
Design Speci�cation

Group 3

September 20, 2012

Project Identity

Group 3, 2012/HT, "The Robot Dog"

Linköping University, ISY

Name Responsibility Phone number E-mail

Martin Danelljan Design 072-372 6364 marda097@student.liu.se

Marcus Eriksson PR 073-647 7180 marer014@student.liu.se

Daniel Hultqvist Project manager 070-289 2859 danhu635@student.liu.se

Victor Johansson Test 072-500 8006 vicjo046@student.liu.se

Johannes Markström Documents 070-353 9655 johma564@student.liu.se

Niklas Pettersson Quality 076-634 2903 nikpe872@student.liu.se

Customer: Michael Felsberg, michael.felsberg@liu.se, CVL, LiU
Course examiner: Vasileios Zografos, vasileios.zografos@liu.se, CVL, LiU

Supervisor: Liam Ellis, liam.ellis@liu.se, CVL, LiU

Contents

1 Introduction 1

2 System overview 1

3 Image Capture 3

4 Person Detection 3

4.1 HOG method . 3
4.2 Chamfer method . 3
4.3 Hough Forest . 4

5 Operator Identi�cation 4

5.1 Overview . 4
5.2 Descriptor . 5
5.3 Classi�cation . 5

5.3.1 Histogram distance . 5
5.3.2 Neural Network . 6
5.3.3 Hough forest . 6

5.4 Tracking . 6
5.5 Matching . 6

6 Obstacle Detection 7

7 Collision Handling 7

8 Steering Commands 7

8.1 Calculations . 8
8.2 Steering . 8

9 Gesture Detection 9

10 Testing and Evaluation 9

10.1 Robustness . 9
10.1.1 Steering . 9
10.1.2 Collision . 10
10.1.3 Detection . 10
10.1.4 Matching and classi�er 10

10.1.5 Gesture recognition . 10
10.2 Speed . 11

11 References 11

Document history

Version Date Changes Made by Reviewed

0.1 2012-09-17 First version Johannes Markström 2012-09-19

0.2 2012-09-20 Second version Johannes Markström

1 Introduction

This document speci�es the design of the robot and the software used to
control it. Each software module is described in its own section. The docu-
ment will be updated as the project is progressing, especially when a design
decision has been made during a sprint. Speci�c methods referenced to a
paper describing it, once it has been implemented and tested more speci�c
details will be �lled into this document.

2 System overview

In the basic version, the robot will have two di�erent states. When the sys-
tem is started or asked to learn a new operator, the system will enter the
"learning" state. In this state, the robot will be stationary and learn the
appearance of the person in front of it. When the robot is ready to go it will
enter the "following" state, where it will try to follow the operator. Some
online learning of the operator's appearance in the following state could also
be considered.

Our system will be divided into the areas given by the block diagram in
�gure 1. The image capture will capture images from the camera and do the
necessary conversion so that the images can be fed to the person detector
and the collision detection.

The person detector will be used to detect persons in front of the robot.
The resulting bounding boxes around the detected persons will be used by the
operator classi�er. When the robot is in the learning state, these boxes will
be used to identify the part of the image that contain the operator. While
in the following state, the operator classi�er will calculate values for each
bounding box that measure the probability of the bounding box containing
the operator.

The information from the operator classi�er will be fused with the infor-
mation on the earlier positions of the operator in the image, to decide which
bounding box contains the operator.

The relative distance and angle from the robot to the operator will then

1

be measured, using the identi�ed bounding box. The measured values are
�ltered and fed to the steering system. The steering system uses the rela-
tive position of the operator to calculate the steering commands (including
speed). The steering system also uses information from the obstacle detec-
tion, so that collisions can be avoided.

Figure 1: Overview of the system.

2

3 Image Capture

The robot has a mounted Point Grey color camera which we intend to use
for the tracking and detection of the operator. There already exist an image
capture module that uses Point Grey API for capturing images. This module
is used with the gray scale Point Grey camera.

Due to the fact that we have upgraded the camera to a color camera
we need to update the Point Grey image matrix - OpenCV image matrix
converter to include the color space. The image capture module takes an
image and stores it in a thread-safe bu�er so that any other module running
on a separate thread can reach the bu�er anytime.

4 Person Detection

The �rst step in locating the operator is to �rst �nd all persons that is
present in the current image. There are many available methods for ob-
ject/pedestrian detection. This project will �rstly look into three approaches
HOG [1], Chamfer system and Hough forest. Which method that will be used
depends on how easy it's to implement given that it is robust and fast enough.

4.1 HOG method

The basics of HOG is that an area is divided into smaller regions called cells.
In each cell a histogram of gradient directions is computed. The combination
of all the histograms is the descriptor of the area. The HOG pedestrian de-
tector works by �nding areas in an image where its HOG descriptor matches
one of a human. Pedestrian detection using HOG is already implemented in
OpenCV [2] and will be the one that �rst is going to be tested.

