
Reading Keyboard Scan Codes Through
the PS/2 Interface on the DE2-115 board

TSTE12

Computer Technology, ISY

Linköpings Universitet

September 2, 2024

Table of Contents
1.Reading Keyboard Scan Codes Through the PS/2 Interface on the DE2-115 board.......................3

 1.1 Background... 3
 1.2 Assignment... 3
 1.3 Problem definition... 4

 1.3.1 Port definitions.. 4
 1.3.2 Process definitions... 4

sync_keyboard... 4
detect_falling_kb_clk... 4
convert_scancode... 4

 1.3.3 Tips and tricks... 5
 1.4 Interface.. 6
 1.5 Requirements.. 6

2.Design... 7
 2.1 Introduction... 7
 2.2 Design entry.. 7
 2.3 Adding the pin attributes... 8
 2.4 Simulating the design.. 8
 2.5 Creating the testbench... 8
 1.1 Synthesis flow (using Precision)... 9

 1.1.1 Synthesize the Design.. 9
 1.1.2 Results... 10

 1.2 Downloading the Design... 11
 1.2.1 Programming the FPGA.. 11

1.Appendix: PC AT keyboard ref... 13
 A.1 Description of keyboard... 13

 A.1.1 make code... 13
 A.1.2 break code... 13
 A.1.3 key code.. 13
 A.1.4 scan code.. 14
 A.1.5 Keyboard serial data... 14

 A.2 Scancodes and commands.. 14
 A.2.1 Keyboard layouts with codes.. 14

 A.3 Further reading... 16
 A.3.1 Web references... 16

1. Reading Keyboard Scan Codes Through the PS/2 Interface
on the DE2-115 board

 1.1 Background
The PC/AT keyboard transmits data in a clocked serial format consisting of a start bit, 8 data bits (LSB first),
an odd parity bit and a stop bit. The clock signal is only active during data transmit. The generated clock
frequency is usually in the range 10 - 30 kHz. Each bit should be read on the falling edge of the clock.

The above waveform represents a one byte transmission from the keyboard. The keyboard generally
changes its data line on the rising edge of the clock as shown in the diagram. The data line only has
to be valid on the falling edge of the keyboard clock. The Least Significant Bit is always sent first.

When a key is pressed, the keyboard transmits a 'make' code consisting of an 8-bit 'scan' code
denoting the key pressed and, when the key is released, a 'break' code. The 'break' code (key
released) consists of the same 8-bit scan code preceded by a special code - ’F0’H.

The keyboard handles combinations with control keys as SHIFT, CTRL, ALT, etc as two separate
key presses, i.e., SHIFT-MAKE, 'A'-MAKE, SHIFT-BREAK, 'A'-BREAK. The 'A' scan code
(’1C’H) is the same for both the shifted and unshifted state. To determine whether the 'A' scan code
is interpreted as 'A' or 'a', the PC must keep track of the presence or absence of a prior SHIFT-
MAKE.

Read more about the AT keyboard in appendix 1, “PC AT keyboard ref”.

 1.2 Assignment

Create a circuit that accepts scan codes from a keyboard attached to the PS/2 interface of the DE2-
115 board. The binary pattern of the scan code is displayed on the red LEDs above the switches on
the board. In addition, if a scan code for one of the '0'-'9' keys arrives, then the numeral will be
displayed on the right 7-segment LED display of the DE2-115 board. The system should be clocked
using the 50 MHz oscillator on the DE2-115 board.

The lab group number should be displayed on the two leftmost 7-segment displays of the DE2-115
board.

Create also a testbench that checks if the keyboard decoder works, testing at least two different key
presses. The testbench must report back to the simulation user in plain text if the test worked or not
after the simulation stops.

 1.3 Requirements

Here are the requirements to pass the laboratory:

3

Figure 1: Keyboard transmission waveform

KB_CLK

KB_DATA

Idle Idle

IdleIdle

Start

P76543210

Stop

● Implement the design using hdl_designer.

○ Declare a symbol and corresponding VHDL view.

● Design a test bench to verify the design.

○ The testbench should be built as a structural top level, i.e. block diagram in
hdl_designer, and instantiate the keyboard symbol as a component.

○ The testbench should also include a stimuli and a control block in the same block
diagram as the keyboard reader. The stimuli block generates the input data to the
keyboard. The control block analyzes the design outputs.

○ The testbench has to implement at least two different scancodes (at least one being a
digit key). The control block should check the output after each scancode have been
generated (db and seg).

