Exam TEN1 in TSTE85 Low Power Electronics

Time:	Monday 13 January 2020, 8:00-12:00	
Place:	TER4	
Responsible teacher:	Mark Vesterbacka, phone 013-281324	
Allowed aid:	Calculator	
Maximum score:	70 points	
Grades:	50 points for 5 40 points for 4 30 points for 3	
Solutions:	Posted on the course web	
Result:	Posted through LADOK by 29 January 2020	

- 1. Explain what a static leakage current in a CMOS circuit is and give two examples of how static leakage currents can be reduced. (4 p)
- 2. Consider an ideal three-input NAND gate with independent and uniformly random inputs (a, b, c). What input probabilities P(a=1)=P(b=1)=P(c=1) would cause the highest transition activity at the output? Motivate your answer. (6 p)
- 3. Lithium-ion batteries are popular in mobile equipment as the energy density is high. In the table in Figure 1 to the right, average voltage and specific capacity are shown for different lithium-ion battery technologies.
 - a) Order the battery technologies with respect to energy density. (4 p)

Material	Voltage	Capacity
LiCoO ₂	3.7 V	140 mAh/g
LiMn ₂ O ₄	4.0 V	100 mAh/g
LiNiO ₂	3.5 V	180 mAh/g
LiFePO ₄	3.3 V	150 mAh/g

Figure 1. Voltage and specific capacity for different battery technologies.

- b) A laptop battery with an average voltage of at least 16 V should be designed. The battery should last for approximately 4 h with an average power consumption of 15 W. Calculate the weights of a battery based on the different technologies above. (4 p)
- 4. A digital CMOS circuit is overdesigned a factor *R* in clock frequency. How much power can be saved utilizing supply voltage scaling? Assume that the propagation delay is proportional to $V_{DD}/(V_{DD}-V_T)$, *R* is 1.5, and original supply voltage is $V_{DD} = 1.5$ V.
 - a) Solve the problem assuming $V_T = 0.40$ V. (5 p)
 - b) Solve the problem assuming $V_T = 0.30$ V. (5 p)
- 5. The circuit in Figure 1 realizes the function $f = a \oplus b \oplus c$ with two XOR gates.

Figure 1. Two cascaded XOR gates.

- a) The propagation time t_d (the time required to drive the output voltage from V_{DD} to $V_{DD}/2$ or from ground to $V_{DD}/2$) for the XOR gates in Figure 1 is 1 ns. Sketch the voltages in node *f* and *x* as functions of time when the inputs $\langle a,b,c \rangle$ changes from $\langle 0,0,0 \rangle$ to $\langle 0,1,1 \rangle$. Consider *a*, *b*, and *c* as ideal. (3 p)
- b) Calculate the dissipated energy due to the two capacitances C_L . (3 p)
- c) A delay of 1 ns is introduced for signal *c* relative to *a* and *b*. Sketch the output voltage and calculate the dissipated energy. (4 p)

- 6. Consider a stepwise charging of a capacitive load that is initially discharged. Two power supply voltages, V_{DD1} and V_{DD2} , are used.
 - a) Derive the dissipated energy when $V_{DD1} < V_{DD2}$ and the steps are long in time. (6 p)
 - b) Derive the optimal ratio between V_{DD1} and V_{DD2} in order to obtain minimal energy dissipation. (6 p)
- 7. The datapath shown in Figure 3 should operate at a frequency of 125 MHz. The critical path is indicated for each component assuming a nominal power supply voltage of 1.5 V. Assume that a block consumes power P_0 at nominal supply voltage, $V_T = 0.33$ V, and r = 2.

Figure 2. Datapath.

- a) Perform power supply voltage scaling of the system and compute the power saving relative the data path operating at nominal power supply voltage. (6 p)
- b) Introduce one level of pipelining in the system and compute the power savings. Neglect power and delay of registers. (4 p)
- 8. A low power wireless system should be active for 1 ms and then go to sleep for 999 ms before repeating the cycle. The transceiver consumes 2 mW in active mode and 200 nW in sleep mode. A sleep timer that consumes the power 10 nW with accuracy 500 ppm is used to control the sleep (1 ppm = 0.0001%).
 - a) Calculate the power consumption of the system if we allow it to skip transmission events due to late wake up. (3 p)
 - b) Calculate the power consumption of the system if we do <u>not</u> allow it to wake up late. (4 p)
 - c) Assume that we redesign the system to use a sleep timer with power 40 nW and accuracy 200 ppm. Recalculate the power consumption of the system if we do <u>not</u> allow it to wake up late.
 (3 p)

TSTE85 FORMULAS

Circuits

Transition activity	$\alpha = \alpha_{01} + \alpha_{10} = 2\alpha_{01} = 2\alpha_{10}$
Switch activity	$a = \sum_{i} \alpha_{01,i} C_{i} / \sum_{i} C_{i}$
Switched capacitance	$C_{sw} = a \sum_{i} C_{i}$
Dynamic power consumption	$P_d = f_{clk} C_{sw} V_{pp} V_{DD}$
Short-circuit power consumption	$P_{sc} = a f_{clk} t_{sc} I_{peak} V_{DD}$
Propagation time	$t_p \propto V_{DD} / \left(V_{DD} - V_T \right)^r, \ 1 \le r \le 2$

MOSFETs

Threshold voltage	$V_{T} = V_{T0} + \gamma \left(\sqrt{\left V_{SB} - 2\Phi_{F} \right } - \sqrt{\left 2\Phi_{F} \right } \right)$
Weak inversion ($V_{GT} < 0$)	$I_{D} = I_{D0} (W/L) e^{- V_{GT} /(n_{s}V_{\Theta})} (1 + \lambda V_{DS})$ where $V_{\Theta} \approx 26 \text{ mV} @ T = 300 \text{ K}$ $n_{s} \text{ can be calculated from } S = n_{s}V_{\Theta} \ln(10)$
Strong inversion ($V_{GT} \ge 0$)	$I_{D} = k' (W/L) V_{min} (V_{GT} - V_{min}/2) (1 + \lambda V_{DS})$ where $V_{min} = \min(V_{GT} , V_{DS} , V_{DSAT}) \text{(corresponding to}$ saturation, resistive, and velocity saturation modes)
Gate-oxide leakage	$I_{G} = k_{1} W (V_{ox} / t_{ox})^{2} e^{-k_{2} t_{ox} / V_{ox}}$

Logic

$\overline{f(x, y, z, \dots, +, \cdot)} = f(\overline{x, y, z}, \dots, \cdot, +)$
$f_{\overline{x}} = f(x, y, z,)\Big _{x=0}, f_x = f(x, y, z,)\Big _{x=1}$
$f(x, y, z, \ldots) = \overline{x} \cdot f_{\overline{x}} + x \cdot f_x = (x + f_{\overline{x}})(\overline{x} + f_x)$
$ODC_x = f_x f_x + \overline{f_x} f_x$

Shannon's expansion theorem

Cofactors

Expansion in sum and product

Observability Don't Care set