4.2 Chamfer method

Chamfer is a template matching system. An edge image is extracted from
the input image. From the edge image a distance transformation is made
where the pixels are given the value of the distance to the closest edge. The
distance image is then correlated with the template and if there are values
under a certain threshold it is said to be a match. Normally there is more

3

than one template and the system can be pretrained by making a database of
contours that is interesting (in this case contours of humans). The database
can be made up as a tree-structure where one subtree is more similar than
the rest of the tree. The advantage of this is that you don't need to do
matching with all templates which will lead to some speedup.The chamfer

system is described more in detail at the gravila website [3].

4.3 Hough Forest

The basic idea is to create a tree from test data were every tree represent an
individual class. The tree is constructed from patches consisting of pieces of
the class (positive) and non class (negative) and distances to the centroid of
the object it represents. Each node represent either a positive or negative
feature. Each node vote for or against the test patch being in the class or not.
Follow the branch that gives the best match, the end results in a probability
of the test patch being in the class or not and gives a location of the centroid
of the object. This is described more in detail in an article [4] and the source
code can be downloaded at the vision web page [5]. The source code has
some extensions compared to the theory.

5 Operator Identi�cation

This section describes methods we might use to identify the operator. All
methods will not necessarily be implemented if one implemented method
already gives good performance.

5.1 Overview

These classi�ers will be used to distinguish di�erent people, namely the op-
erator from non operators. We will base the classi�er on color histograms
feature descriptors and then use one of three versions. In theory, the operator
classi�er is only needed for requirements with prio 2 or higher, however the
performance might be enhanced for the basic requirements.

4

Figure 2: Work �ow for the learning phase.

Figure 3: Work �ow for the classi�cation.

5.2 Descriptor

The patch will be subdivided into smaller patches, on which color histograms
will be calculated. The color histograms will be the base of the descriptors.
The di�erent areas will have di�erent weights, where the center parts have
higher weights, i.e. more in�uence.

5.3 Classi�cation

We will consider three di�erent methods for classifying the operator. If one
method has good enough performance, the others might not be implemented.

5.3.1 Histogram distance

The �rst method will be based on simply the histogram distance compared
to a database, containing learned histograms of the operator. If a match is
good enough, it is considered true. If it is pretty close, but not a full match,
it will be stored as a new feature vector describing the same object, as it is
probably a result of the operator changing direction or posture.

5

5.3.2 Neural Network

There is already a module that uses neural networks for learning on the robot
which we can test. A neural network should be quite easy to implement with
real-time performance, if the available code is not su�cient.

5.3.3 Hough forest

In this case data and information about the operator has to be learned before
the robot can be deployed. However, the Hough forest is a very fast and stable
solution, which could prove superior to the more simple neural networks
method. Another main advantage of using Hough forest is that we can also
use it for the detector and even go so far as to integrate the detector and
descriptor into one module.

5.4 Tracking

As an additional tool to classify the operator, the movement of the operator
should be tracked. This can be done, for instance, by KLT tracking. An
other option is to use a Kalman �lter to predict the trajectory of the path.

5.5 Matching

It is assumed that between two consecutive frames with little time di�erence
the relative motion of the operator will be small. Therefore a simple match-
ing algorithm is to just compare the distance between the centroids of the
candidate persons with the operator position in the last frame.

This approach will probably work well under some conditions, but is lim-
ited by the detectors ability to correctly detect the operator. Problems can
arise if the detector is giving false positives, or having two or more persons
on approximately the same distance from the last position of the operator,
in the robots �eld of vision.

To make the matching more robust and able to handle more than one
moving object, the description of the appearance of the candidate persons will
also be compared with the learned operator. The output will be a probability
of the candidate persons matching the operator based on appearance and will
be weighted with the information on di�erence in relative position.

6

6 Obstacle Detection

For the robot to be practically useful it needs to be able to follow its operator
without crashing into objects in its path. In this project it's assumed that
the deployment environment has no obstacles, so the challenge is to avoid
driving into a wall or the operator.

There is already an existing module for obstacle detection present in the
framework which makes a 3d-reconstruction from motion and estimates the
dominant plane. This is then assumed to be the ground plane. A machine
learning approach to �nd out the depth of an image is to classify each image
against a database and then predict the depth to be similar to that of a
similar image. Another interesting method is [6] which uses optical �ow to
detect obstacles.

Our primary intention is to use the system already present on the plat-
form.

7 Collision Handling

If an obstacle is found the robot will have to take action to avoid a collision.
A simple way of handling this is the Crash and turn algorithm which works
as follows:

1. Move in the direction of your target.

2. If you hit a wall, turn in the direction that puts you closest to the
target. If no choice is obviously better, pick one at random.

Since we don't want to hit a wall the obstacle detection have to warn in good
time before an impact. This method is described more detailed in [7].

8 Steering Commands

This section describes the di�erent ways the robot can be controlled and how
the di�erent methods work.

7

8.1 Calculations

The detected operators position and size in the image space will be mapped
to a distance and an angle in the world space. The distance will be calcu-
lated from the height of the operators bounding box and the angle will be
calculated using the horizontal distance between the operators centroid in
the image and the camera center. The transformations will be done either
by using the pinhole camera model or an interpolated curve from tabulated
values. To make the steering more smooth and robust to noise, these values
will be �ltered with for example Kalman �lters.

