 21: The different parts of the creation of the contour dilation mask.

3.6.1.2 Results

As can be seen in the figure above the final mask is covering the areas close to the three
bone segments. Since cartilage is located between and close to bones, the final mask gave
desired results.

3.6.2 Positioned cartilage mask

Provided by SyntheticMR were two image sets containing the correct cartilage segmen-
tation. The location of the cartilage over all images in both sets was put together into
a mask. Due to the low amount of image sets with correct cartilage segmentation, this
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mask was not generic enough. Due to this the mask was dilated to make sure that the
cartilage of new image sets would be within the mask. The mask is shown in Figure 22
below.

Figure 22: The dilated cartilage mask.

3.6.2.1 Setup

To position the cartilage mask a function was implemented. This function takes the
cartilage mask together with the bone contour mask of slice 20 of the specific image set
and slides the masks over one another, storing the location of the highest correlation. A
parameter to the function is the step length, i.e. number of pixels, that the cartilage mask
is incremented in each iteration of the algorithm. This is optimally chosen as small as
possible and was set to three.

3.6.2.2 Results

The results of different sizes of the cartilage mask there were, as expected, more mis-
labelled cartilage pixels when using a bigger mask. It was also obvious that when the
bone segmentation failed for slice 20, the cartilage mask was positioned poorly, resulting
in a bad cartilage segmentation using the complete cartilage algorithm.
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3.7 Active contours - Snakes

The Chan-Vese method created by Wu (2009) was used as a framework and a simpler
run-file was created to easily be able to load and use images from the project. The Chan-
Vese method takes in several parameters. The most important ones are starting shapes,
number of iterations and initial weight, where the weight adjust the speed of contour
reshape per iteration.

3.7.1 Results

Several tests was performed with the Chan-Vese method. For visualization, a run with
many small starting shapes (octagons) was used. This way, many contours, and possibly
non-excising, contours should be found. As seen in the figure below, the area where
cartilage normally is found have no clear contour around it, and when the Chan-Vese
divide the contour into segments, the cartilage is segmented with muscle tissue and more.
For this test, an initial weight of 0.1, since lower initial weights more often detect weaker
contours, and 1000 iterations was chosen. The algorithm stopped after 208 iterations
since no snake was changing over the last iteration.

Figure 23: Top left - Input image. Top right - Starting shapes. Bottom left - Final contours.
Bottom right - Final result.
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3.8 The complete cartilage segmentation algorithm

The combination of methods consists of watershed transform with morphological oper-
ations, the geometric methods and Otsu thresholding together with k-means clustering.
First the centroids for the k-means clustering were pretrained using several of the given
images. Then the bone segmentation through the watershed algorithm was applied to the
image that would be labelled. The bone segmentation result in a bone mask that was
used to create the contour dilation mask. The contour dilation mask was then combined
with the cartilage mask to create the final mask which was adjacent to the bones and
that contained some bone, the cartilage and other nearby tissues. This final mask was
applied to the original image, which results in an image were only the areas close to bone
are kept. To finally extract the cartilage, the pretrained centroids were used to label this
stripped down image.

This method is heavily dependent on the bone segmentation working correctly, since ev-
erything not considered to be close to bone is removed. If the bone segmentation misses
a bone the nearby cartilage could be removed by the bone mask, and if some tissue is
mislabelled as bone then the surrounding tissue will be searched for cartilage which could
increase the number of false positives.

Figure 24: Diagram of method steps. Input data consist of 3D matrix containing slices with PD-
weightings, and a 4D matrix with all channels. The combination of methods consists of watershed
transform with morphological operations to create a bone contour mask, and together with the geometric
methods, Otsu thresholding and k-means clustering a final cartilage label can be picked out.
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3.8.1 Quantitative results

The complete algorithm was evaluated using the parameters that yielded the highest
recall and precision from the evaluation of the k-means classifier, i.e. pretrained with 10
symaps, 5 labels and a weight of three on the PD-channel. The mean result for all slices
can be seen for one of the test patients in the Table 5 below.

# cartilage labels Recall Precision F1score
1 0.6511 0.2776 0.3892
2 0.9044 0.2540 0.3966

Table 5: Mean recall and mean precision when evaluating the complete cartilage segmentation algorithm.

The recall, precision and f1score per slice can be seen in figure 25 and 26. In the former,
one centroid was used to label cartilage and in the latter, two centroids were used.

