Multiplication

TSTE18 Digital Arithmetic » Partial product generation
Seminar 5 » Partial product accumulation
» Final adder
Oscar Gustafsson
» Squarers
» Fast multiplication
» Constant multiplication
Squaring Squaring
» Squaring an unsigned binary number X can be written as
Mz‘l MZ‘I MZ‘I MZ‘I Use this to simplify the partial product
; i i » Use this to simpli e partial product arra
= j=—L i=—Lj=—L X5 X4 X3 X2 X1 X0
. . . X X5 Xa4 X3 X2 X1 X0
» Consider a six-bit squarer XaXe  XaXs XaXa  XiXe X% X0 XoX3  XoXa  XoX1 o
X5 X3X4 XoX4 X1X4 X1X3  X1X2 X1
Xs X4 X3 Xo X1 X0 X4 X2X3 X2
X Xs X4 X3 Xo X1 Xo X3
XoXs5 XoX4 XoX3 XoXo XoX1  XoXo
X1X5 X1Xa X1X3 X1X2 X{X1 X1X0 » This is called a folded squarer
X2 Xi X X2 X: X2 X: X2X: X2 X . .
e B R » Approximately half of the partial products compared to a
X3X4  X3X3  X3X2  X3X1  X3XQ | multioli
Xaxs xaxa Xaxo  xaxL XaXo general multiplier
X5X5  X5Xa X5Xo  XsX1  X5Xg » Middle column contains most partial products

» Every partial product with i # j appears twice in the same

column



Squaring

» Note that x3 and x»>x3 are in the same column

» The value of this expression will be

X3 X | Value | Binary

0 0 0 0 O
0
0

0 1 0 0

1 0 1 1

1 1 2 1 0

> Replace with xpx3 in the next higher column and X2x3 in the
same column

X5 X4 X3 X2 X1 X0
X X5 X4 X3 X2 X1 X0
X4X5 X3X5 XoX5 X1X5 XoX5 X0oXa XoX3 XoX2 XoX1 X0

X5 X3Xa X3X4 XoXq X1Xqg X1X3 X1X2 XpX1
XoX3  XpX3  X1X2

Squaring

> Rewrite in a similar way and include the 1
X3 X | Value | Binary
0 0 1 0 1
0 1 1 0 1
1 0 2 1 0
1 1 3 1 1

» Now, place x3 in the next higher column and x; + X3 in the

same
—X5  Xa X3 X2 X1 X0
X —X5 X4 X3 X2 X1 X0
1 XX X3X5 XoX5 X1X5  X0X5  XoX4 X0X3 XoX2  XoX1 X0
X5 X3X4 X3Xa XpXa  X1Xa  X1X3  X1X2 X1
X3 x2+X3 X2

» Several other approaches to merge a number of partial
products before accumulating them has been proposed

Squaring

» Can also use signed representations
» Two's complement representation with modified
Baugh-Wooley

— X5 X4 X3 X2 X1 X
X —X5 X4 X3 X2 X1 X0
1 XX X3X5 XoXs X1X5 XoXs XoX4 XoX3  XoX2  XoX1 X0
X5 X3X4 XoX4 X1X4 X1X3  X1X2 X1
X4 X2X3 X2
X3
1

» Even more partial products in the middle column

Multiplication through squaring

> It is possible to multiply through squaring

(a+ b)? — a2 — b?
2

(a+b)? =a®+2ab+b>= ab= (1)

» More suitable for table-based implementation than logic-based

» For a table-base realization assuming input wordlength N

Multiplier-based Squarer-based
Table Table size | Table  Table size
ab 22N (a+ b)? oN+1

a° 2N
b? 2N
Total 22N Total 2N+2

» Additional cost is one addition and two subtractions



Multiplication through squaring Fast multiplication

» Alternatively

(a+ b)? — (a— b)?

a-—+ —(a— =4ab = ab = » Consider a polynomial multiplication (Ag + A1 0 + D1
b)? b)? = 4ab = ab 7 2 Consid | ial multiplication (Ag 4+ A1 X) (By + B1.X
» (Motivation: X = j = complex multiplication,
o o X=2% = long multiplication)
» For a table-base realization assuming input wordlength N o .
o » Normally, four multiplications are required: AgBy, AgBai,
Multiplier-based Squarer-based ABo and A:B
Table Tablesize | Table  Table size =0 11
2b 52N (a + b)? SNFT » However, three are enough
(a _ b)2 2N+1
Total 22N Total oN+2
» Additional cost is one addition and two subtractions
Fast multiplication Fast multiplication
> Let the result of the multiplication be » The result of the polynomial multiplication is (o, (1, and G,
(Ao + A1X) (Bo + 31X) =C+ GX+ C2X2 so solve for those:
» The unisolvence theorem states that an N-term polynomial is _ 1
) i . . ) Go 1 00 By 0 0 10
uniquely defined by its values in N points Ao
o _ G| = |1 11 0 By+By 0 llA
» Evaluate the polynomial in three points, e.g., X = {0,1,00} G 0 0 1 0 0 B lo 1 1
[ w8
Ay +A)(Bo+B1) = G+G+C - |~ - 0T =1
(Ao +41) (Bo + B1) o 00 1]]o 0 Bllo 1M
AiBr = G -
» So
» Or on matrix form
Bo 0 07 1 0] r, 1 0 0] [G Co = Aobo
0 By+B 0f |11 [AO]: 111G G = AB
0 0 B:| [0 1] U 00 1| |G G = (A+A)(Bo+B)—C—G



