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Abstract— We present design-for-low-power techniques for
register-transfer level (RTL) controller/data path circuits. We
analyze the generation and propagation of glitches in both the
control and data path parts of the circuit. In data-flow intensive
designs, glitching power is primarily due to the chaining of
arithmetic functional units. In control-flow intensive designs, on
the other hand, multiplexer networks and registers dominate
the total circuit power consumption, and the control logic can
generate a significant amount of glitches at its outputs, which
in turn propagate through the data path to account for a
large portion of the glitching power in the entire circuit. Our
analysis also highlights the relationship between the propagation
of glitches from control signals and the bit-level correlation
between data signals. Based on the analysis, we develop
techniques that attempt to reduce glitching power consumption
by minimizing propagation of glitches in the RTL circuit.
Our techniques include restructuring multiplexer networks (to
enhance data correlations and eliminate glitchy control signals),
clocking control signals, and inserting selective rising/falling
delays, in order to kill the propagation of glitches from control
as well as data signals. In addition, we present a procedure
to automatically perform the well-known power-reduction
technique of clock gating through an efficient structural
analysis of the RTL circuit, while avoiding the introduction of
glitches on the clock signals. Application of the proposed power
optimization techniques to several RTL circuits shows significant
power savings, with negligible area and delay overheads.

Index Terms—Clock gating, controller/data path, glitch, low-
power design, multiplexer restructuring, power comsumption,
register-transfer level

I. INTRODUCTION

REDUCING power consumption in very large scale inte-
grated (VLSI) circuits has become important for several

reasons. Mobile or portable electronic devices, which already
account for a significant portion of all consumer electronics
sold, are battery-driven. Reducing power consumption in the
various components of such systems prolongs the life of
the batteries, which is highly desirable. Excessive power
consumption also leads to an increase in chip packaging and
cooling costs, which increase the total system cost. Another
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benefit of reduced power consumption is increased reliability
of VLSI circuits. Reducing either average power consumption
or peak power consumption has its own merits. For example,
average power consumption is related to battery life, while
peak power consumption is related to packaging and cooling
costs. In this work, our goal is to minimize average power
consumption.

Most savings in power consumption can be obtained through
a combination of various techniques at different levels of the
design hierarchy. Several design and synthesis techniques have
been proposed for power optimization at the technology [1],
transistor [2], physical design [3], and logic [2] levels of the
design hierarchy. In this work, we concentrate on techniques
to reduce power consumption in RTL circuits. Such circuits
can be either manually generated by designers, or synthesized
from behavioral specifications by behavioral synthesis tools.
On the architectural power estimation front, a method based on
a uniform white noise model of signal statistics was presented
in [4]. A more accurate estimation method based on a dual-
bit-type model was presented in [5] and [6]. The use of
entropy as a measure of average switching activity, and its
use in high-level power estimation was suggested in [7] and
[8]. More recent work on high-level power estimation has
been described in [9] and [10]. Early work in architectural
power optimization was presented in [1] and [11]. In [1],
the use of architectural parallelism was proposed based on
data path replication and pipelining to enable supply volt-
age scaling for power reduction. A methodology that used
a variety of architectural transformations to reduce power
consumption was presented in [11]. In [12], switching activity
metrics were used to reduce power consumption in bit-serial
digital filters. Optimizing memory-dominated computations for
power consumption was addressed in [13] and [14]. Tools for
power estimation and design space exploration at the behavior
level were presented in [15]. In [16], module selection and
pipelining were used to combat the performance degradation
that results from reducing the supply voltage. Methods for
performing allocation and assignment in order to minimize
switching activity and switched capacitance in the data path
were presented in [17]–[20]. Techniques to reduce power
consumption during high-level synthesis based on reducing
activity in functional units were presented in [21]. The use of
limited-weight codes to minimize power consumption in buses
and input–output circuitry was described in [22]. A multiphase
clocking scheme for RTL circuits that reduces activity by
naturally imposing shut-off for inactive parts of the circuit
was proposed in [23]. An optimization tool for average and
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peak power consumption during behavioral synthesis, based on
genetic search, was described in [24]. Techniques for software
power estimation and optimization were presented in [25].

A popular class of power optimization techniques, called
power management [26], is based on the observation that not
all parts of a circuit perform useful computations in any given
clock cycle. Power management techniques at the register-
transfer and behavioral levels have been proposed in [21]
and [27]–[31]. While power management techniques and our
RTL glitch-reduction techniques share the basic motive that
they both try to eliminate unnecessary switching activity, they
significantly differ in the way they achieve power reduction,
when they can be applied. The main difference arises from
the fact that our RTL glitch-reduction techniques do not rely
upon the existence of idle components or parts of the circuit.
Even when all parts of the circuit are used in each clock cycle,
glitching power may be significant and hence our techniques
may be applicable.

The importance of eliminating glitches in the design of digi-
tal VLSI circuits has been recognized for a long time. Avoiding
glitches or hazards is known to be of great importance in
asynchronous circuit design and the design of digital-to-analog
and analog-to-digital converters. Several studies have reported
the importance of considering glitching power during power
estimation and optimization [32], [33]. The extreme sensitivity
of glitching power to process variations has been pointed
out in [32] and [34], where it was shown that the switching
activity and power consumption due to glitches vary much
more with process variations than the other components of
power dissipation. The design of a multiplier with significantly
reduced glitching power consumption was described in [35].
However, very few automated design and synthesis techniques
exist for reducing glitching power consumption in general
circuits. At the architecture and behavior levels, most previous
work on power estimation and optimization ignores the effects
of glitching. In particular, the effect of glitch propagation
across the boundaries of blocks in the architecture has not
been considered. While accurate library modeling approaches
[6] can be used to account for the effect of glitches within
architectural blocks, they typically assume that inputs to these
blocks are glitch-free.

Most previous work at the architecture and behavior levels
has also sought to focus on data-flow intensive designs, where
arithmetic units like adders and multipliers account for most of
the total power consumption. However, our experiments with
control-flow intensive designs reveal that the power consumed
by the functional units constitutes a small fraction of the total
power consumption, while multiplexer networks and registers
can consume a major part of the total power for such designs.

Our experiments also show that a large part of the register
power consumption arises due to transitions on the register’s
clock input. The technique of gating clocks has been used by
designers for a long time to selectively turn off parts of a
system [9], [26]. Methods to automatically detect conditions
under which the clock inputs to all the registers in a design can
be shut off, based on identifying self-loops and unreachable
states in the state transition graph (STG), were presented in
[36] and [37]. However, the techniques in [36] and [37] can

be applied only to the control and random logic parts of a
design for which it is feasible to extract the STG. The focus on
clock gating in this paper is on: 1) techniques to automatically
perform clock gating efficiently using RTL information and
2) avoidance of glitching activity on the clock signals when
clock gating is performed.

In this paper, we present analysis and optimization tech-
niques to reduce glitching power consumption in RTL circuits.
These techniques attempt to reduce glitching power consump-
tion by minimizing propagation of glitches from control as
well as data signals through the RTL circuit. Our techniques
include restructuring multiplexer networks, clocking control
signals, and inserting selective rising/falling delays, in order
to kill the propagation of glitches from control as well as data
signals. The key features of our glitch-reduction techniques
are as follows: 1) they do not rely upon the existence of
idle periods for components in a design, i.e., they are also
applicable to designs with complete or near-complete resource
utilization and 2) they target power consumption in all parts of
the design, including multiplexer networks and registers, not
just functional units.

