Tentalösningar ASIC (TSTE81) 970319

- 1. a) An heuristic algorithm finds solutions to a problem that are usually good enough using a computational complexity which is less than the best optimal solution algorithm.
 - b) Multiprocessor:

- c) Sign digit code, residue number systems
- d) Top down: The whole system is successively partioned into a hierarchy of subsystems.

Bottom up: Successively assembling well-known building blocks into more complex blocks until the whole system is realized.

Edge in: Partition the system into parts, starting from tine inputs and outputs and working inwards.

Meet in the middle: The specification synthesis process is done top-down, but the actual design of the building blocks is performed in a bottom-up fashion.

2. a)

Tentalösningar ASIC (TSTE81) 970319

b) Operation time longer than sample period => Schedule period = 2 sample periods

- 3. a) Tmin = max { (3 + 1 + 1)/1, (7 + 1 + 1)/2 } = 5 time units.
 - b) Homogenous => only one type of PE. Total computational load: 4 + 5 + 3 + 7 + 4 * 1 = 23 time units of work. Sample period = 6 time units => 23 / 6 = 3.8 4. The lower limit is 4 processing elements.

4. a)

	v1(n)	Shit Feg. v ₂ (n)	istrib. rithm.	vistrib. rithm.		
 b) Increase number rear needed. 	nges as	$ \begin{array}{c ccc} x & v_1 \\ \hline 0 & 0 \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \hline 1 & 1 \end{array} $	ROM v ₂ 00.0000 00.1110 00.1101 01.1011	$\begin{array}{c} x \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 1 \end{array}$	v2 0 1 0 1	ROM y 0.000 1.010 0.101 1.111
c) Control add/sub using x.	<u>u</u> ₁ 0	ROM v ₂ 10.0101 (-0.1101 - 0.1110)		u ₂ 0	ROM y 00.001 (-0.101 - 1.010)	
$u_1 = x v1$ $u_2 = x v_2$	1	00.000 (-0.1101 + 0	1	$\frac{10.101}{(-0.101 + 1.010)}$		

Tentalösningar ASIC (TSTE81) 970319

3. (7) a) Draw a connectivity graph, find as few cliques as possible => 2 cells are required.

b) Sort and assign => total of 3 cells required.

6. Total latency from input to output is 5 clock cycles.