Fast multiplication

v

Higher-order polynomials can be used

v

Karatsuba, Cook-Toom, Gauss, ...

v

Evaluating in different points gives different equations
Evaluating on the unit circle = DFT/FFT

» Efficient for high-order polynomials
» Main complexity in matrix operations rather than
multiplications

v

v

Applications in FIR filters

Multiplication by a constant

» Each partial product row is either the input data or zero

w w

Z=XY=Y> x27" =) v«2 (3)
i=1 i=1

» To add W words, W — 1 adders are required

» If the coefficient X is known beforehand it is not required to
use W — 1 adders

» Example: X =231

Fast multiplication

» Fewer multiplications but more additions/subtractions
» Effectiveness determined based on relative cost
» Figures from GNU Multiple Precision (GMP) Library

Number of words required to use algorithm for long multiplication

Algorithm | ARM A15 Core 2 Core i7
2x2 23 23 26
3x3 90 65 89
4x4 262 179 214
7x6 351 268 327
9x8 557 357 466
FFT 5760 4736 6784

Multiplication by a constant

» Is there a way to find a representation with fewer non-zero
positions?
» MSD/CSD is a good choice here

231Y

» No major difference between adders and subtracters

» Coefficients are not explicitly represented in CSD, the CSD
representation rather determines the structure

» Minimum number of non-zero digits equal to minimum
number of adders?



Multiplication by a constant

» Nol
» Rewrite as

231Y

» The two first subtracters compute the same result
» Better only do it once

Multiplication by a constant

> In fact transposing gives the direct form FIR filter

» The problem of multiplying a single input data with several
constant coefficients is known as multiple constant
multiplication (MCM)

» Efficient technique to realize constant multiplications using as
few adders and subtracters as possible

» Can easily be generalized to linear transforms as well
(matrix-vector multiplications)

Multiplication by a constant

» A careful inspection gives that we have a free multiplication
by 7

» Can this be useful?

» Transposed direct form FIR filters

Multiplication by a constant

» The multiple constant multiplication problem:

» Given a set of coefficients, S, find a realization using as few
additions and subtractions as possible such that the input is
multiplied with all coefficients in S

» Two main techniques:

» Sub-expression sharing (easy to solve hard problems,
representation dependent)

» Adder graphs (hard to solve hard problems, representation
independent)



Sub-expression sharing Sub-expression sharing

» The concept of generalized sub-expression sharing is like

1. Represent each required result as a sum of signed-digits in a
given representation
> CSD appears to be a good choice, but there will in general be
better choices (which are hard to find)
» Given a representation, the result is computed by shifting and

2. For each required result find and count possible
adding/subtracting the input d P

sub-expressions
» Assuming there are N terms, N — 1 adders are required > Sub-expression characterized by the origin of the two terms,
the difference in the non-zeros position and if the non-zeros
have the same or opposite signs, i.e., the sub-expressions 1001
» If we order them in a clever way, it is possible to reduce and 1001 are the same

the number of adders 3. If there are common sub-expressions, select one to replace and
replace instances of it by introducing a new symbol in place of
the sub-expression

» Both the terms and the adders can be ordered arbitrarily

» Common approach is to select the most frequent
sub-expression and replace all instances
> Greedy optimization, so not always the globally best choice

4. If there were sub-expressions replaced, go to Step 2 otherwise
the algorithm is done.

Sub-expression sharing example Sub-expression sharing example
» Select sub-expression and replace:
» Multiply X; with 13 and 21, i.e., compute » Most frequent one is 101 < 4X; + X; < 5X;
Y, 13 » Define Xo = 4X; + X; (one adder)
[ Y, ] = [ 21 ] [Xl] » New formulation of the expression
» Select representation: Binary = 13 = (1101),,21 = (10101), il By 8 X 18 111X
. Y, o1 | il 16 1] X 1 4 || X
(four adders required) 2 2 2
Hence Y1 = Zi a,-,12’X1 and Y2 = ZI a,-722’X1
SO
» Count sub-expressions: i
Yl = 3;7'112 X;
» For Y;: 1101, 1101, 1101 sz: e
» For Y5: 10101, 10101, 10101 and
» Frequency i
Y, = aj j22'X;
Sub-expression Frequency 2 Z; S2EY
112X+ X1 < 3X; 1 or in general
101 & 4X; + X1 & 5X; 3 ;
1001 & 8X; + X, & 9X 1 Y= aiik2'X;
10001 & 16X; + X1 & 17X 1 b