Figure 25: Result per slice (x-axis), with 1 labels representing cartilage.
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Figure 26: Result per slice (x-axis), with 2 labels representing cartilage.

Note that the first and last couple of slices contain little to no cartilage, and are not as
interesting from a clinical perspective. The mean recall, precision and f1score between
slices 8-22 were 0.6497, 0.3186 and 0.4275 using one label as cartilage, and 0.8394, 0.2835
and 0.4238 when using two labels as cartilage. The recall is lower here since the recall is 1
in the first slices since there are no cartilage there, which misleadingly inflates the recall
and precision.

3.8.2 Qualitative results

The segmentation was also plotted in the original image together with a coloring indicating
if the labelling was done correctly. This visualization can be seen in Figures 27-30.
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Figure 27: Segmentation of slice 11 with 2 labels representing cartilage.

Figure 28: Segmentation of slice 25 with 2 labels representing cartilage.

Figure 29: Segmentation of slice 11 with 1 labels representing cartilage.
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Figure 30: Segmentation of slice 25 with 1 labels representing cartilage.

3.8.3 Performance

Running the complete algorithm on a 576x576 symap image data set of 26 slices takes 2
minutes and 43 seconds. This using the computer and Matlab specifications in Table 6
below.

Computer MacBook Pro
Operating system macOS High Sierra, version 10.13.1

Processor 2,3 GHz Intel Core i5
Memory 8 GB 2133 MHz LPDDR3

Matlab version R2017b

Table 6: Computer and Matlab specifications.

The bone segmentation takes 23 seconds, the following creation of all the masks takes
another 8 seconds and the cartilage segmentation on all slices takes up the remaining 2
minutes and 12 seconds.

4 Discussion

In the discussion section each method and its experiments will be discussed separately. In
addition to the discussion of the experiments and results there will also be discussion and
ideas of what can be improved and what the next step would have been in the project in
a future aspect.
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4.1 Watershed segmentation and morphological operations

The most important thing to take in account about the bone segmentation, is that it
is the preprocessing part (morphological operations) that matters in the end. That is
why the method is called Marker-Controlled Watershed Segmentation. If the watershed
algorithm would have been applied directly on any of the images without any processing,
it would have resulted in a over segmented image that would not have given any useful
information at all. This part turned out to be the most important when looking at the
complete cartilage segmentation algorithm, as a mistake in the bone mask leads to missed
or miss-labeled cartilage.

The method for segmenting the cartilage directly using morphological segmentation was
never evaluated as a part of the complete algorithm so it is difficult to say exactly how
well it worked on finding the cartilage. This method could possibly be used as a step in
a complete solution but the fact that it find so much of the muscles might be a problem.

4.1.1 Problems

There are a few difficulties to consider when looking at the bone segmentation.

• The different shapes and sizes of the bones between slices.

• The size of the patella in comparison to the other bones.

• Smudged edges for the bones.

In the preprocessing steps the morphological structuring element is the part that decides
which sections that will be labeled and the size of these sections. So in the middle slices
where the femur and tibia is big the structuring element should also be big to make sure
that each bone is segmented and labeled as one part and not multiple smaller parts. But
this structuring element will not work for the earlier and later slices where these bones are
much smaller. Using different structuring elements for the different slices was considered
to try to match the size of the structuring element with that of the femur and tibia but
decided not to. There was no reliable way to determine which slices contained bigger
bones and might therefore be improved by using another structuring element. Changing
the structuring elements could just as easily give the opposite result. The change from
smaller to bigger bones is gradual and is not necessarily at the same slice from patient to
patient. There is also a difference if the images is of the right or left leg, so this would
have to be taken in to consideration as well. This also means that a separate part for the
segmentation of the patella is necessary as the size of the patella is considerably smaller
than the size of the femur and tibia. The shape is also very unlike that of the other bones.
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One of the main reasons for missing bones is that the edges of some bones are partly
indiscernible from surrounding tissue and therefore hard to segment correctly. Figures 15
and 16 in the experiment part shows two different examples of how the bone segmentation
can be unsuccessful. In Figure 15b the tibia has not been correctly separated from the
surrounding tissue. It might be possible to fix this problem with other parameter values
but that might also result in other problems in other slices. In Figure 17b the whole femur
is missing in the mask. The original image (Figure 17a) shows that part of the tibia’s
edge is melting into the tissue to the left of the bone. This means that the segmentation
won’t label just the bone but a much bigger area as one part, and that part doesn’t fit
the criteria to be in the bone mask.