○ The testbench should indicate in the transcript window of the simulator, for each of the
test cases, if the behavior was correct or wrong. Take a look at the the ASSERT
statement in VHDL. The user of the testbench should be able to load the testbench, type
the command “run -all”, and then see three messages. The simulation should
automatically stop when completed. The first two messages should indicate if the test of
a key worked or not, and the final message stating that the testbench have completed all
tests. The messages printed in the modelsim window could for example be

Key1 test ok
Key2 test ok.
All tests done, stopping simulation

● Synthesize the design and demonstrate the function on the DE2-115 board.

● Summarize a number of key figures for the design.

○ How much of the total available design space is used?

○ What is the maximum clock frequency allowed for the design?

 1.4 Problem definition

Here are listed the definitions that is needed to complete the design.

 1.4.1 Port definitions

The inputs and outputs of the circuit are defined as follows:

4

Table 1: Port interface description

Name Type Range Description

kb_data IN std_logic The scan code bits enters through this input.

kb_clk IN std_logic The keyboard clock signal enters through this
input.

sys_clk IN std_logic The system clock (50 MHz) used to clock the
system.

db OUT std_logic_vector (9 downto 0) Drive the red LEDs above the switches on the
DE2-115 board. Output all bits except the startbit
received from the PS/2 keyboard

rsb OUT std_logic_vector (6 downto 0) Drive the segments of the rightmost 7-segment
digit (HEX0) on the DE2-115 board.

Hex7 OUT std_logic_vector (6 downto 0) Drive the segments of the leftmost 7-segment digit
(HEX7)

Hex6 OUT std_logic_vector (6 downto 0) Drive the segments of the 2nd from the left 7-
segment digit (HEX6)

 1.4.2 Process definitions

Within the main body of the architecture section, these processes should be implemented:

sync_keyboard

Synchronize the external inputs (kb_data and kb_clk) to the system clock. Creates an internal copy
of the keyboard signals that only changes values on the positive edge of the system clock.

detect_falling_kb_clk

Creates an output (edge_found) which is one during one system clock cycle when a falling edge of
the synchronized kb_clk signal has been found. This can be done by comparing the current value of
the synchronized kb_clk signal with the old value (stored in the previous clock period) of the
synchronized kb_clk signal. Remember that the output signal from this process should not be used
as a clock, as this would create a design with multiple clock domains.

convert_scancode

When edge_found is one, this process shifts the data bit on the kb_data input into the most
significant bit of a 10-bit shift register. After 11 keyboard clock cycles, the lower 8 bits of the
register will contain the scan code, the upper 2 bits will store the stop and parity bits, and the start
bit will have been shifted through the entire register and discarded.

The current value in the shift register is applied to the red LEDs above the switches. Since the LEDs
are active-high, a segment will light for every '1' bit in the shift register. The LED segment will
show some flickering as the shift register contents change.

5

Table 2: Scan codes for the alpha numerics 0 to 9

KEY SCANCODE rsb

1 00010110 1111001

2 00011110 0100100

3 00100110 0110000

4 00100101 0011001

5 00101110 0010010

6 00110110 0000010

7 00111101 1111000

8 00111110 0000000

9 01000110 0010000

0 01000101 1000000

else 0000110

If the scan code in the shift register matches the codes for the digits 0-9, then the rightmost 7-
segment LED display will be activated to display the corresponding digit. The segments are active-
low, and will light whenever the corresponding bit is '0'. If the scan code does not match one of
these codes, the letter 'E' is displayed.

 1.4.3 Tips and tricks

To avoid a lot of trouble in the design phase a few hints are useful:

● Do not use multiple clock definitions, i.e., rising_edge() or the corresponding 'EVENT
definition can only be used on one signal through out the design. This signal can in this case
only be the system clock signal named sys_clk.

● Do not use 'EVENT (except the above), 'LAST_VALUE, falling_edge or rising_edge
(except the case above).

● It is ok to have the LED:s flicker while the data is shifted in when a key is pressed.