This paper also contributes to the area of automatic clock
gating insertion at the RTL. While clock gating is known
to be a very effective technique for saving power, one of
the associated design pitfalls it carries is the introduction of
glitches on the clock signal. We present an efficient procedure
to perform RTL clock gating while ensuring that there will be
no glitching on the clock signal. Unlike the techniques in [36]
and [37], which require the STG of the circuit, our technique
derives gating conditions for register clock inputs based on
a structural analysis of the RTL circuit and, hence, can be
applied to the data path registers as well.

The rest of this paper is organized as follows. Section II
illustrates the impact of glitch generation and propagation
through detailed power/activity profiling of an example RTL
circuit, and motivates the glitch-reduction techniques presented
in this paper. Section III analyzes the generation and propa-
gation of glitches in RTL circuits. This analysis leads to an
understanding that forms the basis for our glitch-reduction
techniques that we present in Section IV. Section IV describes
techniques to reduce glitching power consumption in RTL
circuits by minimizing the generation and propagation of
glitches through different blocks of the circuit. For the purpose
of illustration, each technique is considered separately and ex-
plained through examples. Later, a procedure is presented that
automatically applies the various glitch-reduction techniques
to RTL circuits. Section V presents a procedure to automati-
cally apply clock gating at the RTL through efficient structural
analysis, while avoiding the introduction of glitching on the
gated clock signals. Section VI describes the experimental
methodology and design flow used for evaluating the proposed
techniques, and presents results on several RTL circuits.

II. M OTIVATION

We motivate our work through the analysis of an example
RTL circuit shown in Fig. 1, which computes the greatest
common divisor (GCD) of two numbers. The inputs are
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Fig. 1. The RTL architecture of the GCD circuit.

applied at and , and the GCD is written into
register . Since the number of cycles required for
computing the GCD depends on the input values provided,
an additional output signal indicates when the result
is available in . This circuit was derived from a
behavioral description of the GCD algorithm. The high-level
synthesis system SECONDS [38]–[40], was used to perform
resource allocation, scheduling, and assignment to result in
the RTL circuit shown in Fig. 1. The circuit consists of one
functional unit—subtracter, twoequal-to ( ) comparators,
one less-than( ) comparator, registers, multiplexer trees, the
controller finite state machine (FSM), and the decode logic.
The decode logic generates the control signals that configure
the multiplexers in the circuit. We refer to the controller FSM
and the decode logic collectively as the control logic of the
circuit. The logic expressions implemented by the control logic
are also shown in the figure. Literals – represent the
decoded present state lines from the controller. Literals,

, and represent results of the three comparators in the
circuit.

The RTL circuit shown in Fig. 1 was mapped to the NEC
CMOS6 library [41]. An in-house simulation-based power
calculation tool, CSIM [42], was used to measure power
consumption in the various parts of the design. CSIM has
been calibrated with SPICE and benchmarked within 10%
of SPICE. The power and delay models for individual li-
brary cells used in CSIM were constructed using SPICE. It
incorporates several state-of-the-art gate-level power simula-
tion techniques, including state-dependent power modeling,

TABLE I
POWER CONSUMPTION IN VARIOUS PARTS OF THE GCD CIRCUIT

accurate glitch filtering using inertial delay model, etc. It
is currently being used for gate-level sign-off at NEC USA
(Princeton, NJ).

Table I provides the split up of the total power consumption
into separate figures for the functional units (subtracter and
three comparators), random logic (controller FSM and decode
logic blocks), registers (including power consumed due to
clock transitions), and multiplexers. It indicates that most of
the power consumption is in the multiplexers and registers.
Similar figures were observed for several circuits that imple-
mented other control-flow intensive and mixed specifications.

In order to get a feel for the glitching activity in the
GCD circuit, we collected data on the transition activity
with and without glitches in various parts of the design.
The transition activity without (excluding) glitches can be
obtained by simulating the circuit under a zero-delay model.
The simulations were performed using input vectors that were
derived from the test bench for the behavioral specification.
Table II shows the total bit transitions with and without
glitches for all the control signals, and selected data path
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(a) (b)

Fig. 2. Alternate architectures that implement the same function: effect of glitching.

TABLE II
ACTIVITIES WITH/WITHOUT GLITCHING FOR VARIOUS SIGNALS OF THE GCD

signals.1 Control signal feeds the select input of the
multiplexer marked in Fig. 1. Similarly, data path signal

corresponds to the output of the multiplexer marked
in Fig. 1. Clearly, a significant portion of the total transition
activity at several signals in the circuit is due to glitches.
Another interesting observation is that several control signals
in the GCD circuit, like and , are highly
glitchy. We will later analyze the generation of glitches on
control signals, and illustrate that control signal glitches can
have a profound effect on the glitching power consumption in
the rest of the circuit.

The following example illustrates how ignoring glitches can
be misleading and result in designs that are suboptimal in terms
of their power consumption.

1CSIM counts each0 ! 1 or 1 ! 0 transition as half a transition.
Hence, the transition numbers that are reported throughout the paper may
be fractional.

Example 1: Consider the two RTL architectures shown in
Fig. 2(a) and (b). Both architectures implement the simple
function: . ARCHI-

TECTURE 2 uses more resources thanARCHITECTURE 1 since
the former uses two adders as opposed to one adder for the
latter. Based on the number of operations performed, a metric
that is commonly used to estimate power consumption at the
behavior and architecture levels, it seems thatARCHITECTURE

2 would consume more power thanARCHITECTURE 1. This
conclusion is supported by power estimation results which
do not take glitches into account. However, when accurate
power estimation that also considers glitches is performed, it
turns out thatARCHITECTURE 2 actually consumes 17.7% less
power thanARCHITECTURE 1.

The above observation can be explained as follows. As we
shall see in Section III, the comparator generates glitches at
its output though its inputs are glitch-free. In the case of
ARCHITECTURE 1, these glitches then propagate through the
two multiplexers to the inputs of the adder, which causes
a significant increase in glitching activity and hence power
consumption in the two multiplexers and the adder. InAR-

CHITECTURE 2, though the comparator generates glitches as
before, the effect of these glitches is restricted to the single
multiplexer.

III. GLITCH GENERATION AND PROPAGATION

In this section, we analyze the generation and propaga-
tion of glitches in RTL circuits. This analysis leads to an
understanding that forms the basis for our glitch-reduction
techniques that we present in Section IV. For clarity, we
illustrate glitch generation in the data path blocks (functional
units, comparators, and multiplexer trees) and in the control
logic separately.

A. Glitch Generation in Data Path Blocks

This following example illustrates that data path blocks can
generate a significant amount of glitches.
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Fig. 3. Glitch generation in various data path blocks.

Example 2: Consider the elements shown in Fig. 3—a sub-
tracter, an equal-to comparator, a less-than comparator, and
a 3 : 1 multiplexer tree—as representative data path blocks
for studying glitch generation. Note that registers do not
generate glitches at their outputs. Each block was mapped to
the NEC CMOS6 library, and then simulated under long input
sequences that consisted of random vectors. We measured the
total number of bit-transitions (including glitches) at the block
outputs and the number of -delay transitions (i.e., the
number of transitions not counting glitches). The block outputs
in Fig. 3 are annotated with the results, where the numbers
indicate transitions with and without glitches, respectively.
The results clearly indicate significant generation of glitches
in various data path blocks. In the equal-to comparator, no
glitches were generated due to the fact that all its paths are
balanced. However, even in such cases, wiring delays can
disturb the balance of delays and thus cause generation of
glitches.

When data path blocks like those shown in Fig. 3 are
connected together, the glitches generated by the various
blocks propagate through the following blocks, causing in
several situations, as illustrated later, an explosion in glitches
and glitching power consumption. The techniques presented
in this paper attempt to control the propagation and explosion
of glitches by killing most, if not all, of the glitches at various
locations in the circuit.

