1. a) An heuristic algorithm finds solutions to a problem that are usually good enough using a computational complexity which is less than the best optimal solution algorithm.
b) Multiprocessor:

Multicomputer:

c) Sign digit code, residue number systems
d) Top down: The whole system is successively partioned into a hierarchy of subsystems.

Bottom up: Successively assembling well-known building blocks into more complex blocks until the whole system is realized.

Edge in: Partition the system into parts, starting from tine inputs and outputs and working inwards.

Meet in the middle: The specification synthesis process is done top-down, but the actual design of the building blocks is performed in a bottom-up fashion.
2. a)

Tentalösningar ASIC (TSTE81) 970319

b) Operation time longer than sample period $=>$ Schedule period $=2$ sample periods

3. a) $\operatorname{Tmin}=\max \{(3+1+1) / 1,(7+1+1) / 2\}=5$ time units.
b) Homogenous $\Rightarrow>$ only one type of PE. Total computational load: $4+5+3+7+4 * 1=$ 23 time units of work. Sample period $=6$ time units $=>23 / 6=3.8 \leq 4$. The lower limit is 4 processing elements.
4. a)

b) Increase number reanges as needed.

x	v_{1}	ROM v ${ }_{2}$	x	v2	ROM y
0	0	00.0000	0	0	0.000
0	1	00.1110	0	1	1.010
1	0	00.1101	1	0	0.101
1	1	01.1011	1	1	1.111

c) Control add/sub using x .

$$
\begin{aligned}
& \mathrm{u}_{1}=\mathrm{x} \oplus \mathrm{v} 1 \\
& \mathrm{u}_{2}=\mathrm{x} \oplus \mathrm{v}_{2}
\end{aligned}
$$

u_{1}	ROM_{2}
0	10.0101
	$(-0.1101-0.1110)$
1	00.0001
	$(-0.1101+0.1110)$

u_{2}	ROM y
0	00.001
	$(-0.101-1.010)$
1	10.101
	$(-0.101+1.010)$

3. (7) a) Draw a connectivity graph, find as few cliques as possible $=>2$ cells are required.

b) \quad Sort and assign $=>$ total of 3 cells required.

4. $45=5 * 9=(4+1) *(8+1)$.

5. Total latency from input to output is 5 clock cycles.