 1.5 Interface

The synthesis tool needs to know how the FPGA is connected to the external components. An
attribute description included in the VHDL description will be used for this purpose. How to
include this into the design will be demonstrated later in section 2.3 Adding the pin attributes.

type exemplar_string_array is array (natural range <>, natural range <>) of character;

attribute pin_number : string;

attribute array_pin_number : exemplar_string_array;

6

Figure 2: 7-segment display index to segment mapping

attribute pin_number of sys_clk : signal is "Y2";

attribute pin_number of kb_clk : signal is "G6";

attribute pin_number of kb_data : signal is "H5";

attribute array_pin_number of db : signal is (“G17”,”J17“,”H19”,”J19“,”E18“,”F18“,

”F21“,”E19“,”F19“,"G19");

attribute array_pin_number of rsb : signal is
("H22”,”J22”,”L25”,”L26”,”E17“,”F22“,”G18“);

attribute array_pin_number of hex6 : signal is
(”AC17”,”AA15”,”AB15”,”AB17”,”AA16”,”AB16”,“AA17“);

attribute array_pin_number of hex7 : signal is
(”AA14”,”AG18”,”AF17”,”AH17”,”AG17”,”AE17”,“AD17”);

Please note that each string in a pin number attribute list must be of equal length. This is fixed by
adding one space at the end of the string before “ if necessary. This is VHDL language requirement.
Do not forget this in the project designs!

This attribute description is prepared in a text file and can be copied from

/courses/TSTE12/material/Lab_Keyboard/keyboard_DE2-115_attributes.txt

2. Design
It is here assumed that the reader have a basic knowledge of hdl_designer. The experience gained
from the hdl designer intro in the tutorial of this course should be sufficient. The tutorial is available
on the course material page on the web.

To enable one group working together on the same design, we prepared the computer setup. Follow
the steps below to start the tool start and get the file permissions set correctly.

 2.1 Introduction

Your designs should preferably be saved in a new project library directory.

1. Start the hdl designer tool.

Load the course module TSTE12 and start a mentorskal
module load courses/TSTE12
mentorskal &

Start hdl_designer in the mentorskal window using
TSTE12lab &

Once HDL Designer have started, do the following:

2. Open the design manager project view by selecting the Project tab at the lower left of the
window.

3. Create a new project called LABS by selecting File→New→Project. Set the project name to
LABS, the default working library name LAB1, and make sure the Directory in which your
project folder will be created is /courses/TSTE12/labs/labgrp<nn>/LABS. Replace <nn>
with your labgroup number.

4. Open/explore the library. Continue the work in this library and complete the exercise. If you
have not opened the LAB1 library then you either double click on the library name or use
right mouse button to access the popup menu for the library and choose explore.

7

 2.2 Design entry

Implement the design according to the description and requirements found in section 1. The tutorial
material describes how to use the HDL designer tool.

 2.3 Adding the pin attributes

The symbol pin attributes are necessary in the synthesis step. Here it is described how to include the
prepared pin attributes from section 1.5 Interface into the keyboard design.

1. Create the symbol for the design.

2. Open the symbol editor window

3. Locate "User:" under Declarations in the window. Place the mouse pointer over the text.
Double-click using left mouse button on the text.

4. Open the pin attributes text file in a text editor.

5. Copy and paste the pin attributes from the text file into the declarations dialog box. There is
no menu available in the dialog box, but a press on the middle button (scrollwheel) will do a
paste.

6. Press Ok and the attributes should appear under User declarations.

7. Save the symbol.

8. Finish the design with ports and behavioral view.

The symbol and interface is now complete. Continue to add the behavior of the design and validate
the functionality.

 2.4 Simulating the design

The created model should be simulated to verify that the design is correct. Modelsim can be
executed from within the hdl_designer environment. Stimuli for test of the design can be created
using a testbench, which is the prefered way.

During debugging may the repeated change of the testbench code followed by compile and simulate
be a bit time consuming. Another approach is therefore to use the interactive debugging in
Modelsim. You may then find the following useful:

Add stimulis to kb_clk and kb_data and validate the function. These can either be written into the
Modelsim window or put in a macro file. The following example simulate the scan code for the ´4´
key (remember that the keyboard should only generate a clock when there are bits to send):

force -repeat 20 sys_clk 0 0, 1 10

force kb_clk 1 25us, 0 100us, 1 150us, 0 200us, 1 250us, 0 300us, 1 350us, 0 400us, 1
450us, 0 500us, 1 550us, 0 600us, 1 650us, 0 700us, 1 750us, 0 800us, 1 850us, 0
900us, 1 950us, 0 1000us, 1 1050us, 0 1100us, 1 1150us

force kb_data 1 25us, 0 75us, 1 175us, 0 275us, 1 375us, 0 475us, 0 575us, 1 675us, 0
775us, 0 875us, 0 975us, 1 1075us

run 1200 us

These commands can also be put in a macro file to simplify repeated tests. Use a text editor to
create the file and put the commands to be executed in it. It is important to keep all text on each
force command in one single line for each force.