4.2 Otsu thresholding

The implementated Otsu thresholding method, which appeared to be more like a mix
between normal thresholding and Otsu thresholding, got results which was not capable of
segmenting the cartilage itself, but only removing some tissues which was not cartilage.
Several attempts was done, trying to find optimal values for cartilage segmentation, but
it fairly soon showed that this was a hard thing to achieve. Either muscle tissue and
cartilage was grouped together above the threshold, or cartilage was grouped with the
background tissue, due to its fade contour and fairly weak signal. This was a bad result,
since separating cartilage from muscle tissue is hard, due to their close intensity in MRI,
and when the cartilage got mixed into the background, the Otsu thresholding method
was more or less useless. So after modifying it, the result became better. It was still not
able to segment the cartilage, but it was now capable of narrowing down the area where
it could be found. Due to this, it is a good processing step for further segmentation, but
it’s not good on its own. There are most probably better methods to use for cartilage
segmentation than Otsu thresholding.

4.3 Clustering

When pretraining the centroids one might assume it is always better to use as many
images as possible. Both from different patients and slices. From the experiments, this
was not the case. A few things to consider should however be:

• Pretrain on different patients, but only the slices that are of most importance.

• Try a different number of images.

• Scale the different axes (R1, R2 and PD) differently depending on which contains
the most information.
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• More dimensions to the feature space could enhance the final performance, e.g. a
geometric dimension such as distance to a certain, patient invariant, point in the
image.

• A different optimal number of labels might occur on different patients and slices.

Differently trained centroids naturally results in different labelling. One of the parameters
during the training is the number of images the centroids are trained on. Two centroids
were trained with the same parameters but different amount of training images and then
applied in the segmentation through the complete cartilage algorithm. One of the cen-
troids was trained with 10 images, and the other with 20 images. The images were from
different patients and slices. The latter centroid set had 10 additional images, i.e. 10 of
the images were the same for both centroids. The mean recall and mean precision when
evaluating the result from the complete cartilage algorithm with the different centroids
were slightly higher for the centroid that was trained with the least images. This centroid
set had a mean recall of 0.65 and a mean precision of 0.31 while the centroids trained with
20 images had 0.60 and 0.30 respectively, as mentioned in in Section 3.5.1. This shows
that training a centroid set with more images does not necessarily improve the results.
Similarly the results varied when using different weightings of the feature axes, where
the recall increased significantly when a larger weight was put on the PD-channel of the
image.

4.4 Geometric methods

Two different geometric algorithms were created. Both of these do not find the cartilage
itself, but are preprocessing steps for further algorithms. They both have their advantages
and disadvantages, which will be described further below.

4.4.1 Bone contour dilation mask

The goal of the bone contour dilation mask was to decrease the area of the image in
which the cartilage could be found. Since cartilage is located close to bones, removing
areas within and far away from bones can decrease the area of interest, while assuring no
cartilage is lost. The mask that was created does fulfill this goal since it is big enough
to make sure no cartilage is lost, but contains a lot less pixels than the full image. The
downside is that it does very heavily rely on a good bone segmentation. If the bone
segmentation is incorrect, the mask created will be around the contour of the bone seg-
mentation, not around the correct bone contour, which will risk that cartilage gets lost
outside of the mask.
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The fact that cartilage in the knee appears in contact with bone, mainly in between
adjacent bones, is something that should be taken advantage of. It is a well known fact
and fairly easy to consider when implementing a knee cartilage segmentation algorithm.
There are probably other possible implementations than the one used here, but the bone
contour dilation did work well, especially when combined with the positioned cartilage
mask described below.

4.4.2 Positioned cartilage mask

The bone contour mask described above will allow cartilage to be found around the entire
contour of the bones. Since cartilage only appears in some areas of the mask, another
mask was generated to remove bone contour pixels that cannot contain cartilage. The
positioned cartilage mask does this quite well. To be noted however is that to make sure
it does not miss any cartilage pixel on any patient, it is rather large. The result contains
therefore a bit more mislabelled cartilage pixels than if the mask would have been a bit
more slim and selective. The cartilage mask size could be adjusted according to what is
most important in the current situation. In the case of this report, a higher recall was
prioritized and therefore a big cartilage mask was used.

