Written Examination TSTE87 2015-08-19

1. (a) What is the difference between an iterative and a block processing DSP algorithm? Give an example of each!

Solution:

- (b) Define latency and execution time.
- (c) Name exactly two features that are typically found in general purpose DSP processors, but not in CPUs/microcontrollers.

Solution:

(d) Explain how a minimum signed-digit representation and the canonic signed-digit representation differs from the general signed-digit representation. (2 p)

Solution:

- (e) Name and describe one way to accelerate a carry-propagation adder.
- 2. Consider the memory variable life time diagram in Fig. 1, consisting of variables a to j, which should be mapped to a single memory. The memory can read from and write to the same address in the same cycle.

Figure 1: Life time diagram for Problem 2.

(a) Assign the variables to a minimal number of memory cells.

(6 p)

Solution: Use the left edge algorithm for each memory. Sorted:

(2 p)

(2 p)

(2 p)

(b) How many read and write ports are required for the memory, respectively?

(2 p)

3. Consider the implementation of the seventh-order lattice wave digital filter shown in Fig. 2, which should operate at a sample rate of 80 MHz. This should be implemented using a shared memory architecture and one of two options for processing elements. In option I separate adders/subtracters and multipliers are used, see Fig. 3 for an SFG of the symmetric two-port adaptor used. In option II, a processing element forming a complete symmetric two-port adaptor is used. The processing elements have an exection time of 4 ns, i.e., they can operate at 250 MHz.

Figure 2: Seventh-order lattice wave digital filter for Problem 3.

Figure 3: SFG of symmetric two-port adaptor for use in Problem 3.

(a) Determine the number of processing elements required for options I and II, respectively. The final addition and scaling can in option II be replaced with an adaptor operation. Ignore the scaling for option I.

22 add/sub per sample leading to

$$\left\lceil \frac{22 \times 80 \times 10^6}{250 \times 10^6} \right\rceil = 8 \text{ add/sub PEs}$$

Option II

Eight adaptor operations per sample leading to

$$\left\lceil \frac{8 \times 80 \times 10^6}{250 \times 10^6} \right\rceil = 3 \text{ adaptor PEs}$$

(b) Determine the memory bandwidth (number of reads and writes per second, respectively) for options I and II, respectively. Assume that the input and output do not have to be stored in the memory.

(4 p)

Solution: Option I

Each multiplication leads to one read and one write (coefficients are dealt with separately). Each add/sub leads to two reads and one write.

 $7 + 22 \times 2 - 2 = 49$ reads per sample (-2 as the input goes to two adders)

$$49 \times 80 \times 10^6 = 3.92 \text{ Gread/s}$$

7 + 22 - 1 = 28 writes per sample (-1 as the output does not have to be written)

 $28 \times 80 \times 10^6 = 2.24$ Gwrite/s

Option II Each adaptor leads to two reads and two writes $8 \times 2 - 2 = 14$ reads per sample (-2 as the input goes to two adaptors)

$$14 \times 80 \times 10^6 = 1.12 \text{ Gread/s}$$

 $8 \times 2 - 2 = 14$ writes per sample (-2 as the output does not have to be written plus that the second output of adaptor used for adding and scaling is not use)

$$14 \times 80 \times 10^{6} = 1.12$$
 Gwrite/s

(c) Show that the final addition and scaling can be realized using a symmetric twoport adaptor as shown in Fig. 3.

Solution: The adaptor computes

$$B_1 = -\alpha A_1 + (1+\alpha)A_2$$

$$B_2 = (1 - \alpha)A_1 + \alpha A_2$$

By selecting $\alpha = \frac{1}{2} (\alpha = -\frac{1}{2})$ the expected result $\frac{A_1+A_2}{2}$ is obtained at B_2 (B_1).

4. The digital filter algorithm in Fig. 4 shall be implemented on a shared-memory architecture with homogeneous non-preemptive processing elements. There are two types of processing elements: multipliers and adders. The latency of a multiplier is three clock cycles and the latency of an adder is two clock cycles. Both types of processing elements have an execution time of one clock cycle.

Figure 4: Digital filter for use in Problems 4 and 5.

(a) Determine the minimal sample period, T_{\min} .

Solution:

$$T_{\min} = \max\left\{\frac{T_{\text{add}} + T_{\text{mult}}}{1}, \frac{2T_{\text{add}} + 2T_{\text{mult}}}{2}\right\} = T_{\text{add}} + T_{\text{mult}} = 5 \text{ clock cycles}$$

(b) Determine the critical path, T_{cp} .