B. Glitch Generation in the Control Logic

Though the control logic itself accounts for only a small
portion of the total circuit power, it has a significant role in
the total circuit power due to its ability to generate glitches on
the control signals, and the effects of glitchy control signals
on the rest of the circuit. Hence, it is important to study how
the control logic generates glitches, a topic that has not been
addressed in the previous work on power optimization at the
architecture or behavior levels. The inputs to the decode logic
within the control logic are fed by the outputs of comparators
and the state flip-flops (FF’s) of the controller. The outputs
of the control logic include the control signals fed to the data
path. The previous subsection has already demonstrated that
the outputs of comparators can be glitchy. The glitches on the
comparator outputs can propagate through the control logic
and cause glitches on the control signals. The control logic
can also generate a lot of glitches even if its inputs are glitch-
free. The aim of this section is to illustrate and analyze through
examples the generation of glitches in the control logic.

(a) (b)

Fig. 4. (a) Implementation of control signalcontr[2] and (b) generation of
glitches at gateG1.

Example 3: Consider the RTL circuit shown in Fig. 1 once
again. Let us focus on control signal , which is highly
glitchy according to the statistics of Table II. The portion of
the decode logic that implements this control signal is shown
in Fig. 4(a). We observe that though the inputs are largely
glitch-free, significant glitches are generated atAND gates
and . After careful analysis, the generation of glitches was
attributed to two conditions:

C1) A rising transition on signal was frequently accom-
panied by a falling transition on . Thus, the rising
transition on and the falling transition on are
highly correlated.

C2) Transitions on signal arrive earlier than transitions
on signal .

Condition C1 arises due to the functionality of the design:
most of the times when state is entered (rising transition on

), the comparisons evaluated by the comparators feeding
and evaluate to zero, changing from one in the previous
state. On the other hand, condition C2 is a result of the
delay/temporal characteristics of the design. These conditions,
captured graphically in Fig. 4(b), lead to the generation of
glitches at gate , that propagate to control signal .
A similar explanation holds for the output of gate being
glitchy.

Example 4: For this example, we will use a portion of an
RTL circuit that is a preprocessor for a barcode reader. We
shall focus on a particular control signal, , whose
implementation is given in Fig. 5. Signals , ,
and are fed by the FF’s of the controller. Signals
and represent decoded state signals, i.e.,( ) assumes
a logic value of one if and only if the controller is in state
( ), or equivalently, assume the values
011 (100). Signals , , and control signal are
annotated with their transition counts including and excluding
glitches. The figure indicates that the output of gate is
highly glitchy even though glitches do not occur at its inputs.
In order to explain the generation of glitches at gate,
consider the partial state transition graph for the controller that
is shown in Fig. 6(a). The figure indicates a loop involving
states and . This results from awhile loop in the VHDL
behavioral specification. Since this loop is the innermost loop
among all loops in the behavioral description, it is executed
a large number of times. Thus, the state transitions from
to and from to are frequently executed. Fig. 6(b)
shows how the inputs and output of gate vary under
these two state transitions. A transition from to causes
a rising transition on signal , and falling transitions
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Fig. 5. Implementation of control signalcontr[1] in the RTL
circuit.

(a) (b)

Fig. 6. (a) Partial STG for controller and (b) generation of glitches
at gateG5.

on signals and . These transitions in turn
cause rising and falling transitions on signals and ,
respectively. However, the rising transition on arrives later
than the falling transition on , since the delays of inverters

and are reflected in the former, while the delay of
inverter is not reflected in the latter. This results in a
- - static hazard or glitch at the output of gate , as

shown in Fig. 6(b). Similarly, a controller state transition from
to leads to a rising transition on and a falling

transition on such that the former transition arrives later.
This again leads to glitches at the output of gate, as shown
in Fig. 6(b).

In general, glitches are generated at the control signals due
to the simultaneous presence of the following two conditions.

1) Functional: Correlation between rising and falling tran-
sitions at two or more signals that feed a gate.

2) Temporal: The controlling2 to noncontrolling transition
arrives earlier at the gate’s input.

IV. GLITCH REDUCTION TECHNIQUES

In this section, we describe our techniques to reduce glitch-
ing power consumption in RTL circuits by minimizing the
propagation of glitches through different blocks of the circuit.
Several glitch-reduction transformations/techniques suited to
specific scenarios are presented in Sections IV-A and IV-
B. For the sake of illustration, each technique is presented
separately through examples. Section IV-C provides a unifying
procedure that automatically applies all the glitch-reduction
techniques to RTL circuits.

2A controlling value at a gate’s input determines the value at the gate’s
output independent of the values at the other inputs to the gate.

Fig. 7. Effect of data signal correlations on propagation of control signal
glitches: example circuit.

A. Reducing Glitch Propagation from Control Signals

As shown in Sections II and III, significant glitches can
be generated on control signals. We have also seen from
Section II that these glitches can propagate through the other
parts of the circuit, causing significant power dissipation. Our
aim is to stop glitches on control signals as close to their
source as possible in order to reap the maximum benefits in
terms of power savings. We illustrate each of our techniques
separately through examples in this subsection. We integrate
these techniques into a single power optimization framework
in Section IV-C.

1) Glitchy Control Signals and Data Correlations:Consider
the circuit shown in Fig. 7. A multiplexer selects between
two 8-b data signals, and , depending on whether the
expression evaluates totrue or false. The output of
the multiplexer is written into a register. Since we know a
less-than comparator generates glitches at its output, the select
signal of the multiplexer is glitchy. In control-flow intensive
designs, it is often the case that the control signals are late-
arriving and on the critical paths, whereas the data signals are
relatively early arriving (this occurs especially in designs that
contain an abundance of conditional assignment statements).
In such situations, it may be possible to significantly reduce
glitching activity at the output of the multiplexer by exploit-
ing spatial correlations between its data inputs, as explained
next.

The glitches on the select signal of the multiplexer in Fig. 7
propagate to its output. In order to study this propagation,
consider the gate-level implementation of a bit-slice of the
multiplexer that is shown in Fig. 8(a)–(d). The four figures
represent the cases when the relevant bitsand assume
values of , , , and , respectively. In each
figure, the multiplexer output is annotated with the number of
transitions with and without glitches, in accordance with our
usual notation. In the case, glitches on the select signal

are killed at theAND gates and due to controlling
side inputs that arrive early. When the data inputs are ,
glitches on do not propagate through gate , but do
propagate through gates and . A similar explanation
holds when the data inputs are . Finally, when the data
inputs are , glitches on propagate through gates and

. The output of the multiplexer is glitchy as a result of the
interaction of the glitchy signal waveforms at and . The
exact manner in which the waveforms interact depends on the
propagation and inertial delays of the various wires and gates
in the implementation, which are modeled by the simulator that
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(a) (b)

(c) (d)

Fig. 8. Propagation of glitches on a multiplexer select signal for various values of data signals.

Fig. 9. Effect of adding the consensus term on glitch propagation.

we used to obtain estimates of switching activity and power
consumption.

There are many ways of preventing the propagation of
glitches for the case. One way is to insert a buffer, whose
delay is equal to the delay of inverter , at the fanout branch
of that feeds gate . Ideally, the insertion of the buffer
should result in complementary waveforms at the outputs of

and that cancel each other out, i.e., result in a steady
one at the output of the multiplexer. However, this solution
will depend on the exact propagation and inertial delays of
the gates and wires in the circuit. Moreover, slight variations
in circuit parameters due to process variations can invalidate
the effect of path balancing. Another possible solution, that we
consider more robust, is to add an extra gate, as shown in
Fig. 9. realizes which is the consensus of
and , and hence its addition does not change the function
computed by the output. When the data inputs are ,
effectively kills any glitches at the other inputs of that
arrive after the output of settles to a one. For all other
input cases, the output of evaluates to a zero and previous
explanations hold. Simulating the implementation of Fig. 9
validates that glitches on the select signal do not propagate
to the output any more when the data inputs are . For
the circuit of Fig. 7 alone, adding to the multiplexer
implementation results in a 17.5% decrease in total power
consumption.