The positioning of the cartilage mask by sliding over the dilated bone contour is a simple
implementation. It does not rotate to fit a data set of a slightly rotated knee in any
way which could be a smaller problem. A bigger problem is that the mask is positioned
according to the dilated bone contour mask of slice 20, independent of which patient.
Therefore it heavily relies on a good bone segmentation of slice 20. This problem could
however be solved in many intuitively simple ways. For example by matching the bone
segmentations to a standardized bone template and base the cartilage positioning to the
dilated bone contour mask related to the ”best” bone segmentation.

Using Image Registration with a reference MRI image at a certain depth in the knee, with
the cartilage mask manually positioned to reference, a new data set could use a matching
slice to get a motion transformation for the cartilage mask to position, and in many other
ways transform it, according to the new data set. This would allow the cartilage mask to
initially be quite small and still act as a general mask that can be used for all possible
data sets. This would result in a better precision but would not affect the recall, when
compared to the suggested method above.

4.5 Active contours - Snakes

Active contours have been tested for the cartilage segmentation during this project, and
it fairly quickly showed that it does not work well at finding the cartilage. Even though
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active contours are good at finding contours where noise is present, the issue is that there
are so many contours, stronger than the one for cartilage, which are found instead of the
desired one. Contours from bone parts, muscles, nerves, cavities, etc. are all prioritized
over the contours of the cartilage. Due to this, it is very hard to use active contours for
cartilage segmentation.

Active contours may still be of interest though. With the correct preprocessing, it might be
possible to more clearly define the contours of the cartilage and then use active contours.
This has not been investigated within this project, but active contours are something that
might be worth keeping in mind. Also, testing more active contours based on the level
methods is recommended, since they’re overall better at detecting weak contours.

4.6 The complete cartilage segmentation algorithm

Since the pixel values of cartilage tissue aren’t unique in any MRI image weighting, a
geometrical distinction is required. This is possible since the cartilage appears in con-
nection to bone tissue, between the tibia and femur and behind the patella. This is the
motivation for the bone segmentation part of the complete algorithm. This information
combined with another mask, a cartilage mask, creates a rather small space of the total
image where the cartilage is allowed to be found. This small space does however still con-
tain other tissues than cartilage and more segmentation steps are required. The k-means
algorithm is a good choice since it does a pixel wise classification and does not require
certain structures to be present.

The result using the highest performing setup from the k-means evaluation showed that
it was possible to reach a high recall, 0.9, however the precision was significantly lower.
The segmentation can find almost all pixels labelled as cartilage, however it also has a lot
of mislabelled pixels. This can also be seen in Figures 27-30, where pink pixels represent
pixels mislabelled as cartilage. In the experiment where two labels represented cartilage,
the number of mislabelled pixels naturally increased which can be seen when comparing
Figure 27 and 29. The former contains more pink compared to the latter, however it also
finds a lot more of the cartilage. The result also clearly depends on the result of the bone
segmentation, which can be seen in Figure 26 and 25 where the numbers drops to zero at
slice 25. When looking at slice 25 in Figure 28 and 30 all cartilage is missed, which is due
to the lower bone not being segmented correctly.

For different ways to further improve the results, see Section 4.7.
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4.7 Future actions

During the project, multiple new ideas on how the algorithm could be improved developed
that the group unfortunately did not have time to pursue. As it’s possible that the client
might want to continue to develop an algorithm for automatic cartilage segmentation,
this section will focus on what might be done or tested to improve the current algorithm
that is proposed in this report.

4.7.1 Bone mask

There are multiple things that could possibly improve the bone mask function. A few
possible ideas are

• Using information from previous and following slices to reduce the chance for missing
bones.

• Use a 3D representation of the knee instead of using slice by slice.

• Separate the segmentation of the femur and the tibia to be able to use each of the
bones characteristic features.

With the current method, it is not entirely uncommon that a bone is missing in one slice
but is present in the slices before and after. This means that it would be possible to in
these cases fill out the bone mask with information from the previous and following bone
masks. The fit would not be as good as if the bone was correctly segmented but would
give a better mask than if the bone was completely absent. This problem could also be
avoided by instead of looking at the slices in 2D and one by one, represent the slices in
3D as a whole. This approach could possibly be more precise but it would take a lot of
work and would possibly mean a completely different segmentation method overall. It
was not looked into if these methods could be implemented in 3D. When looking at the
implemented method and what could be done to improve it, is that it is built for images
in 2D and it might not be possible to rebuild it for 3D.

