Applikationsspecifika Integrerade kretsar

Tentamen TSTE81

för Y4, D4 och TE

Tid:	Onsdag 1 September 1997 kl. 14.00 - 18.00
Plats:	Kårallen
Ansvarig lärare:	Kent Palmkvist, 281347
Hjälpmedel:	Räknedosa, Formelsamling i Aktiva och Tidsdiskreta filter, Formelsamling i kretsteori samt allmänna tabellverk.
Anvisningar:	För godkänd tentamen fordras ca 30 poäng
Visning:	Tisdag 16 September 1997 kl. 13.00-14.00 (Kent Palmkvists tjänsterum)
Lösningar:	Anslås på Systemtekniks anslagstavla i labkorridoren
Betygslista:	Anslås senast 1997-09-15 på anslagstavlan i labkorridoren

1.	a)	How fast grows the size of a distributed arithmetic unit when the number of inputs are increased?	(2)
	b)	How many clock cycles is needed for a multiplier implemented using Booth's algorithm compared to using an ordinary shift- accumulator?	(2)
	c)	What is sign-magnitude truncation?	(2)
	d)	What difference is there between a preemptive and non-preemptive processing element?	(2)
	e)	Why is it more important to generate a correct design when using ASICs compared to a standard DSP solution?	(2)

2. The filter below is implemented using an isomorphic mapping to bit-serial arithmetic. The data wordlength is 14 bits. Multiplier a has a latency of 5 clock cycles, multiplier b has a latency of 7 clock cycles, and the additions has a latency of 1 clock cycle. The clock frequency is 150 MHz, and the sample rate is 5 MHz.

Introduce shimming delays.

3. The recursive filter above is implemented using homogenous nonpreemptive processing elements. Multiplication a requires 5 clock cycles, multiplication b requires 7 clock cycles, and addition requires 1 clock cycle.

a)	What is the minimal sample period?	(4)
b)	Estimate the minimal number of resources required if the sample	<i></i>
	period is equal to the minimal sample period.	(4)

- c) Draw the precedence graph. (6)
- d) Schedule the algorithm to reach the minimal sample period. (6)

- 4. The schedule below is implemented using non-homogenous nonpreemptive processing elements. Processes P1 and P7 are of the same type, and processes P2, P3, and P5 are of the same type.
 - a) Perform processing element resource allocation and assignment using clique partitioning. (6)
 - b) Draw a variable lifetime diagram.
 - c) Perform memory cell resource allocation and assignment using the left edge algorithm. Indicate the steps performed in the allocation/assignment. Variables cannot be assigned edge-to-edge, and are not allowed to overlap themselves.

5. A multiplication by a constant -1.1875 is to be implemented. The input data wordlength is 15 bits.

a) Draw the non-optimized logic diagram of the multiplier. Us blocks such as full adders, flip-flops etc.	e (4)
b) Optimize the structure.	(3)
c) What is the latency measured in clock cycles for the multiplier?	(2)
d) What is the throughput measured in clock cycles for th multiplier?	e (2)

e) Implement the multiplication using 2 or less fulladders. Hint: -1.1875 = -1 - 0.25 + 0.0625. (5)

(4)