There is a power overhead incurred in adding the gate based
on the consensus term due to its own power consumption,
and the overhead of having a three-inputOR gate in place
of a two-input OR gate. Thus, this transformation is applied
to multiplexers with glitchy select inputs only when the
arrival time at the data inputs is smaller than the arrival
time at the select signal by a prespecified margin, and when

Fig. 10. Multiplexer restructuring to enhance data correlations: (a) initial
multiplexer network, (b) abstract 3 : 1 multiplexer, and (c) restructured net-
work.

the probability of the data inputs being is above a
prespecified threshold. In Section IV-C, we discuss how to
judiciously choose multiplexers in the design to which we
add consensus terms so that the power savings obtained are
maximized.

Note that with the addition of the consensus term, glitches
will not propagate from the select signal to the multiplexer
output if the data values are correlated ( or ), else
the glitches will propagate to the multiplexer outputs. We next
show how to restructure a multiplexer tree so as to maximize
data correlations and, hence, minimize propagation of glitches
from select signals of multiplexers.

2) Enhancing Data Correlations by Restructuring Multi-
plexer Networks:Consider the 3 : 1 multiplexer network feed-
ing register in the GCD circuit of Fig. 1. The
tree of 2 : 1 multiplexers is shown in Fig. 10(a). Functionally,
the multiplexer tree can be thought of as an abstract 3 : 1
multiplexer, as shown in Fig. 10(b). The conditions under
which , , and are selected are repre-
sented as , , and , respectively. Note that

, , and must be mutually exclusive. The
cumulative switching activities with and without glitches are
shown for various signals in the figure.
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(a) (b) (c)

Fig. 11. Eliminating glitchy control signals: (a) initial multiplexer network,
(b) abstract 3 : 1 multiplexer, and (c) restructured network.

We recall, from our earlier discussions in this section, that
glitch propagation from control signals through a multiplexer
is minimized when its data inputs are highly correlated (as-
suming the addition of the consensus gate to the multiplexer
implementation when necessary). This observation can be used
to reduce glitch propagation from control signals feeding a
multiplexer network by restructuring it, as explained next.

Given the abstract representation of the 3 : 1 multiplexer
network in Fig. 10(b), there are several possible implemen-
tations which enhance correlations of the data inputs to the
multiplexers in the tree. For this example, select signal
is observed to be glitchy, leading to propagation of glitches to
the output of the first 2 : 1 multiplexer in Fig. 10(a). Note that
data signals and are highly correlated at
the bit level. Hence, in order to minimize the propagation of
glitches on through the multiplexer tree, we transform
the multiplexer tree to the implementation shown in Fig. 10(c),
such that the highly correlated data signals and

become inputs to the first 2 : 1 multiplexer. This
significantly lowers the switching activity at the output of
the first 2 : 1 multiplexer to 26/20 from 345/20 originally.
Multiplexer restructuring can also help to eliminate glitchy
select signals as discussed next.

3) Restructuring Multiplexer Networks to Eliminate Glitchy
Select Signals:Consider again the 3 : 1 multiplexer tree and
its representations shown in Fig. 10(a) and (b), respectively.
The implementation in Fig. 10(a) uses only two of the signals
from the set . In general, in order
to implement an abstract : 1 multiplexer with data inputs
and select inputs as a tree of 2 : 1 multiplexers, it can be
shown that anywhere between and of the select
conditions can be used to generate the expressions for the
select signals for the 2 : 1 multiplexers in the implementation,
depending on the exact structure of the implementation. It is
possible that among the set of select signals to an abstract: 1
multiplexer, some carry a lot of glitches in their implementa-
tions while others do not. Similarly, as shown in Example 4 of
Section III, it is possible that certain expressions involving the
select signals of the abstract: 1 multiplexer can be glitchy
even though the individual signals are not. Our aim, therefore,
should be to restructure the multiplexer tree in such a way
that as few of the glitchy select inputs to the abstract: 1
multiplexer (or combinations of select signals that are glitchy)
as possible are used. This concept is illustrated by the next
example.

Consider the 3 : 1 multiplexer network that is shown in
Fig. 11(a). This network is part of the reader RTL

circuit. As illustrated in Example 4 of Section III, the select
signal of the second multiplexer in Fig. 11(a) that implements
the expression is glitchy. An alternative implemen-
tation of the 3 : 1 multiplexer network, that does not require
the use of any glitchy select signal expressions, is shown in
Fig. 11(c).

4) Clocking Control Signals to Kill Glitches:When all the
methods presented so far to reduce the effect of glitches on
control signals do not help, we use the clock signal to kill
glitches on control signals that feed either select inputs of
multiplexers, or function select inputs of arithmetic-logic units
(ALU’s). Let us assume that the design is implemented using
rising-edge-triggered FF’s and a single-phase clock with a duty
cycle of 50%. However, our methods can be extended with
slight modifications to more complex clocking schemes as
well. Our technique is illustrated in Fig. 12(a)–(c). Consider
the 2 : 1 multiplexer shown in Fig. 12(a), that is part of the
RTL circuit implementing the controller for an unmanned auto
vehicle (UAV) [43]. The conditions for selecting and

are and , respectively.
In this case, both and are glitchy due to the
generation of glitches in the less-than comparator that gener-
ates signal . Thus, multiplexer restructuring transformations
that eliminate glitchy control signals cannot be applied here.
Fig. 12(b) shows the modified circuit after clocking the select
signal to the multiplexer. The original select signal isANDed
with the inverted clock. We refer to the output of theAND gate
as the clocked select signal. This ensures that for the first half
of the clock period, when the clock is high, the output of the
AND gate is forced to zero in spite of the glitches on its other
input. Fig. 12(c) shows example waveforms for the clock, the
original select signal, and the clocked select signal. The select
input to the multiplexer in Fig. 12(a) and (b) is annotated with
the activity with and without glitches. The switching activity
numbers in the figure show that clocking the control signal
significantly reduces its glitching activity.

The technique of clocking control signals needs to be
applied judiciously due to the following reasons. By clocking
the control signal, we are preventing it from evaluating to
its final value until time , where is the clock period.
In general, this could lead to an increase in the delay of the
circuit, if the control signal needs to settle to its final value
before in order to meet the specified timing constraints
at the circuit outputs. It is possible to derive a shifted clock
waveform such that the required arrival time of the control
signal being clocked is not violated. However, this involves
exactly matching the required arrival time at the control signal
and the shift imparted to the clock, which is best done after
layout [35]. We apply the technique of clocking control signals
conservatively, i.e., only when the required arrival time at the
control signal is greater than by a specified margin of
safety. Another problem that can be caused by clocking control
signals is that of introducing extra transitions on the control
signal under certain conditions. Consider a situation where the
control signal remains at a steady one over a pair of clock
cycles. By forcing the control signal to zero in the first half
of both the clock cycles, we are actually introducing extra
transitions on the control signal, which can lead to increased
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(a) (b) (c)

Fig. 12. Clocking control signals to kill glitches: (a) initial multiplexer network, (b) multiplexer network with clocked control signal, and (c) sample waveforms.

power consumption. Thus, the scheme presented in Fig. 12(b)
leads to most power savings when the probability of the control
signal evaluating to a one (signal probability) is low. On the
other hand, if the probability of the control signal evaluating
to a one is very high, an alternate scheme can be used to clock
the control signal byORing the original control signal with the
clock. This forces the clocked control signal to a one in the
first half of the clock period, as opposed to zero in the case
of the first scheme, avoiding extra transitions on the clocked
control signal when it evaluates to a one.