Separating the segmentation of the femur and tibia should be relatively easy to add to
the current method. By doing the segmentation in several steps the chosen structuring
element could be more specific to the size and shape of each bone and therefore result in
better bone masks.
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4.7.2 Better centroids

During the experiments, it was shown that different parameters when training the centroid
set effected the final performance. A next step could be optimizing these parameters to
further improve the results of the classifier. The centroid sets were effected by the number
of images used during the training, the number of centroids that would be defined in a
set, the scaling of the feature space and the number of labels chosen to contain cartilage.
These could all be optimized which could improve the final performance. One possibility
that could be explored is adding a certainty to each label, which could give the pixels
a high or low certainty of being cartilage. This could then be used for pixels which are
uncertain whether they contain cartilage or not. If a pixel with uncertainty is close to
several pixels that have a high or low certainty of containing cartilage it could be used to
decide if the pixel with uncertainty contain cartilage or not. One way to measure certainty
could be proximity to the nearest centroid. Neighbouring pixels can belong to different
centroids since that calculation is done in the feature space, and a mislabelled pixel could
be corrected if it has low certainty while neighbouring pixels have high certainty.

4.7.3 DBSCAN

One of the next steps would be to test out the DBSCAN-algorithm. The algorithm could
replace the labelling done by the k-means algorithm, or it could be used before k-means
to determine the optimal number of clusters which then could be fed to the k-means
algorithm. Currently the number of clusters for k-means is set by the user when pretrain-
ing the centroids, which could be automatized by DBSCAN. The problem that stopped
DBSCAN to be fully implemented was that it calculates the pair-wise distance between
all points in the image, which requires a large amount of memory to handle. There are
different approaches to solve this problem. One would be to only check distance to nearby
data points. This is not as easy as just checking the distance to adjacent pixels, since the
distance is measured in the feature space. Pixels which were adjacent in the image are
not necessarily adjacent in the feature space.

Another solution is to decrease the number of pixels by using superpixels. Superpixels are
pixels that have been grouped together by the simple linear iterative clustering (SLIC)
algorithm, and could be used to represent a cluster of pixels. The DBSCAN algorithm
could be applied onto these superpixels, labelling each superpixel which could then be
used to apply the same label to all pixels within the superpixel.
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4.7.4 Image registration

Since the pixel values of cartilage resembles the ones of other tissues, mainly muscle tissue,
any cartilage segmentation method could result in mislabelled pixels far from the general
cartilage locations. A cartilage mask solves this problem. Also, a mask that is in some
way optimal in size and position can further reduce the number of mislabelled pixel and
in turn enhance the overall precision of the segmentation algorithm.

The mask and positioning method used in this report will result in a high recall but
relatively bad precision and a possible next step, to improve the algorithm, is Image
Registration. This by creating a better cartilage mask, based on more data than the data
used in the implementation described in this report, together with an image registration
algorithm capable of registering new data to a chosen reference.

4.7.5 Testing new combinations

The complete algorithm is designed so that introducing new steps or replacing steps would
be quite easy.

A possible combination to test is to use the cartilage mask from the morphological seg-
mentation together with a bone mask and a geometrical function. Because of the muscles
that are currently present in the cartilage mask, an additional step of muscle removal
might be needed to reduce false positives that are marked as cartilage. Removing the
muscles from the mask might be done with some kind of thresholding, for example Otsu’s
thresholding method.

5 Conclusion

The proposed method does segment the cartilage to some extent, but it needs to be
improved in several aspects and is not yet ready for clinical use. The method can be seen
as a base for further development.

Algorithms such as watershed, k-means and geometrical algorithms have shown to have
capabilities of either preprocessing or finding the cartilage, while others such as Otsu’s
thresholding and Chan-Vese have not shown as useful. It has also shown that the combi-
nation of several methods lead to a better result than staying to one single method.

The final algorithm has been built in a way where different steps could be relatively
easily replaced. If a better option for segmentation is found, the k-means classifier can be
exchanged, and similarly the other parts can be exchanged as well. While the resulting
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recall is high using optimal settings, the precision is low which is the main problem
with the final algorithm. Suggestions for how the different methods can be improved
has been provided, together with possible replacements for some methods that could
be investigated, all which could be used in future research to further improve the final
segmentation accuracy.
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