TSTE18 Digital Arithmetic Seminar 5

Oscar Gustafsson

Squaring

▶ Squaring an unsigned binary number *X* can be written as

$$Z = X^{2} = XX = \sum_{i=-L}^{M-1} x_{i} 2^{i} \sum_{j=-L}^{M-1} x_{j} 2^{j} = \sum_{i=-L}^{M-1} \sum_{j=-L}^{M-1} x_{i} x_{j} 2^{i+j}$$

► Consider a six-bit squarer

					<i>X</i> 5	<i>X</i> ₄	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
				×	<i>X</i> 5	<i>X</i> ₄	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
					<i>x</i> ₀ <i>x</i> ₅	<i>X</i> ₀ <i>X</i> ₄	<i>x</i> ₀ <i>x</i> ₃	x_0x_2	x_0x_1	x_0x_0
				x_1x_5	x_1x_4	x_1x_3	x_1x_2	x_1x_1	x_1x_0	
			<i>x</i> ₂ <i>x</i> ₅	x_2x_4	x_2x_3	x_2x_2	x_2x_1	x_2x_0		
		<i>X</i> 3 <i>X</i> 5	<i>X</i> 3 <i>X</i> 4	<i>X</i> 3 <i>X</i> 3	<i>x</i> ₃ <i>x</i> ₂	x_3x_1	<i>x</i> ₃ <i>x</i> ₀			
	<i>X</i> ₄ <i>X</i> ₅	X_4X_4	<i>X</i> ₄ <i>X</i> ₃	x_4x_2	x_4x_1	x_4x_0				
<i>X</i> 5 <i>X</i> 5	<i>X</i> 5 <i>X</i> 4	<i>x</i> 5 <i>x</i> 3	x_5x_2	x_5x_1	x_5x_0					

lackbox Every partial product with $i \neq j$ appears twice in the same column

Multiplication

- ▶ Partial product generation
- ▶ Partial product accumulation
- ► Final adder
- Squarers
- ► Fast multiplication
- ► Constant multiplication

Squaring

▶ Use this to simplify the partial product array

					<i>X</i> 5	<i>X</i> ₄	<i>X</i> 3	x_2	x_1	<i>x</i> ₀
				×	<i>X</i> 5	<i>X</i> ₄	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
X4X5	<i>X</i> 3 <i>X</i> 5	<i>X</i> ₂ <i>X</i> ₅	<i>x</i> ₁ <i>x</i> ₅	<i>x</i> ₀ <i>x</i> ₅	<i>x</i> ₀ <i>x</i> ₄	<i>x</i> ₀ <i>x</i> ₃	x_0x_2	x_0x_1		<i>x</i> ₀
<i>X</i> 5		<i>X</i> 3 <i>X</i> 4	x_2x_4	x_1x_4	x_1x_3	x_1x_2		x_1		
		<i>X</i> 4		<i>X</i> ₂ <i>X</i> ₃		<i>x</i> ₂				
				<i>X</i> 3						

- ▶ This is called a folded squarer
- ► Approximately half of the partial products compared to a general multiplier
- ▶ Middle column contains most partial products

_

Squaring

- ▶ Note that x_3 and x_2x_3 are in the same column
- ▶ The value of this expression will be

<i>X</i> 3	<i>x</i> ₂	Value	Bir	nary
0	0	0	0	0
0	1	0	0	0
1	0	1	0	1
1	1	2	1	0

▶ Replace with x_2x_3 in the next higher column and $\overline{x_2}x_3$ in the same column

					<i>X</i> 5	<i>X</i> 4	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
				×	<i>X</i> 5	<i>X</i> ₄	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
X4X5	<i>X</i> 3 <i>X</i> 5	<i>X</i> 2 <i>X</i> 5	<i>x</i> ₁ <i>x</i> ₅	<i>x</i> ₀ <i>x</i> ₅	<i>x</i> ₀ <i>x</i> ₄	<i>x</i> ₀ <i>x</i> ₃	x_0x_2	$\overline{x_0}x_1$		<i>x</i> ₀
<i>X</i> 5	<i>X</i> 3 <i>X</i> 4	$\overline{x_3}x_4$	x_2x_4	x_1x_4	x_1x_3	$\overline{x_1}x_2$	x_0x_1			
			<i>X</i> 2 <i>X</i> 3	$\overline{x_2}x_3$	x_1x_2					

