Preliminary solutions to exam in TSTE 87 ASIC for DSP 2008-05-31

- 1. a) With saturation: The result is the maximum representable value. Without saturation: The result "wraps" to become negative. (An image is a good way of showing it, see the book.)
 - b) $\frac{N}{2}\log_2 N$
 - c) In a redundant number system a number may have more than one possible representation. Examples: Signed-Digit, Carry-Save $001_{SD}=01\overline{1}_{SD}=1\overline{11}_{SD}$ $01_{S}\ 00_{C}=00_{S}\ 01_{C}$
 - d) Poles may be placed outside the unit circle for recursive algorithms
 Overflow
 Data quantization (non-linear operation)
 - e) Carry lookahead, carry select, conditional sum, parallel prefix. (Carrysave is not really a good answer, but OK because of the book)
- 2. a) State-space representation

$$\begin{bmatrix} v_1(n+1) \\ v_2(n+1) \\ y(n) \end{bmatrix} = \begin{bmatrix} a & b & 1 \\ 1 & 0 & 0 \\ c & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1(n) \\ v_2(n) \\ x(n) \end{bmatrix}$$

Architecture

$v_1(n)$	$v_2(n)$	x(n)	Content	Rational	Binary (two's complement)
0	0	0	0	0	00.0000
0	0	1	1	1	01.0000
0	1	0	b	11/16	00.1011
0	1	1	1+b	27/16	01.1011
1	0	0	a	-3/8	11.1010
1	0	1	1+a	5/8	00.1010
1	1	0	a+b	5/16	00.0101
1	1	1	1+a+b	21/16	01.0101

$v_1(n)$	x(n)	Content	Rational	Binary (two's complement)
0	0	0	0	00.000
0	1	1	1	01.000
1	0	С	-3/8	11.101
1	1	1+c	5/8	00.101

- c) DA determining $v_1(n+1)$: 4 clock cycles DA determining y(n): 3 clock cycles
- d) SR after DA determining v₁(n + 1): 21 D flip-flops
 SR for storing v₂(n + 1): 25 D flip-flops
 SR after DA determining y(n): 22 D flip-flops (required only for synchronized inputs and outputs)

3. a)
$$T_{min} = \max \left\{ \frac{T_{mult} + T_{add}}{1}, \frac{T_{mult} + 3T_{add}}{2} \right\} = 4 \text{ t.u.}$$

b)
$$T_{cp} = T_{mult} + 3T_{add} = 6 \text{ t.u.}$$

c) Introduce naming for (at least) the delay elements

d) Initial schedule

Reschedule (note the critical loop through V_2)

e)

4. a) $45/64 = 0.101101_{2C} = 1.0\overline{1}0\overline{1}01_{CSD}$

b)

S.E

D

D

FA

D

D

Set

Set

Set

Set

- c) 6 clock cycles for both cases (the number of fractional bits of the coefficient)
- 5. a) Construct exclusion graph based on concurrent read and write times. Variables named as the process that produced it.

This gives that $\{b, f, g\}$ should be placed in one memory with either a or e and that $\{c, d\}$ should be placed in another memory with the remaining of a and e.

- b) We here select to use the left-edge algorithm.
 - Sort according to start time

Perform allocation and assignment

c)
$$N_{PE} = \left\lceil \frac{\sum T_{exe}}{T_{schedule}} \right\rceil = \left\lceil \frac{20}{9} \right\rceil = 3$$