B. Minimizing Glitch Propagation from Data Signals

The previous subsection outlined several ways in which the
propagation of glitches from control signals can be reduced
to save power. The data signals to a circuit block can also be
glitchy, as seen in Section III. In this subsection, we present
several techniques to restrict propagation of glitches on data
signals.

1) Glitch-Reduction Using Selective Rising/Falling Delays:
Consider the example circuit shown in Fig. 13(a). A 2 : 1
multiplexer selects between the outputs of two adders, and the
multiplexer’s output is fed to another adder. This is a situation
that occurs commonly in RTL designs that employ data
chaining. As shown in Section III, adders generate glitches
even when their inputs are glitch-free. Thus, the data inputs
to the multiplexer have glitches, which propagate through
the multiplexer and then through the third adder, causing
significant power dissipation. We propose a technique called
selective delay insertionthat can be used to cut down the
propagation of glitches through the circuit, as follows.

Consider the gate-level implementation of a bit-slice of the
multiplexer as shown in Fig. 13(b). Both the data inputs to the
multiplexer are glitchy. Consider a pair of consecutive clock
cycles and such that the select signal to the multiplexer
makes a (falling) transition from to . If the
falling transition at is early arriving, there will be an early
rising transition at the output of gate that implements .
Consequently, the side input of will become noncontrolling
early, allowing the data input glitches to propagate through

. This propagation can be minimized by ensuring that the
side input to remains controlling as long as possible,

Fig. 13. (a) Example circuit, (b) multiplexer bit-slice with selective delays
inserted, and (c) implementation of a rising delay block.

which can be achieved by delaying the rising transition at
the output of ( ). In other words, we would like to add a
“rising transition delay” to the output of ( ). Similarly, to
minimize glitch propagation through gate when there is an
early rising transition at , it is desirable to delay the rising
transition on the fanout branch of that feedsAND gate .
Since we wish to delay selected (either rising or falling, but not
both) transitions at certain signals, we refer to the technique
as selective delay insertion. The selective rising delay blocks
are represented by the shaded ellipses shown in Fig. 13(b). A
possible implementation of a rising delay block, that uses one
AND gate and a delay element, is shown in Fig. 13(c). The
delay element is constructed using either a series of buffers
or inverters added to the input. The implementation uses the
fact that a falling transition at any one input of anAND gate is
sufficient to force the output to zero, while, on the other hand,
the latest arriving rising transition among all the inputs will
trigger a rising transition at the output. Under a simplified
delay model of ns for the delay block and ns for
the AND gate, it can be seen that a rising transition at the
input is delayed by ns, while a falling transition is
delayed by only ns. Since is typically large compared
to , the slight increase in propagation of glitches due to
the additional delay of ns imparted to the falling transition
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is far outweighed by the savings obtained for the case of a
rising transition. A selective falling delay block is similar to
the circuit shown in Fig. 13(c), except that theAND gate is
replaced by anOR gate.

Applying the above technique to the example circuit shown
in Fig. 13(a) results in a 15.4% decrease in overall power
consumption. The following three conditions need to be con-
sidered when inserting selective delays. First, a selective delay
block comes at a price in terms of the power it consumes.
Thus, the expected savings must be large enough to justify
this overhead. Second, inserting a rising delay block leads to
a reduction in the propagation of glitches through a multiplexer
only in the clock cycles in which there is a rising transition
at the delay block’s input. Thus, the probability of a rising
transition at the signal where we desire to insert a selective
rising delay block should be high. Third, to ensure that
inserting the selective delay block does not increase the
delay of the circuit, we insert the delay block only on select
signals that have sufficient slack. Note that for an entire-
b multiplexer, it suffices to have only one selective rising
delay each at the select signal and its complement .
To allow this low-cost solution, we use an -b selector
instead of a multiplexer (a selector implements the function

). The two select signals ( and ) are
generated explicitly outside the selector asand .

2) Effect of Multiplexer Restructuring Transformations on
Glitchy Data Signals:Multiplexer restructuring transforma-
tions can also be used to reduce the propagation of glitches on
data signals. We illustrate this concept using a small portion
of the GCD RTL circuit, which is shown in Fig. 14(a). The
subtracter’s output, , has a lot of glitches which propagate
through the multiplexer shown in the figure, and also through
the logic that is fed by the multiplexer. Let us assume that
signal is glitch-free. Fig. 14(b) shows the equivalent abstract
2 : 1 multiplexer. We utilize the fact that there might be several
instances when the value of the select signal is adon’t care,
i.e., when is not a tautology. In Fig. 14(a), the
zero-input (i.e., ) is selected whenever evaluates to
zero. That includes not just the off-set of , but also the set
of don’t careconditions. In this case, the behavioral synthesis
tool specified the select signal to zero in all thedon’t care
conditions in order to simplify the control logic. We can
utilize the don’t care conditions by selecting the less glitchy
data input of the multiplexer in thedon’t care cases. The
transformed implementation of the 2 : 1 multiplexer that is
shown in Fig. 14(c) illustrates this idea. By having the glitchy
data input as the one-input of the multiplexer, and thus
forcing the select signal to be , we ensure that the glitchy
data input is selected as infrequently as possible, reducing the
propagation of glitches to the multiplexer output.

3) Clocking Control Signals to Kill Data Signal Glitches:
When the techniques presented above to handle glitchy data
signals are not applicable or not adequate to reduce glitch-
ing power consumption, we utilize the concept of clocking
control signals to kill data signal glitches. For example, when
both the select and data inputs to a multiplexer are glitchy
and multiplexer restructuring transformations fail to eliminate
the glitchy select signal, we resort to clocking to solve the

(a) (b) (c)

Fig. 14. Using multiplexer restructuring transformations for glitchy data
signals: (a) initial multiplexer network, (b) abstract 2 : 1 multiplexer, and (c)
restructured network.

(a) (b)

Fig. 15. Clocking control signals to kill data signal glitches: (a) example
circuit and (b) sample waveforms.

problem. As described in the previous subsection, we force
the control signal to take a particular value for the first half of
the clock period. In order to further illustrate this technique,
consider the circuit shown in Fig. 15(a). The subtracter’s
output , which is glitchy, feeds the data input of a 2 : 1
multiplexer. As shown in the figure, this results in significant
glitches at the output of the multiplexer. Clocking select signal

alleviates the problem as explained next. Since the value
on the select signal to the multiplexer is forced to zero for
the first half of the clock period, the multiplexer selects the
value of data input for this duration. Thus, the glitches
on the subtracter’s output are killed at the multiplexer for
approximately the first half of the clock period. For this
example, this leads to a large decrease in the glitching activity
at the multiplexer output, as shown in the figure. Sample
waveforms for the clock, original select signal, and the clocked
select signal are shown in Fig. 15(b). Again, as mentioned
before in this subsection, it is important to consider the
required arrival time at the select signal to the multiplexer
and the extra transitions that can be potentially introduced on
the clocked select signal before applying this technique.

