TSTE19 Power Electronics

Lecture 13 Tomas Jonsson ISY/EKS

Outline

- Diagnostic Test
- Resonant load converters
- Exercises

Hard switching waveform

- Stray inductance gives voltage overshoot
- Stray capacitance gives current overshoot
- Parasitics limits di/dt and dv/dt
- $P_{T_{-}} = V_{T_{-}} i_{T_{-}}$

Comparison hard vs soft switching

- Small power loss with zero-voltage/zerocurrent switching
 - Avoid dissipative snubber circuit

Classification of resonant converters

- Converter topology and switching strategies
 - Load-resonant converters
 - Resonant switch converters
 - Resonant dc link converters
 - High frequency link integral half cycle converters

Load-resonant converter

- LC resonant circuit
 - Oscillating voltage and current applied to load
 - Switching done when V = 0 or I = 0
- Either serial or parallel resonant circuits
- Power flow controlled by resonant tank impedance
 - Impedance controlled by switching frequency vs resonant frequency
- Switching either on zero voltage or zero current

Undamped series-resonant circuit

- Initial conditions I_{10} and V_{c0}
- Resonant frequency, ω_0
- Characteristic impedance, Z_0

$$i_L(t) = I_{L0} \cos \omega_0 (t - t_0) + \frac{V_d - V_{c0}}{Z_0} \sin \omega_0 (t - t_0) \qquad \qquad \omega_0 = 2\pi f_0 = \frac{1}{2}$$

$$(t) = V_{10} - (V_{10} - V_{10}) \cos (t - t_0) + Z_0 I_0 \sin \omega_0 (t - t_0)$$

 $v_c(t) = v_d - (v_d - v_{c0}) \mathbf{COS}\omega_0(t)$ $-\iota_0$ + $L_0 I_{L0}$ Sin $\omega_0(\iota$ ι_0

 $L_r \frac{di_L}{dt} + v_c = V_d$ $C_r \frac{dv_c}{dt} = i_L$

Impedance of series-resonant circuit

Quality factor

$$Q = \frac{\omega_0 L_r}{R} = \frac{\mathbf{1}}{\omega_0 C_r R} = \frac{Z_0}{R}$$

- Capacitive impedance at $\omega < \omega_0$
- Resistive at $\omega = \omega_0$
- Inductive impedance at $\omega > \omega_0$

8

Series loaded resonant (SLR) dc-dc converter

 Transformer as L_r, could be used to give other output voltage and electrical isolation

SLR converter waveforms $\omega < \omega_0/2$

TSTE19/Tomas Jonsson

SLR waveform $\omega_0/2 < \omega < \omega_0$

SLR Converter characteristics

Discontinuous-conduction

2015-12-15 13

SLR Converter control

- Switch frequency controls output voltage
- EMI filter complicated due to varying f_s
- Modified control possible for full-bridge
 - Frequency not separately controlled, restricts load
- May use structure for other applications without rectifier
 - Induction heating (stove)

Comparison SLR vs PLR

- PLR behave as a voltage source
 - Better suited for multiple outlets
- PLR missing inherent short-circuit protection capability
- PLR converter can step up as well as step down
 - SLR only step down
 - Ignoring possible transformers
- PLR operates in many combinations of i_L and v_C states
 - SLR only have three modes

Lecture 13

Exercises

9-1

The SLR dc-dc converter of Fig. 9-IOa is operating in a discontinuous-conduction mode with $w_s < 0.5 w_0$. In the waveforms of Fig. 9-11 (with $t_o=0$), the initial conditions in terms of normalized quantities are always as follows:

•
$$V_{c0} = -2V_o \text{ and } I_{Lo} = 0.$$

Show that in terms of normalized quantities,

•
$$V_{c,peak} = 2$$
 and $I_{L,peak} = 1 + V_o$

9-2

Design an SLR dc-dc converter of Fig. 9-IOa with an isolation transformer of turns-ratio n: 1, where $V_d = 155$ V, and the operating frequency $f_s = 100$ kHz. The output is at 5 V and 20 A.

a) The foregoing converter is to operate in a discontinuous-conduction mode with $w_s < 0.5 w_o$. The normalized output voltage V_o is chosen to be 0.9 and the normalized frequency to be 0.45. Using the curves of Fig. 9-15, obtain turns ratio n, L_r , and C_r .