Squaring

▶ Rewrite in a similar way and include the 1

_	<i>X</i> 3	<i>x</i> ₂	Value	Binary		
	0	0	1	0	1	
	0	1	1	0	1	
	1	0	2	1	0	
	1	1	3	1	1	

▶ Now, place x_3 in the next higher column and $x_2 + \overline{x_3}$ in the same

						$-x_5$	<i>X</i> 4	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
					×	$-x_5$	<i>X</i> ₄	<i>X</i> 3	<i>x</i> ₂	x_1	x_0
1	X4X5	X3X5	X ₂ X ₅	X ₁ X ₅	X 0X5	<i>x</i> ₀ <i>x</i> ₄	<i>x</i> ₀ <i>x</i> ₃	x_0x_2	x_0x_1		<i>x</i> ₀
	<i>X</i> 5	<i>X</i> 3 <i>X</i> 4	$\overline{x_3}x_4$	x_2x_4	x_1x_4	x_1x_3	x_1x_2		x_1		
				<i>x</i> ₃	$x_2 + \overline{x_3}$		<i>x</i> ₂				

► Several other approaches to merge a number of partial products before accumulating them has been proposed

Squaring

- ► Can also use signed representations
- ► Two's complement representation with modified Baugh-Wooley

						$-x_5$	<i>X</i> ₄	<i>X</i> 3	x_2	x_1	x_0
					×	$-x_5$	<i>X</i> 4	<i>X</i> 3	<i>x</i> ₂	x_1	<i>x</i> ₀
1	X ₄ X ₅	X3X5	<i>X</i> ₂ <i>X</i> ₅	<i>X</i> ₁ <i>X</i> ₅	<i>x</i> ₀ <i>x</i> ₅	<i>x</i> ₀ <i>x</i> ₄	<i>x</i> ₀ <i>x</i> ₃	x_0x_2	x_0x_1		<i>x</i> ₀
	<i>X</i> 5		<i>X</i> 3 <i>X</i> 4	<i>X</i> 2 <i>X</i> 4	x_1x_4	x_1x_3	x_1x_2		x_1		
			<i>X</i> ₄		x_2x_3		x_2				
					<i>X</i> 3						
					1						

▶ Even more partial products in the middle column

Multiplication through squaring

▶ It is possible to multiply through squaring

$$(a+b)^2 = a^2 + 2ab + b^2 \Rightarrow ab = \frac{(a+b)^2 - a^2 - b^2}{2}$$
 (1)

- ▶ More suitable for table-based implementation than logic-based
- \triangleright For a table-base realization assuming input wordlength N

Multip	olier-based	Squarer-based			
Table	Table size	Table	Table size		
ab	2^{2N}	$(a + b)^2$	2^{N+1}		
		a^2	2 ^N		
		b^2	2 ^N		
Total	2^{2N}	Total	2^{N+2}		

Additional cost is one addition and two subtractions

Multiplication through squaring

Alternatively

$$(a+b)^2 - (a-b)^2 = 4ab \Rightarrow ab = \frac{(a+b)^2 - (a-b)^2}{4}$$
 (2)

ightharpoonup For a table-base realization assuming input wordlength N

Multip	olier-based	Squarer-based			
Table	Table size	Table	Table size		
ab	2^{2N}	$(a + b)^2$	2^{N+1}		
		$(a-b)^2$	2^{N+1}		
Total	2^{2N}	Total	2^{N+2}		