C. Algorithms for Application of RTL
Glitch-Reduction Transformations

The previous two subsections described the various RTL
transformations that we use to minimize the glitching power
consumption in RTL circuits, and the conditions under which
each technique is applicable, with the help of illustrative
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Fig. 16. Glitch-reduction procedure overview.

examples. In this section, we describe a systematic procedure
to apply these transformations in an integrated manner to
an RTL circuit, in conjunction with a switching activity and
delay estimator. We would like to emphasize that the focus
here is not on estimation of switching activity and delay,
but on the integration of the various transformations in a
single framework that is driven by activity/power and delay
estimators. In our framework, we use an in-house logic-level
power simulator, CSIM [42], to provide activity statistics, and
an RTL static timing analysis tool [40] to provide timing
estimates. For the purposes of this subsection, we treat the
activity analysis tool simply as a subroutine that we call in
order to obtain signal statistics, including signal and transition
probabilities, correlations, glitching activities, etc. Similarly,
the timing analysis tool is treated as a subroutine that is called
to obtain arrival and required time information at the signals of
interest. However, in terms of computational efficiency of the
tool implementation, some of the biggest bottlenecks arise due
to the communication and iterative use of these tools. Hence,

for the purpose of obtaining an efficient tool implementation,
it is necessary to carefully instrument the interfaces between
the tools. These integration details are provided in Section VI.

The pseudocode for the top-level procedure that applies the
various glitch-reduction transformations to an RTL circuit is
shown in Fig. 16. The circuit is assumed to consist of an
interconnection of RTL blocks or nodes that could represent
registers, multiplexers, control nodes, or functional units. Note
that functional units could include arithmetic units such as
adders and subtracters, comparators, or vector logic operators.
Since our transformations focus on the reorganization and
modification of multiplexer networks and control logic, the
first step performed is to identify the multiplexer networks and
collapse them into an intermediate form for further processing.

Procedure COLLAPSE_MUX_NETWORKS traverses the RTL
circuit and collapses all multiplexer networks into abstract

: 1 multiplexers, as described in Section IV. The circuit is
levelized by ordering blocks in forward topological order, from
primary input/register output to primary output/register input.
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The activity and delay estimators are first called in order to
compute signal statistics and arrival/required times at selected
signals.

Application of the glitch-reduction techniques to a node in
the RTL circuit affects signal statistics and glitching activities
at all other nodes in its transitive fanout. In order to take the
above dependency into account, we traverse the RTL circuit
in increasing order of levels in order to apply the glitch-
reduction transformations. The netlist update and execution
of the activity/delay estimator is performed in an incremental
manner in order to avoid the high computation time to perform
activity/delay analysis from scratch. Details are provided in
Section VI. At each level in the circuit, we call procedure
GR_TRANSFORM() on each node or component at that level.

Procedure GR_TRANSFORM reduces glitch generation and
propagation at a given node in the RTL circuit. As mentioned
in the earlier sections, our focus is on transforming the
multiplexer and control nodes to reduce power consump-
tion. For multiplexer nodes, we have developed a procedure
to apply all the transformations described in the previous
sections in an integrated manner, which we call procedure
CREATE_MINGLITCH_MUX_TREE_LEVEL. If the given node is
a control node that generates one or more control signals, we
apply the consensus gate insertion and control signal clocking
transformations to reduce glitching activity at the control
signal.

Procedure CREATE_MINGLITCH_MUX_TREE_LEVEL works
as follows. If the current node is an: 1 multiplexer node, pro-
cedure CREATE_MINGLITCH_MUX_TREE_LEVEL decomposes
the : 1 multiplexer by extracting a set of 2 : 1 multiplexers
that constitute one level of the corresponding multiplexer tree
such that glitching activities at the outputs of the created
2 : 1 multiplexers are minimized. In other words, procedure
CREATE_MINGLITCH_MUX_TREE_LEVEL decomposes an ab-
stract : 1 multiplexer into 2 : 1 multiplexers feeding
an : 1 abstract multiplexer. We attempt to minimize the
glitching activity at the output of the various created 2 : 1
multiplexers by first grouping data inputs so as to eliminate
glitchy control signals, maximizing data input correlations, and
using select glitchy data inputs as infrequently as possible.
After that, procedure CREATE_MINGLITCH_MUX_TREE_LEVEL

automatically determines which bit-slices, if any, of each
created 2 : 1 multiplexer to add the consensus term to, which
bit-slices to add selective delays to, and whether to clock the
control signals that feed the select inputs of the created 2 : 1
multiplexers.

The complexity of the RTL glitch-reduction procedure may
be determined as follows. The complexity of collapsing the
multiplexer networks, levelizing the RTL circuit, and travers-
ing it in order to apply the transformations to each component
are all linear in the number of vertices and edges of the
graph representation of the RTL circuit. The complexity of
applying the procedure GR_TRANSFORMat a multiplexer node
is where is the largest number of inputs to an abstract
multiplexer (this is due to the search for the pair of inputs
that results in a new 2 : 1 multiplexer with minimum glitching
activity at its output). The number of times the delay estimator
and activity estimator are called is equal to the number of

levels in the final circuit. This is because all nodes at a level
may be transformed independently using the delay and activity
information obtained from the previous call to the respective
estimators. The RTL delay estimator that we employ is based
on a topological traversal that is linear (in practice) in the
number of components in the RTL circuit, since it uses look-up
table techniques to compute the delay of chained components.
The power simulator that we use to report activity statistics has
a complexity that is linear in the number of events encountered
during the simulation. While there exist pathological cases of
circuits in which a large number of events could be generated,
in practice we have observed from our experiments that its run
time also scales close to linearly with the size of the circuit
being simulated.

The above complexity analysis, however, is of limited value
in our scenario since the constant overheads involved in
intertool communication, creation/updating of interface files,
etc., may dominate the total computation time. We use two
techniques to achieve efficient intertool communication in
our framework—incremental netlist update, and restricting
the analysis tools to only work on the relevant portion of
the circuit. These are described in further detail with the
experimental methodology in Section VI.

V. REDUCING REGISTER POWER CONSUMPTION

BY GATING CLOCK INPUTS TO REGISTERS

We observed in Section II that registers are responsible for
a significant fraction of the total power consumption. A large
part of the register power consumption, in turn, is due to
the transitions on the clock inputs to registers. We present
techniques to automatically perform clock gating efficiently
using RTL information, while avoiding glitching activity on
the clock signals and satisfying timing constraints.

Methods to automatically detect conditions under which the
clocks can be shut off based on identifying self-loops and
unreachable states in the state transition graph were described
in [36] and [37]. The distinguishing features of our work
with respect to the previous technique of gating clocks are
as follows: 1) we identify separate gating conditions for each
register in the circuit, which can lead to greater opportunities
for gating clocks and 2) our procedures, which are based on a
structural analysis of the given RTL circuit, are applicable to
all the registers of a design, including the data path registers.
The techniques presented in [36] and [37] require the STG of
the circuit and hence can be applied only to the control logic
and random logic parts of a design.

The basic technique of gating clocks to registers is illus-
trated in Fig. 17. In the circuit in Fig. 17(a), we note that
the register reloads its previous value when the less-than
comparator’s output is zero. Hence, whenever the comparator
output evaluates to zero, the clock input to the register can
be suppressed from making a transition. For this example, we
assume that the design is based on single-phase rising-edge-
triggered FF’s. Fig. 17(b) shows two candidate schemes to
gate the clock input to the register. We refer to these schemes
asscheme 1andscheme 2, respectively. The rationale behind
scheme 1is that the register clock input would be forced to
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(a) (b) (c)

Fig. 17. Gating clock inputs to registers: (a) example circuit, (b) two candidate schemes implementing gated clocks, and (c) sample waveforms.

a zero whenever the output of the comparator evaluates to
a zero, thus suppressing the unnecessary transitions on the
clock. The reasoning forscheme 2is the same as forscheme
1, except that the register clock input is forced to a one
whenever the comparator’s output evaluates to zero. Thus, an
initial analysis suggests that both the schemes are equivalent.
However, the schemes impose different timing constraints on
the clock gating signal. In order to illustrate why, consider the
sample waveforms shown in Fig. 17(c) for both the schemes.
For scheme 1to work, we require that the comparator’s output
evaluate to zerobefore the clock edge rises,i.e., at . This
is not possible since the new inputs to the comparator are
applied only at , and the comparator obviously requires
a finite nonzero delay before its output is stable. Hence,scheme
1, when implemented exactly as shown in Fig. 17, does not
work when timing considerations are taken into account. On
the other hand,scheme 2will work as long as the gating
condition stabilizes before half the clock period.