Solution:

$$T_{\rm cp} = 2T_{\rm add} + 2T_{\rm mult} = 10$$
 clock cycles

- (c) Determine the precedence graph.
- (d) Schedule the algorithm for $T_s = T_{\min}$ and a reasonably efficient resource utilization. Make sure that you indicate all the connections in the schedule.
- (e) How many processing elements are needed of each type? What are the theoretical limit? Comments?

Solution:

$$N_{\rm PE} = \left\lceil \frac{\sum T_{\rm exe}}{T_s} \right\rceil$$

$$N_{\rm mult} = \left\lceil \frac{4 \times 1}{5} \right\rceil = 1 \text{ multiplier}$$

$$N_{\rm add} = \left\lceil \frac{4 \times 1}{5} \right\rceil = 1 \text{ adder}$$

(2 p)

(8 p)

(2 p)

(6 p)

- (f) Now, assume that the algorithm should be implemented using MAC operations, $x \times y + z$. Apply transformations to the algorithm to result in only MAC operations (four MAC operations are enough).
- (g) With a latency of four clock cycles for the MAC operation, determine the minimal sample period, $T_{\rm min}$

Solution: $T_{\min} = \max\left\{\frac{T_{\text{MAC}}}{1}, \frac{2T_{\text{MAC}}}{2}\right\} = T_{\text{MAC}} = 4 \text{ clock cycles}$

(h) Determine the critical path, T_{cp} , for the MAC-based algorithm.

Solution:

$$T_{\rm cp} = 3T_{\rm MAC} = 12$$
 clock cycles

- 5. The filter in Fig. 4 is now to be implemented using distributed arithmetic. The filter coefficients are $a = \frac{45}{64}$, $b = -\frac{13}{8}$, $c = -\frac{7}{16}$, and $d = \frac{3}{4}$.
 - (a) Perform retiming to reduce the number of distributed arithmetic units (two are enough).
 - (b) Determine the state-space representation of the retimed algorithm.

Solution:	$\left\lceil v_1(n+1) \right\rceil$	0	0	0	1]	$\left\lceil v_1(n) \right\rceil$
	$v_2(n+1)$	0	d	cd	d	$v_2(n)$
	$ v_3(n+1) =$	0	1	0	0	$v_3(n)$
	y(n)	a	1	С	1+b	$\lfloor x(n) \rfloor$

- (c) Draw the resulting architecture using building blocks such as shift-registers, shift-accumulators, and ROMs.
- (d) Determine the ROM contents in a named binary representation.

Solution: Value Two's complement v_3 x v_2 0 0 0 0 00.000000 3 1 0 0 00.110000 $\begin{array}{r} 4\\ -21\\ -64\\ -27\\ -64\\ -31\\ -43\\ -27\\ -27\\ -64\\ -5\\ -64\end{array}$ 0 1 0 11.101011 1 1 0 00.011011 00.110000 0 0 1 1 0 1 01.100000 1 1 0 00.011011 1 1 1 01.001011

(2 p)

(4 p)

(2 p)

(2 p)

(2 p)

(4 p)

(4 p)

v_1	v_2	v_3	x	Value	Two's complement
0	0	0	0	0	00.000000
0	0	0	1	$-\frac{5}{8}$	11.011000
0	0	1	0	$-\frac{7}{16}$	11.100100
0	0	1	1	$-\frac{10}{16}$	10.111100
0	1	0	0	1	01.000000
0	1	0	1	$\frac{3}{8}$	00.011000
0	1	1	0	$\frac{9}{16}$	00.100100
0	1	1	1	$-\frac{1}{16}$	11.111100
1	0	0	0	$\frac{45}{64}$	00.101101
1	0	0	1	$\frac{5}{64}$	00.000101
1	0	1	0	$\frac{17}{64}$	00.010001
1	0	1	1	$-\frac{23}{64}$	00.011011
1	1	0	0	$\frac{109}{64}$	01.101011
1	1	0	1	$\frac{69}{64}$	01.000101
1	1	1	0	$\frac{81}{64}$	01.010001
1	1	1	1	$\frac{41}{64}$	00.101001
				04	

(e) Independent of the distributed arithmetic realization, realize the multiplication of coefficient a using additions, subtractions, and shifts with as few additions/subtractions as possible.

Solution:	$\frac{45}{4}X - \frac{5}{4} \times \frac{9}{4}X \gg 1$
With	$64^{\prime\prime} - 4^{\prime\prime} 8^{\prime\prime} = 1$
	$Y = X + X \gg 3$
	$\frac{45}{64}X = (Y+Y \gg 2) \gg 1$
where \gg denotes right-	shift.