▶ Additional cost is one addition and two subtractions

Fast multiplication

- Let the result of the multiplication be $(A_0 + A_1X)(B_0 + B_1X) = C_0 + C_1X + C_2X^2$
- ► The unisolvence theorem states that an *N*-term polynomial is uniquely defined by its values in *N* points
- Evaluate the polynomial in three points, e.g., $X = \{0, 1, \infty\}$

$$A_0B_0 = C_0$$

 $(A_0 + A_1)(B_0 + B_1) = C_0 + C_1 + C_2$
 $A_1B_1 = C_2$

Or on matrix form

$$\begin{bmatrix} B_0 & 0 & 0 \\ 0 & B_0 + B_1 & 0 \\ 0 & 0 & B_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ C_2 \end{bmatrix}$$

Fast multiplication

- ▶ Consider a polynomial multiplication $(A_0 + A_1X)(B_0 + B_1X)$
- ► (Motivation: $X = j \Rightarrow$ complex multiplication, $X = 2^{\frac{W}{2}} \Rightarrow$ long multiplication)
- Normally, four multiplications are required: A_0B_0 , A_0B_1 , A_1B_0 , and A_1B_1
- ► However, three are enough

Fast multiplication

▶ The result of the polynomial multiplication is C_0 , C_1 , and C_2 , so solve for those:

$$\begin{bmatrix} C_0 \\ C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} B_0 & 0 & 0 \\ 0 & B_0 + B_1 & 0 \\ 0 & 0 & B_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} B_0 & 0 & 0 \\ 0 & B_0 + B_1 & 0 \\ 0 & 0 & B_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \end{bmatrix}$$

► So

$$C_0 = A_0 B_0$$

 $C_2 = A_1 B_1$
 $C_1 = (A_0 + A_1) (B_0 + B_1) - C_0 - C_2$

Fast multiplication

- ▶ Higher-order polynomials can be used
- ► Karatsuba, Cook-Toom, Gauss, ...
- ▶ Evaluating in different points gives different equations
- ► Evaluating on the unit circle ⇒ DFT/FFT
 - ► Efficient for high-order polynomials
 - ► Main complexity in matrix operations rather than multiplications
- ► Applications in FIR filters

Multiplication by a constant

▶ Each partial product row is either the input data or zero

$$Z = XY = Y \sum_{i=1}^{W} x_i 2^{-i} = \sum_{i=1}^{W} Y x_i 2^{-i}$$
 (3)

- ▶ To add W words, W-1 adders are required
- If the coefficient X is known beforehand it is not required to use W-1 adders
- ightharpoonup Example: X = 231

Fast multiplication

- ▶ Fewer multiplications but more additions/subtractions
- ▶ Effectiveness determined based on relative cost
- ► Figures from GNU Multiple Precision (GMP) Library

Number of words required to use algorithm for long multiplication

Algorithm	ARM A15	Core 2	Core i7
2×2	23	23	26
3×3	90	65	89
4×4	262	179	214
7×6	351	268	327
9×8	557	357	466
FFT	5760	4736	6784

Multiplication by a constant

- ▶ Is there a way to find a representation with fewer non-zero positions?
- ► MSD/CSD is a good choice here

- ▶ No major difference between adders and subtracters
- ► Coefficients are not explicitly represented in CSD, the CSD representation rather determines the structure
- ► Minimum number of non-zero digits equal to minimum number of adders?

1

Multiplication by a constant

- ► No!
- Rewrite as

- ▶ The two first subtracters compute the same result
- ▶ Better only do it once

Multiplication by a constant

▶ In fact transposing gives the direct form FIR filter

- ➤ The problem of multiplying a single input data with several constant coefficients is known as multiple constant multiplication (MCM)
- ► Efficient technique to realize constant multiplications using as few adders and subtracters as possible
- ► Can easily be generalized to linear transforms as well (matrix-vector multiplications)

Multiplication by a constant

► A careful inspection gives that we have a free multiplication by 7

- ► Can this be useful?
- ► Transposed direct form FIR filters

Multiplication by a constant

- ► The multiple constant multiplication problem:
 - ► Given a set of coefficients, *S*, find a realization using as few additions and subtractions as possible such that the input is multiplied with all coefficients in *S*
- ► Two main techniques:
 - ► Sub-expression sharing (easy to solve hard problems, representation dependent)
 - ► Adder graphs (hard to solve hard problems, representation independent)

