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1. (a) What is the difference between an iterative and a block processing DSP algo-
rithm? Give an example of each! (2 p)

Solution:

(b) Define latency and execution time. (2 p)

(c) Name exactly two features that are typically found in general purpose DSP
processors, but not in CPUs/microcontrollers. (2 p)

Solution:

(d) Explain how a minimum signed-digit representation and the canonic signed-digit
representation differs from the general signed-digit representation. (2 p)

Solution:

(e) Name and describe one way to accelerate a carry-propagation adder. (2 p)

2. Consider the memory variable life time diagram in Fig. 1, consisting of variables a
to j, which should be mapped to a single memory. The memory can read from and
write to the same address in the same cycle.
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Figure 1: Life time diagram for Problem 2.

(a) Assign the variables to a minimal number of memory cells. (6 p)

Solution: Use the left edge algorithm for each memory.
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(b) How many read and write ports are required for the memory, respectively? (2 p)



3. Consider the implementation of the seventh-order lattice wave digital filter shown in
Fig. 2, which should operate at a sample rate of 80 MHz. This should be implemented
using a shared memory architecture and one of two options for processing elements.
In option I separate adders/subtracters and multipliers are used, see Fig. 3 for an
SFG of the symmetric two-port adaptor used. In option II, a processing element
forming a complete symmetric two-port adaptor is used. The processing elements
have an exection time of 4 ns, i.e., they can operate at 250 MHz.

Figure 2: Seventh-order lattice wave digital filter for Problem 3.
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Figure 3: SFG of symmetric two-port adaptor for use in Problem 3.

(a) Determine the number of processing elements required for options I and II,
respectively. The final addition and scaling can in option II be replaced with an
adaptor operation. Ignore the scaling for option I. (4 p)

Solution: Option I

Seven multiplications per sample leading to 7× 80 = 560 Mmult/s.

⌈

7× 80× 106

250× 106

⌉

= 3 multiplier PEs



22 add/sub per sample leading to

⌈

22× 80× 106

250× 106

⌉

= 8 add/sub PEs

Option II

Eight adaptor operations per sample leading to

⌈

8× 80× 106

250× 106

⌉

= 3 adaptor PEs

(b) Determine the memory bandwidth (number of reads and writes per second,
respectively) for options I and II, respectively. Assume that the input and
output do not have to be stored in the memory. (4 p)

Solution: Option I

Each multiplication leads to one read and one write (coefficients are dealt
with separately). Each add/sub leads to two reads and one write.

7 + 22× 2− 2 = 49 reads per sample (−2 as the input goes to two adders)

49× 80× 106 = 3.92 Gread/s

7 + 22 − 1 = 28 writes per sample (−1 as the output does not have to be
written)

28× 80× 106 = 2.24 Gwrite/s

Option II Each adaptor leads to two reads and two writes

8× 2− 2 = 14 reads per sample (−2 as the input goes to two adaptors)

14× 80× 106 = 1.12 Gread/s

8 × 2 − 2 = 14 writes per sample (−2 as the output does not have to be
written plus that the second output of adaptor used for adding and scaling
is not use)

14× 80× 106 = 1.12 Gwrite/s

(c) Show that the final addition and scaling can be realized using a symmetric two-
port adaptor as shown in Fig. 3. (2 p)

Solution: The adaptor computes

B1 = −αA1 + (1 + α)A2

B2 = (1− α)A1 + αA2

By selecting α = 1
2
(α = −

1
2
) the expected result A1+A2

2
is obtained at B2

(B1).



4. The digital filter algorithm in Fig. 4 shall be implemented on a shared-memory archi-
tecture with homogeneous non-preemptive processing elements. There are two types
of processing elements: multipliers and adders. The latency of a multiplier is three
clock cycles and the latency of an adder is two clock cycles. Both types of processing
elements have an execution time of one clock cycle.

Figure 4: Digital filter for use in Problems 4 and 5.

(a) Determine the minimal sample period, Tmin. (2 p)

Solution:

Tmin = max

{

Tadd + Tmult

1
,
2Tadd + 2Tmult

2

}

= Tadd + Tmult = 5 clock cycles

(b) Determine the critical path, Tcp. (2 p)

Solution:

Tcp = 2Tadd + 2Tmult = 10 clock cycles

(c) Determine the precedence graph. (6 p)

(d) Schedule the algorithm for Ts = Tmin and a reasonably efficient resource utiliza-
tion. Make sure that you indicate all the connections in the schedule. (8 p)

(e) How many processing elements are needed of each type? What are the theoret-
ical limit? Comments? (2 p)

Solution:

NPE =

⌈∑

Texe

Ts

⌉

Nmult =

⌈

4× 1

5

⌉

= 1 multiplier

Nadd =

⌈

4× 1

5

⌉

= 1 adder



(f) Now, assume that the algorithm should be implemented using MAC operations,
x × y + z. Apply transformations to the algorithm to result in only MAC
operations (four MAC operations are enough). (4 p)

(g) With a latency of four clock cycles for the MAC operation, determine the mini-
mal sample period, Tmin (2 p)

Solution:

Tmin = max

{

TMAC

1
,
2TMAC

2

}

= TMAC = 4 clock cycles

(h) Determine the critical path, Tcp, for the MAC-based algorithm. (2 p)

Solution:

Tcp = 3TMAC = 12 clock cycles

5. The filter in Fig. 4 is now to be implemented using distributed arithmetic. The filter
coefficients are a = 45

64
, b = −

13
8
, c = −

7
16
, and d = 3

4
.

(a) Perform retiming to reduce the number of distributed arithmetic units (two are
enough). (2 p)

(b) Determine the state-space representation of the retimed algorithm. (2 p)

Solution:
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(c) Draw the resulting architecture using building blocks such as shift-registers,
shift-accumulators, and ROMs. (4 p)

(d) Determine the ROM contents in a named binary representation. (4 p)

Solution:

v2 v3 x Value Two’s complement
0 0 0 0 00.000000
0 0 1 3

4
00.110000

0 1 0 −
21
64

11.101011
0 1 1 27

64
00.011011

1 0 0 3
4

00.110000
1 0 1 3

2
01.100000

1 1 0 27
64

00.011011
1 1 1 75

64
01.001011



v1 v2 v3 x Value Two’s complement
0 0 0 0 0 00.000000
0 0 0 1 −

5
8

11.011000
0 0 1 0 −

7
16

11.100100
0 0 1 1 −

17
16

10.111100
0 1 0 0 1 01.000000
0 1 0 1 3

8
00.011000

0 1 1 0 9
16

00.100100
0 1 1 1 −

1
16

11.111100
1 0 0 0 45

64
00.101101

1 0 0 1 5
64

00.000101
1 0 1 0 17

64
00.010001

1 0 1 1 −
23
64

00.011011
1 1 0 0 109

64
01.101011

1 1 0 1 69
64

01.000101
1 1 1 0 81

64
01.010001

1 1 1 1 41
64

00.101001

(e) Independent of the distributed arithmetic realization, realize the multiplica-
tion of coefficient a using additions, subtractions, and shifts with as few ad-
ditions/subtractions as possible. (2 p)

Solution:
45

64
X =

5

4
×

9

8
X ≫ 1

With
Y = X +X ≫ 3

45

64
X = (Y + Y ≫ 2) ≫ 1

where ≫ denotes right-shift.