Scheme 1of Fig. 17 can be enhanced by inserting a trans-
parent latch at the signal representing the gating condition
beforeANDing it with the clock signal [26]. While this incurs
the overhead of an additional latch, it enables us to apply
clock gating as long as the gating condition settles within
the complete clock period. Thus, in some situations, the
enhancedscheme 1may be more advantageous thanscheme 2.
The techniques presented later in this section to derive time-
constrained clock gating conditions are equally applicable with
both enhancedscheme 1andscheme 2; the only difference is
the timing constraint passed to the procedure. One possible
strategy that can be used to combine the two schemes is to:
a) apply scheme 2when either the gating condition derived
without regard to timing constraints arrives before half the
clock period, or when it is possible to derive a reduced
gating condition (as described later in the section) without
significantly reducing the gating signal probability and b)
apply the enhancedscheme 1in other situations.

In order to gate the clock input to a register, we first need
to compute the set of conditions under which the register
does not need to load a new value. These gating conditions
can be easily obtained during behavioral synthesis if the
design is synthesized from a behavioral description. Lifetime
analysis, that is used during behavioral synthesis for resource

Fig. 18. Deriving clock gating conditions for registers.

sharing, reveals the exact set of conditions under which
each register needs to load a new value. In general, the
gating conditions thus obtained are in the form of expressions
involving the present state of the controller and also the outputs
of comparators that evaluate the various conditions in the
behavioral description.

Alternatively, if only the RTL description of the design is
given, we use the following procedure to derive the gating
conditions. For each register, we analyze the multiplexer
network that feeds it to determine whether the register’s output
is fed back as one of the data inputs to the multiplexer
network. Note that the presence of such a self-loop from a
register’s output back to its data input is typical in manually
designed RTL circuits as well as RTL circuits produced by
high-level synthesis tools. The conditions under which this
self-loop is logically activated are also those under which
the register retains its previous data value. We traverse the
path through the multiplexer network starting at the identified
data input to the multiplexer network and ending at the output
of the multiplexer network that is connected to the input of
the register. We then compute the condition for this path to
be activated, in terms of the select signals connected to the
individual multiplexers along the path. The condition that the
path is activated can be written as theconjunction of the
conditions that each multiplexer along the path selects the
on-path input.

Example 5: Consider the register and multiplexer tree feed-
ing it shown in Fig. 18. Assuming that we are usingscheme 2
shown in Fig. 17, the gating condition for the clock input to
the register is .
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Now consider the general case, where a register in an RTL
circuit has a self-loop passing through2 : 1 multiplexers in a
multiplexer network. Let represent the
conditions under which the multiplexers in the path that forms
the self-loop select the on-path inputs. Note that is either
equal to the control signal that feeds the select input of the
corresponding multiplexer, or its complement, depending on
whether the on-path input is the one-input or zero-input to the
multiplexer. The gating condition for the register clock can
then be written as .

Since the logic to compute the select signals to the various
multiplexers in the multiplexer network is already imple-
mented, we only need to add the logic required to invert the
control signals where necessary, and compute the conjunc-
tion of the individual conditions for each multiplexer in the
path. The above procedure to derive gating conditions does
not guarantee that the required timing constraint (the gating
condition should stabilize within the first half of the clock
period for scheme 2, or within the complete clock period
for enhancedscheme 1) is met. Failure to meet the required
timing constraints can lead to the generation of spurious
transitions on the clock inputs to registers. This not only causes
additional power consumption, but can also cause the registers
to load incorrect values.One possible solution to get around
this problem is to clock the design slower. Alternatively, it
is possible to explore the possibility of changing the duty
cycle of the clock while maintaining the same clock period.
However, these schemes involve either a performance penalty
or a change in the initial clocking scheme, both of which may
often be undesirable.

In order to ensure that the required timing constraints
are met, we augment the above procedure as follows. After
computing the expression for the gating condition as explained
in the previous paragraph, we first check using an initial
implementation whether the arrival time at the gating condition
is less than half the clock period. If this condition is not met,
we derive areducedgating condition which is guaranteed to
satisfy the timing constraint. The expression for the gating
condition is first converted to a sum-of-products Prod.
The high-level delay estimator, FEST [40], is used to deter-
mine the arrival times at the signals representing each product
term. A subset of the product terms Prodis identified such
that the largest arrival time among the product terms plus the
delay of the logic required to compute theOR of the selected
terms is less than half the clock period. We would like to
mention here that heuristic methods to obtain a reduced cover
for the gating condition were presented in [36]. However, the
aim there was to minimize the overhead required to synthesize
the logic implementing the gating condition, while our primary
goal is to eliminate terms that cause the initial expression to
violate the timing constraint.

While our procedures derive a separate gating condition
for each data path register, it is possible to combine the
gating conditions for a group of registers into a single gating
condition that can be used to gate the clock input to all the
registers in the group. The benefit of such merging is that
it is possible to suppress unnecessary transitions in parts of
the clock distribution network as well. However, the clock

Fig. 19. Experimental methodology.

transition to multiple registers can be suppressed only if all
of the individual gating conditions are satisfied. Hence, the
number of transitions suppressed at the clock inputs to some
of the registers, when we use a merged gating condition, may
be less than the number of transitions that could have been
suppressed by using individual gating conditions.

VI. EXPERIMENTAL RESULTS

We present results of the application of the proposed power-
reduction techniques to seven RTL circuits implementing:
GCD, a barcode reader preprocessor ( ) [44], the
controller for an unmanned auto vehicle (UAV) [43], a vending
machine controller ( ) [45], a line-drawing process
that is part of a graphics controller chip [46] ( ),
a transmitter process that implements part of the X.25 com-
munications protocol ( ) [38], and a circuit that computes
the dot product of two vectors ( ). All the circuits
except the last one are control-flow intensive designs, whose
behavioral descriptions contain nested data-dependent loops
and conditionals. The last circuit ( ) is a data-flow
intensive design, and has been included to demonstrate the
applicability of our glitch-reduction techniques to such designs
as well. The gate-level implementations of these circuits range
in size from around 550 gates to around 2000 gates, and
contain between 28 and 85 FF’s.

The design flow used for our experiments is shown in
Fig. 19. The initial RTL circuits were obtained by synthesizing
VHDL behavioral descriptions using the SECONDS high-level
synthesis system [38]–[40]. The high-level synthesis system
optimizes performance (average or expected number of clock
cycles) during scheduling as well as the clock period during
resource sharing. Thus, all the RTL circuits that were syn-
thesized can be considered to be optimized for performance.
Moreover, we did not allow our power optimization tool any
slack over the minimum clock period that the initial RTL
circuit could satisfy. With looser performance specifications,
we believe that the power savings attained by our glitch-
reduction transformations could be higher, since we would be
able to apply transformations to larger parts of the circuit.3

3However, it should be mentioned that since most of our techniques are
quite low-overhead, and add only a minimal amount of circuitry, applying
our RTL glitch-reduction techniques even with an unconstrained clock period
would not increase the clock period of the original circuit very significantly.
Conversely, even if a large slack in the clock period is available, only a
small part of it is utilized for powerversusperformance tradeoffs using our
glitch-reduction techniques. Thus, other power optimization techniques, such
as supply voltage scaling or gate sizing, can also be used to exploit power
versusperformance tradeoffs in such cases.
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Fig. 20. The resulting circuit after the application of our power optimization techniques.