Sub-expression sharing

- ► Given a representation, the result is computed by shifting and adding/subtracting the input
- \blacktriangleright Assuming there are N terms, N-1 adders are required
- ▶ Both the terms and the adders can be ordered arbitrarily
- ► If we order them in a clever way, it is possible to reduce the number of adders

Sub-expression sharing example

▶ Multiply X_1 with 13 and 21, i.e., compute

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{c} 13 \\ 21 \end{array}\right] [X_1]$$

► Select representation: Binary $\Rightarrow 13 = (1101)_2, 21 = (10101)_2$ (four adders required)

Hence
$$Y_1 = \sum_i a_{i,1} 2^i X_1$$
 and $Y_2 = \sum_i a_{i,2} 2^i X_1$

- ► Count sub-expressions:
 - For Y_1 : **11**01, **1**10**1**, 1**1**0**1**
 - ► For Y₂: **101**01, **1**010**1**, 10**1**0**1**
 - Frequency

Sub-expression	Frequency
$11 \Leftrightarrow 2X_1 + X_1 \Leftrightarrow 3X_1$	1
$101 \Leftrightarrow 4X_1 + X_1 \Leftrightarrow 5X_1$	3
$1001 \Leftrightarrow 8X_1 + X_1 \Leftrightarrow 9X_1$	1
$10001 \Leftrightarrow 16X_1 + X_1 \Leftrightarrow 17X_1$	1

Sub-expression sharing

- ▶ The concept of generalized sub-expression sharing is like
 - 1. Represent each required result as a sum of signed-digits in a given representation
 - CSD appears to be a good choice, but there will in general be better choices (which are hard to find)
 - For each required result find and count possible sub-expressions
 - ► Sub-expression characterized by the origin of the two terms, the difference in the non-zeros position and if the non-zeros have the same or opposite signs, i.e., the sub-expressions 1001 and 1001 are the same
 - If there are common sub-expressions, select one to replace and replace instances of it by introducing a new symbol in place of the sub-expression
 - ► Common approach is to select the most frequent sub-expression and replace all instances
 - Greedy optimization, so not always the globally best choice
 - 4. If there were sub-expressions replaced, go to Step 2 otherwise the algorithm is done.

Sub-expression sharing example

- Select sub-expression and replace:
 - ▶ Most frequent one is $101 \Leftrightarrow 4X_1 + X_1 \Leftrightarrow 5X_1$
 - ▶ Define $X_2 = 4X_1 + X_1$ (one adder)
 - ▶ New formulation of the expression

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{c} 13 \\ 21 \end{array}\right] [X_1] = \left[\begin{array}{cc} 8 & 1 \\ 16 & 1 \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \end{array}\right] = \left[\begin{array}{cc} 8 & 1 \\ 1 & 4 \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \end{array}\right]$$

SO

$$Y_1 = \sum_i \sum_j a_{i,j,1} 2^i X_j$$

and

$$Y_2 = \sum_i \sum_j a_{i,j,2} 2^i X_j$$

or in general

$$Y_k = \sum_i \sum_i a_{i,j,k} 2^i X_j$$

24

► Note that we only could replace two of the expected three sub-expressions

Sub-expression sharing example

- ► Count sub-expressions:
 - ► Slightly more complicated to illustrate, but as each result now consists of two terms, there is only one sub-expression for each

Sub-expression	Frequency
$8X_1 + X_2 \Leftrightarrow 13X_1$	1
$X_1 + 4X_2 \Leftrightarrow 21X_1$	1

- ► No more savings are obtainable, so we can just compute the remaining sub-expressions to obtain the final result (two adders)
- ▶ Three adders are required in total, so one is saved

Adder graphs

- ► Look at the problem from a different perspective
 - ► In an (well designed) FIR filter, the tail coefficients are often small
 - ► Two-term sub-expressions which are also coefficients, will eventually be computed although they may not be the most frequent for the initial iterations
 - ► Makes sense to compute them initially and benefit from them in later iterations
- Only consider odd positive integers as even and fractional numbers can be obtained by shifting
- ▶ If a negative coefficient is required, it can often be solved by replacing a subsequent addition with a subtraction or vice versa

