ASIC 2006-03-18

1. a) Clustered look-ahead may become unstable. Pole-zero cancellation may become inexact under finite wordlength conditions.
b) Two's complement: W/2

CSD: W/3
c) Power: $V_{D D}{ }^{2}$

Gate delay: $1 / V_{D D}$
d) Non-recursive parts can be pipelined (or interleaved)
e) Form two positive two's complement numbers a and b, where a has a one for all +1 -digits and b has a one for all-1-digits. Subtract b from a using a two's complement subtraction.
2. Sort processes according to increasing starting time and decreasing life time:

Assign possible processes from start of list

PE 1: f, c
PE 2: a, i, h
PE 3: g, b
PE 4: j
PE 5: e
PE 6: d
3. a) $T_{\min }=\max \left\{\frac{T_{m u l t, a}+T_{m u l t, b}+2 T_{\text {add }}}{2}, \frac{T_{\text {mult }, a}+T_{m u l t, b}+T_{m u l t, d}+2 T_{\text {add }}}{2}\right\}$
$=\max \{3,4\}=4$ time units
b) $\quad T_{c p}=T_{m u l t, b}+T_{m u l t, d}+T_{a d d}=5$ time units
c) Precedence graph:

d) Initial computation graph:

Reschedule:

$$
\begin{aligned}
& \begin{array}{r|r|l|l}
\hline b & & \times \\
\hline
\end{array} x_{1}(n)_{-} \\
& \hline
\end{aligned}+
$$

e) Execution time is one time unit for both types.

Multipliers: $\left\lceil\frac{4 \cdot 1}{4}\right\rceil=1$ multiplier
Adders: $\left\lceil\frac{3 \cdot 1}{4}\right\rceil=1$ adder
4. a) $-0.875=\overline{1} .001_{\mathrm{CSD}}$.

b) Latency: $3+1+1+1=6$ clock cycles

Execution time: $17+6=23$ clock cycles assuming that the flip-flops are set/reset at the same time. With different set/reset the execution time is idnetical to that of the longest PE, i.e., $17+4=21$ clock cycles (which can be reduced to 20 clock cycles if the final flip-flop of the multiplication is not reset).
c) Yes, four ways (one is enough to get full score):

The one contained in the set flip-flop can be distributed among the remaining flip-flops (with less weight $1 / 2+1 / 4+1 / 8+1 / 8$), and, hence, the subtraction can be replaced with an inverter.

The negation can be performed as a subtraction after the shifts (d flipflops).

$$
\rightarrow
$$

By swapping the inputs to the subtraction of the inputs, the sign of the coefficient can be changed, and, hence, the coefficient changed to $0.875=$ $1.00 \overline{1}_{\mathrm{CSD}}$, which has a simpler straightforward realization. Compare this with the laborations.

The two additions at the output can be changed to subtractions, and, hence, the sign of the coefficient is changed.

d) Additions: $10^{7} \cdot(2 \cdot 7+1)=150 \mathrm{Madd} / \mathrm{s}$
(Due to bad formulation of the problem $10^{7} \cdot(3 \cdot 7+1)=220 \mathrm{Madd} / \mathrm{s}$ will also be an OK answer.)
Multiplications: $10^{7} \cdot 1 \cdot 7=70 \mathrm{Mmult} / \mathrm{s}$
5. a)

b) Latency for computing $v_{1}(n+1)=6$ clock cycles.

Latency for computing $v_{2}(n+1)=9$ clock cycles.
Latency for computing $y(n)=4$ clock cycles.

The introduced 21 delays after the $y(n)$ vector multiplier are not required.
c) Two's complement is selected.

$v_{1}(n)$	$v_{2}(n)$	$x(n)$	Value	Two's complement
0	0	0	0	00.000000
0	0	1	$31 / 32=62 / 64$	00.111110
0	1	0	$-9 / 16=-36 / 64$	11.011100
0	1	1	$-9 / 16+31 / 32=26 / 64$	00.011010
1	0	0	$7 / 64$	00.000111
1	0	1	$7 / 64+31 / 32=69 / 64$	01.000101
1	1	0	$7 / 64-9 / 16=-19 / 64$	11.101101
1	1	1	$7 / 64-9 / 16+31 / 32=43 / 64$	00.101011

