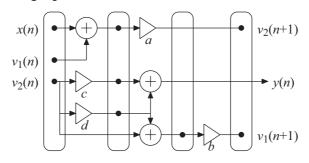
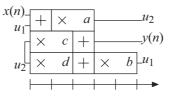

ASIC 2006-03-18

- 1. a) Clustered look-ahead may become unstable. Pole-zero cancellation may become inexact under finite wordlength conditions.
 - b) Two's complement: W/2 CSD: W/3
 - c) Power: V_{DD}^{2} Gate delay: $1/V_{DD}$
 - d) Non-recursive parts can be pipelined (or interleaved)
 - e) Form two positive two's complement numbers a and b, where a has a one for all +1-digits and b has a one for all -1-digits. Subtract b from a using a two's complement subtraction.
- 2. Sort processes according to increasing starting time and decreasing life time:

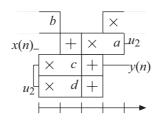
Assign possible processes from start of list


PE 1: f, c PE 2: a, i, h PE 3: g, b PE 4: j PE 5: e PE 6: d

3. a)
$$T_{min} = max \left\{ \frac{T_{mult, a} + T_{mult, b} + 2T_{add}}{2}, \frac{T_{mult, a} + T_{mult, b} + T_{mult, d} + 2T_{add}}{2} \right\}$$

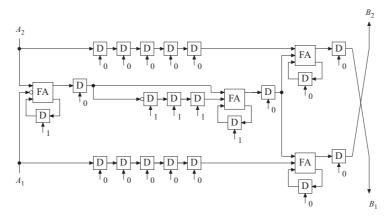

 $= max\{3, 4\} = 4$ time units

b)
$$T_{cp} = T_{mult, b} + T_{mult, d} + T_{add} = 5$$
 time units


c) Precedence graph:

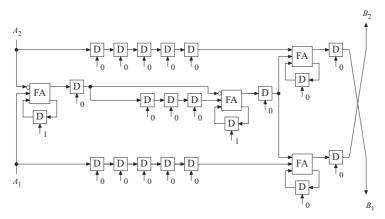
d) Initial computation graph:

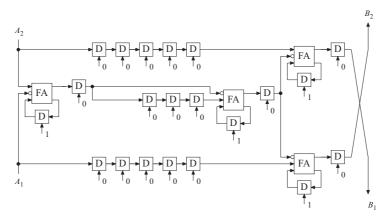
Reschedule:


e) Execution time is one time unit for both types.

Multipliers:
$$\left\lceil \frac{4 \cdot 1}{4} \right\rceil = 1$$
 multiplier
Adders: $\left\lceil \frac{3 \cdot 1}{4} \right\rceil = 1$ adder

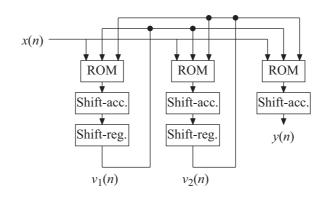
4. a) $-0.875 = \overline{1.001}_{\text{CSD}}$.


- b) Latency: 3 + 1 + 1 + 1 = 6 clock cycles Execution time: 17 + 6 = 23 clock cycles assuming that the flip-flops are set/reset at the same time. With different set/reset the execution time is idnetical to that of the longest PE, i.e., 17 + 4 = 21 clock cycles (which can be reduced to 20 clock cycles if the final flip-flop of the multiplication is not reset).
- c) Yes, four ways (one is enough to get full score): The one contained in the set flip-flop can be distributed among the remaining flip-flops (with less weight 1/2 + 1/4 + 1/8 + 1/8), and, hence, the subtraction can be replaced with an inverter.

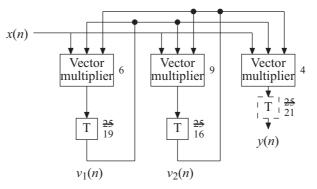

The negation can be performed as a subtraction after the shifts (d flip-flops).

By swapping the inputs to the subtraction of the inputs, the sign of the coefficient can be changed, and, hence, the coefficient changed to $0.875 = 1.00\overline{1}_{\text{CSD}}$, which has a simpler straightforward realization. Compare this with the laborations.

The two additions at the output can be changed to subtractions, and, hence, the sign of the coefficient is changed.



d) Additions: $10^7 \cdot (2 \cdot 7 + 1) = 150$ Madd/s


(Due to bad formulation of the problem $10^7 \cdot (3 \cdot 7 + 1) = 220$ Madd/s will also be an OK answer.)

Multiplications: $10^7 \cdot 1 \cdot 7 = 70$ Mmult/s

5. a)

b) Latency for computing $v_1(n + 1) = 6$ clock cycles. Latency for computing $v_2(n + 1) = 9$ clock cycles. Latency for computing y(n) = 4 clock cycles.

The introduced 21 delays after the y(n) vector multiplier are not required. Two's complement is selected

$v_1(n)$	$v_2(n)$	x(n)	Value	Two's complement
0	0	0	0	00.000000
0	0	1	31/32 = 62/64	00.111110
0	1	0	-9/16 = -36/64	11.011100
0	1	1	-9/16 + 31/32 = 26/64	00.011010
1	0	0	7/64	00.000111
1	0	1	7/64 + 31/32 = 69/64	01.000101
1	1	0	7/64 - 9/16 = -19/64	11.101101
1	1	1	7/64 - 9/16 + 31/32 = 43/64	00.101011

c) Two's complement is selected.