Sub-expression sharing

- ▶ Problems faced:
 - How to select a suitable representation?: 21 = 10101 and $7 = 100\overline{1}$ has no common expressions, but $3 \cdot 7 = 100\overline{10} + 100\overline{1} = 110\overline{11} = 10101 = 21$
 - ► How to detect collisions, e.g., how many usable sub-expressions in 101010101?
 - ► Some sub-expressions are "hidden", i.e., there is no suitable representation that will reveal it
 - Which sub-expression to select? Frequency is good, but the number of cascaded adders will increase the delay (and power consumption because of increased switching)
 - ▶ Which sub-expressions to replace?
- ► Typically, we will have to make heuristic decisions for most of these issues
- ▶ Still: a well defined way to obtain a good solution

Adder graph algorithm

- ► Form a set *R* of the coefficients in *S* by taking the absolute value and shifting the coefficients to be odd integers
- ► Form a set of already computed coefficients, *A*, initially consisting of the coefficient 1
- ► As long as there are coefficients in *R*
 - ► Compute all possible partial results that can be obtained by shifting and adding the coefficients in *A*

$$C = \left| 2^i a \pm 2^j b \right|$$

where a and b are coefficients in A

- ▶ If any of the coefficients in *R* is present in *C*, it can be computed using a single adder, which clearly is the optimal
- ▶ Move those coefficients from *R* to *A* and iterate
- ▶ If none of the coefficients in *R* is present in *C*, we still need to pick a coefficient from *C* such that the algorithm can converge later on
- ▶ This is the hard part and several heuristics have been proposed

28

► Note that this approach is totally independent of a bit-level representation of the coefficients

Adder graph algorithm example

- ▶ Coefficients $S = \{6, -21, 37\}$
- ▶ First, create $R = \{3, 21, 37\}$
- ▶ In the first iteration $C = \{3, 5, 7, 9, 15, 17, 31, 33, 63, 65, \dots\}$
- ▶ 3 is in C, so move it to A: $R = \{21, 37\}, A = \{1, 3\}$
- Next iteration gives $C = \{5, 7, 9, 11, 13, 15, 17, 19, \mathbf{21}, 23, 25, 27, 29, 31, 33, 35, 45, 47, \dots \}$
- ▶ This gives $R = \{37\}, A = \{1, 3, 21\}$
- Now $C = \{5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,$ **37** $, 39, ... \}$
- ▶ And $R = \emptyset$, $A = \{1, 3, 21, 37\}$ so the algorithm has converged

Higher dimension problems

- Using this with sub-expression sharing is actually rather straightforward
- ► Each result (in this general case a multiple input FIR filter) can be expressed as

$$Y_k = \sum_{i} \sum_{j} \sum_{l} a_{i,j,k,l} 2^{i} z^{-l} X_j$$

- ► Each two non-zero $a_{i,j,k,l}$ terms forms a possible sub-expression
- ► The same concepts are possible to use for the adder graph approach using the following two modifications
 - ► For multiple inputs, the coefficients in R and A are now vectors, with A initialized as the rows from an identity matrix
 - ▶ For shift in time, the possible results are computed as

$$C = \left| 2^i z^{-k} a \pm 2^j z^{-l} b \right|$$

► However, there are typically quite a number of partial results to be determined before a matrix row or an FIR filter transfer function is obtained in *C* making it very challenging

Higher dimension problems

▶ In the sub-expression sharing problem we had

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{cc} 8 & 1 \\ 1 & 4 \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \end{array}\right]$$

- ► This means that there is no difference between a sub-expression and an input so we can start with multiple inputs
- ► Useful for constant matrix-vector multiplications such as linear transforms, e.g., DCTs
- ► Each row can be expressed as

$$Y_k = \sum_i \sum_j a_{i,j,k} 2^i X_j$$

► Also possible to introduce more shift dimensions, e.g., time, although shifts in time can hardly be argueed to be as cheap as arithmetic shifts

$$Y_k = \sum_i \sum_i \sum_l a_{i,j,k,l} 2^i z^{-l} X_j$$