> Note that we only could replace two of the expected three
sub-expressions



Sub-expression sharing example

» Count sub-expressions:

» Slightly more complicated to illustrate, but as each result now
consists of two terms, there is only one sub-expression for each

Sub-expression Frequency
8X1+ Xo & 13X; 1
X1+4X, & 21X 1

» No more savings are obtainable, so we can just compute the
remaining sub-expressions to obtain the final result (two
adders)

» Three adders are required in total, so one is saved

Adder graphs

» Look at the problem from a different perspective

> In an (well designed) FIR filter, the tail coefficients are often
small

» Two-term sub-expressions which are also coefficients, will
eventually be computed although they may not be the most
frequent for the initial iterations

» Makes sense to compute them initially and benefit from them
in later iterations

» Only consider odd positive integers as even and fractional
numbers can be obtained by shifting

> If a negative coefficient is required, it can often be solved by

replacing a subsequent addition with a subtraction or vice
versa

Sub-expression sharing

» Problems faced:

» How to select a suitable representation?: 21 = 10101 and
7 = 1001 has no common expressions, but
3.7 = 10010 + 1001 = 11011 = 10101 = 21

» How to detect collisions, e.g., how many usable
sub-expressions in 1010101017

» Some sub-expressions are “hidden”, i.e., there is no suitable
representation that will reveal it

» Which sub-expression to select? Frequency is good, but the
number of cascaded adders will increase the delay (and power
consumption because of increased switching)

» Which sub-expressions to replace?

» Typically, we will have to make heuristic decisions for most of
these issues

» Still: a well defined way to obtain a good solution

Adder graph algorithm

» Form a set R of the coefficients in S by taking the absolute
value and shifting the coefficients to be odd integers
» Form a set of already computed coefficients, A, initially
consisting of the coefficient 1
» As long as there are coefficients in R
» Compute all possible partial results that can be obtained by
shifting and adding the coefficients in A
C=[2a+2b|

where a and b are coefficients in A
» If any of the coefficients in R is present in C, it can be
computed using a single adder, which clearly is the optimal
» Move those coefficients from R to A and iterate

> If none of the coefficients in R is present in C, we still need to
pick a coefficient from C such that the algorithm can
converge later on

» This is the hard part and several heuristics have been proposed

» Note that this approach is totally independent of a bit-level
representation of the coefficients



Adder graph algorithm example

v

v

v

v

v

v

v

Coefficients S = {6, —21,37}

First, create R = {3,21,37}

In the first iteration C = {3,5,7,9,15,17,31,33,63,65,... }
3isin C,so move it to A: R ={21,37}, A={1,3}

Next iteration gives C =

{5,7,9,11,13,15,17, 19, 21, 23,25, 27,29, 31, 33,35, 45,47, ... }
This gives R = {37}, A={1,3,21}

Now C =

{5,7,9,11,13,15,17, 19,21, 23,25, 27, 29, 31, 33, 35, 37,39, ... }
And R=0, A={1,3,21,37} so the algorithm has converged

Higher dimension problems

>

Using this with sub-expression sharing is actually rather
straightforward

Each result (in this general case a multiple input FIR filter)
can be expressed as

Yk = Z Z Z/: a,-l,-yk7/2’.z_/Xj
! J

Each two non-zero a; j  ; terms forms a possible

sub-expression
The same concepts are possible to use for the adder graph
approach using the following two modifications
» For multiple inputs, the coefficients in R and A are now
vectors, with A initialized as the rows from an identity matrix
» For shift in time, the possible results are computed as

C=[2z7ka+2z7'p|
However, there are typically quite a number of partial results

to be determined before a matrix row or an FIR filter transfer
function is obtained in C making it very challenging

Higher dimension problems

> In the sub-expression sharing problem we had

Yi| [ 8 1 X1

MEkR
This means that there is no difference between a
sub-expression and an input so we can start with multiple
inputs
Useful for constant matrix-vector multiplications such as linear
transforms, e.g., DCTs
Each row can be expressed as

Yk = Z Z a,-l,-yk2"Xj
Jj

i

Also possible to introduce more shift dimensions, e.g., time,
although shifts in time can hardly be argueed to be as cheap
as arithmetic shifts

Yk = ZZ z]: a,-J7ky/2"z_lXj
! J