The RTL circuits were mapped to the NEC CMOS6 [41]
library, and the mapped gate-level netlists were simulated
using CSIM [42] to determine glitching activity and signal
statistics of various signals in the circuit. As mentioned
earlier, the CSIM power estimator incorporates several state-
of-the-art gate-level power simulation techniques, including
state-dependent power modeling, accurate glitch filtering using
inertial delay model, etc. The simulation results are passed
back to our RTL power optimizer that transforms the initial
RTL design to reduce the generation and propagation of
glitches. As mentioned in Section IV-C, the application of
glitch-reducing transformations can impact glitching activities
and signal statistics in a global manner. It is necessary to
incrementally recompute the information used to drive the
transformations in order to ensure maximal power savings.
Hence, we apply our glitch-reduction transformations to all
RTL nodes at one level in the RTL circuit, incrementally
modify the technology-mapped netlist to reflect the transfor-
mations, and recompute glitching activities and signal statistics
for guiding the application of glitch-reduction transformations
to RTL nodes at other levels. Both the original and the
optimized RTL circuits were evaluated for area and delay using
NEC’s VARCHSYN synthesis system [47], and for power
consumption using CSIM.

The vectors used for simulation were obtained as follows.
For each design, we used the behavioral test bench for the

design to simulate the scheduled behavioral description using
the VHDL simulator, VSIM [48], and obtain a cycle-by-cycle
input vector trace. The above step is especially important
for control-flow intensive designs where, unlike data-flow
intensive specifications, the number of clock cycles required
to perform the computation varies depending on the input
values. The cycle-by-cycle input vector trace was used both
for collecting information about glitching activity and signal
statistics and for evaluating the initial and optimized designs
for power consumption.

Example 6: Before proceeding to provide the quantitative
results of our experiments, we would like to illustrate the effect
of our power optimization techniques on the GCD RTL circuit.
The final GCD RTL circuit that results from the application
of our tool is shown in Fig. 20.

The multiplexer trees consisting of multiplexers {[3], [4]},
and {[5], [6], [7]} were restructured to reduce glitch propaga-
tion from the data signal (the subtracter’s output) and from
control signal , and the control signals feeding them
were redesigned as necessary. Multiplexers [3] and [4] were
modified by inserting selective delay gates to minimize glitch
propagation from their control signals. Control signal
was clocked in order to further reduce glitch propagation
from (the subtracter output). Finally, the clock inputs to
registers , , and were gated. It was found
that the exact clocking condition for register violated the
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TABLE III
EXPERIMENTAL RESULTS

timing constraint. In addition, the reduced gating condition that
satisfied the timing constraint derived by our tool was found
to have a very low probability, hence the tool decided not to
gate the clock input to register .

Table III reports the quantitative results of our experiments.
The power consumption, area (# of transistor pairs), and delay
of the original circuits are reported under columnOriginal. The
corresponding numbers for the optimized circuits (obtained
after applying the glitch-reduction techniques presented in
this paper) are reported under columnOptimized. The column
Power Redprovides the percentage power-reduction obtained
through the application of the techniques proposed in this
paper. The CPU times required by our tool are presented
under column CPU. The CPU times presented indicate the
time taken to perform the glitch-optimizing transformations
after the initial RTL synthesis has been completed (i.e., the
CPU time required to perform the tasks corresponding to the
shaded region in Fig. 19).

The results indicate that the proposed glitch-reduction trans-
formations can significantly reduce power consumption of
RTL designs (up to 30.06% and 22.54% on the average).
Note that our glitch-reduction techniques target power reduc-
tion solely by reducing the propagation of glitches between
various blocks in the RTL circuit. Thus, our techniques can be
combined with other power-reduction techniques that attempt
to suppress transitions that do not correspond to glitches, or
techniques that optimize power by also changing the physical
capacitance. For the example circuits considered in our ex-
periments, the most common glitch-reduction transformation
applied was multiplexer restructuring, followed by selective
delay insertion, and then clocking of control signals. Clock
gating was applicable to all the example circuits considered.
Another point worth mentioning is that while our glitch-
reduction techniques are applicable to control-flow intensive as
well as data-flow intensive designs, there is a subtle difference
in the source of power savings. In control-flow intensive
designs, control signals are often late arriving and glitchy, in
addition to data signals. Hence, the transformations that reduce
glitch propagation from control signals are extensively applica-
ble. In data-flow intensive designs, most of the glitching power
is due to data chaining, hence the most commonly employed
transformations are those that reduce glitch propagation from
data signals (Section IV-B).

In some cases, the area or delay of the circuit after applying
our techniques is slightly lower than the original circuit, while

in other cases there are minor area and/or delay overheads.
Upon analysis of these variations, we found that they could
be attributed to the fact that multiplexer restructuring trans-
formations can lead to a modification of the control logic,
which can result in area and delay fluctuations due to logic
synthesis optimizations. At the RTL, the control logic is
represented as a set of Boolean expressions. As mentioned
in the description of the algorithm (Section IV-C), our tool
uses a static RTL delay estimator [40] to check whether the
delay of the circuit is within the given clock period constraint.
The delay estimator works with the Boolean expressions for
the control logic, assuming a straightforward implementa-
tion. However, the control logic is typically modified during
the logic synthesis process (due to optimizations such as
factorization, technology mapping, etc.). Thus, although the
RTL estimator may tell the glitch-reduction procedure that
a given transformation does not affect the circuit delay, the
changes in the control logic, which lead to variations in scope
for logic synthesis, could result in minor delay variations
in the gate-level netlist. Sometimes, the changes to control
logic introduced by restructuring multiplexer trees actually
improve the post-logic-synthesis area and delay, while for
other examples it increases area and/or delay. However, as
can be seen from Table III, the area and delay overheads, when
incurred by our power-reduction techniques, are nominal, and
do not show any consistent trend (positive or negative) in our
experience.

The total CPU times required for the examples shown in
Table III varied from 427–1128 s on a SPARCstation 20 with
128 Mbytes main memory. In order to efficiently realize the
flow of Fig. 19, we exploited the incremental nature of the
circuit modifications performed by the proposed techniques to
perform incremental technology mapping and netlist update.
As mentioned in Section IV-C, the run-time of our tool
is dominated by the requirement to perform activity/power
estimation at the gate-level. We had to do this only due to
the lack of availability of a sufficiently accurate RTL glitching
activity/power estimator. For the purposes of comparison, the
time required to run a typical optimizing logic synthesis script
on the initial RTL circuits varied from 185–1181 s. We believe
that the CPU times can be significantly reduced through the
use of efficient RTL power estimators [9], [10] to drive the
power-reduction techniques presented in this paper.
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VII. CONCLUSIONS

We presented several techniques to reduce power consump-
tion in RTL designs. The key features of our techniques are
as follows: 1) we focus on power consumption due to the
propagation of glitches across the various blocks in the circuit
and 2) we target power consumed by not just functional
units, but also multiplexers and registers in the design, which
may consume a major part of the total power in control-
flow intensive designs. Our glitch-reduction techniques are
based on an analysis of generation and propagation of glitches
in RTL circuits. Based on the observation that registers can
consume a significant part of the total power and most of
the register power is in turn caused by transitions on the
clock input, we gate clock inputs to registers with conditions
derived by an analysis of the RTL circuit, ensuring that
glitches are not introduced on the clock signals. Experimental
results demonstrate the efficacy of the proposed techniques in
providing significant power reductions with nominal area and
delay overheads.
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