The steering and speed commands will be calculated by a controller, us-
ing a feedback control loop. The �ltered values of the distance and angle
relative to the operator are used as input, together with the user de�ned
reference value for the distance. The controller could be a simple PD- or
PID-controller.

When there's risk for collision the speed and turning will be overridden
by the collision handler, see section 7.

8.2 Steering

We will be using a separate thread to control the robots actions. This module
is already available but needs to be modi�ed to suit our needs. The steering
module will have three basic modes of operation:

• Completely automatic. The control unit receives control signals from
a separate thread, telling the robot what to do.

• Semi-automatic. The robot receives control signals telling the robot
about where and how to move, however the robot speed is controlled
by a remote control. Using this method, it is easy to make sure that
the robot does not crash.

• Manual. The robot is controlled by a remote control. Other modules
might still be running and performing tasks. This mode could be used
to test the obstacle detection system, if a potential collision is detected
it will force the robot to stop.

8

9 Gesture Detection

When the robot is standing still(static scene) it will be able to recognize
gestures that the operator might do. As a �rst approach we will look for
the hands of the operator by looking at the sides of the bounding box of the
operator. The hands are detected by using a color descriptor and the size
of the hands can be calculated from the size of the operator's bounding box.
The motion will be expressed as vectors that will tell the direction of the
movement. If the movement exceeds a de�ned threshold we regard it as a
gesture. The threshold will be independent of the distance from the robot to
the operator by the mapping from the size of the operator.

By combining movements from right and left hand in y- and x-direction
we can easily de�ne some basic gestures/commands. The gestures will be
de�ned later as this is a requirement with a lower priority.

10 Testing and Evaluation

In order to determine if a module and the system as a whole works according
to expectations, some systematic testing and evaluation techniques will be
de�ned.

10.1 Robustness

Here follows a preliminary description of the di�erent testing techniques for
determining the robustness of the system.

10.1.1 Steering

• Evaluate how well the robot steer towards the goal.

One method to test this is by starting the robot in di�erent orien-
tations compared to the target. One can then measure how long time
it takes for the robot to align with the target, as well as how much
angular divergence there is when the robot is done aligning.

• Evaluate how well the robot keeps the distance.

9

One method is to simply start at di�erent distances from the target
and measure how long time it takes for the robot to enter the speci�ed
following distance, and how much it diverges when done.

10.1.2 Collision

• Evaluate how well the robot detects walls.

One way to test this is to record a video while the robot is manually
controlled in an empty room. This video could be used to calculate a
receiver operating characteristic curve.

• Evaluate how well the robot avoids walls.

This could be tested by having a couple of prede�ned speeds and
angles which the robot will be started in relative to a wall. One should
also de�ne a goal position, on the other side of the wall. Then one
could measure how often it fails to avoid, and how long time it takes
for the robot to avoid the wall.

10.1.3 Detection

• Evaluate how well the robot detects persons.

One way to test this is to record a video while the robot is manually
controlled in a room with one, two and four persons. This video could
be used to calculate a receiver operating characteristic curve.

10.1.4 Matching and classi�er

• Evaluate how well the robot matches the same people.

This could be tested on the same video as the detector, but with the
di�erent people marked and separated from the background manually.
One can then measure how often the people are correctly matched
between frames, how many mismatches there are, as well as how many
people there are that the matching fails to match.

10.1.5 Gesture recognition

• Evaluate how well the robots recognize di�erent gestures.

10

This could be tested by recording a video of di�erent people doing
di�erent gestures multiple times. The gesture recognition could be
performed on this video, and then it would be possible to count the
number of correctly identi�ed gestures, number of wrongly classi�ed
gesture as well as the number of missed gestures.

10.2 Speed

Our system must work in real-time so the speed of the di�erent modules are
very important. Every module should be clocked, so that modules that are
too slow may be optimized for speed. As some modules are more important
than others a priority list would look like:

1. Obstacle Avoidance

2. Person Detection

3. Matching

4. Steering Commands Calculations

5. Operator Classi�er

6. Gesture Recognition

The �rst ones has higher priority and will be optimized �rst.

11 References

[1] Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Hu-

man Detection. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=1467360

[2] OpenCV crew, Object detection. http://docs.opencv.org/modules/

gpu/doc/object_detection.html

[3] Gavrila, The Chamfer system. http://http://www.gavrila.net/

Research/Chamfer_System/chamfer_system.html

11

[4] Juergen Gall, Victor Lempitsky, Class-Specic Hough Forests for Ob-

ject Detection. http://www.vision.ee.ethz.ch/~gallju/download/

jgall_houghforest_cvpr09.pdfl, 2009.

[5] Juergen Gall, Victor Lempitsky, Class-Specic Hough Forests for Ob-

ject Detection homepage. http://www.vision.ee.ethz.ch/~gallju/

projects/houghforest/index.html

[6] Toby Low, Gordon Wyeth, Obstacle Detection using Optical Flow. http:
//www.araa.asn.au/acra/acra2005/papers/low.pdf

[7] Ingemar Ragnemalm Polygons feel no pain, So how can we make them

scream?, Volume 2 2012

12