8

 2.5 Creating the testbench

Here we describe briefly the steps to create a testbench. In order to write the testbench, check again
the requirements in section Error: Reference source not found.

1. Create a new symbol for the testbench design.

2. Open the symbol editor window

3. Open it as a new block diagram. This should open a new block diagram window.

4. Instantiate the keyboard reader as a component. Press the green block entry in the toolbars
menu, i.e. , "add component".

5. Now a window with available components appear. Drag and drop the keyboard symbol on
the testbench block diagram window.

6. Continue and add the stimuli block and control block to the schematic, using blue boxes.
Connect these blocks to the keyboard.

7. Add behavior to the control and stimuli blocks.

8. Validate the testbench design. Important now is to choose generate and compile through
components.

9. Validate the design.

 1.1 Synthesis flow (using Precision)

 1.1.1 Synthesize the Design

The design flow buttons include several steps in one command. There are flows defined for
simulation and synthesis. The synthesis assume a validated and compiled design.

Select the keyboard design unit in the design browser.

Start synthesis by choosing the synthesis flow button. You find this next to the compile and
generate toolbar buttons.

The Precision Synthesis settings appear. Make sure to change the following in the setup.

Technology: Altera/Cyclone IV E

Device: EP4CE115F29C

Speed Grade: 7

Design frequency: 50 MHz

Run Options: Run Integrated Place and Route should be selected

Implementation options Single Implementation Mode

Press ok. The synthesis tool is now started.

The synthesis now starts and generates a netlist, various reports including used pins, timing
estimates etc., and a sof FPGA configuration file. The synthesis results are located in a subfolder
to /courses/TSTE12/labs/labgrp<nn>/LABS/LAB1/ps. The sof programming file is located in a
subdirectory inside the synthesis folder (ps).

9

 1.1.2 Results

A lot of reports has again been generated (text files whose name ends with .rpt). Answer the
following questions by looking at the design center tab in the precision tool. Look especially at the
area report and the timing report:

Resource Used Available Utilization

--

IOs %

LUTs %

Registers %

Memory Bits %

Clock Name Min Period [ns] Max Freq [Mhz]

sys_clk Timing report

sys_clk Timequest report (85ºC)

sys_clk…… Timequest report (0ºC)

10

Figure 3: Synthesis settings dialog window

Figure 4: Setting the bitgen option

Note the difference between the timing report and the timequest report. The timing report is a
simplified estimate done at synthesis, while the timequest report is a more detailed timing analysis.

 1.2 Downloading the Design

The DE2-115 board is always programmed from a computer using an USB connection. The
programming is carried out using a special programming software from the FPGA vendor.

One approach to program the board is therefore to login and run the programming software on the
computer connected to the FPGA board. This is however not very useful if the board is shared by
multiple lab groups.

The board may also be accessed over the network. The programming software is then run on the
same computer that is used for development. Instead of selecting the USB port on the development
computer is a connection made from within the programming software to the other computer,
thereby controlling the board remotely. The only difference is how to select the USB port inside the
programming software.

 1.2.1 Programming the FPGA

These steps are for programming the DE2-115 FPGA board.

1. Start Quartus II Programmer by entering the following command inside the mentorskal
window
quartus_pgmw

2. Press the Add file button. Select your sof programming file.

3. Then make sure that the USB-blaster and JTAG has been selected as the hardware to use.
This is shown close to the the top. If the correct board is shown go to step 7 below.

4. If the wrong board or no board is connected, push the “Hardware Setup” button.

5. If a networked board is used select the JTAG Settings tab. Press Add Server to connect to
the computer with the board. The password is written on the whiteboard at the door to the
lab.

6. Remember to select a board in the “currently selected hardware entry” before closing the
Hardware setup window.

7. Select and mark the box Programming/Configure on the right of the file.

8. Then press start button to make the FPGA programmed. The new design will be
downloaded within seconds.

9. Try out the hardware. Verify that it is your group number showing on the leftmost 7-
segment LEDs.

10. Press keys on the keyboard and observe the results on the LED displays.

11

1. Appendix: PC AT keyboard ref

 A.1 Description of keyboard

The original keyboard design had a single chip microprocessor, but now a customized controller
chip is used. This keyboard controller chip takes care of all keyboard matrix scanning, key de-
bouncing and communications with the computer, and has an internal buffer if the keystroke data
cannot be sent immediately. The PC motherboard decodes the data received from the keyboard via
the PS/2 port using interrupt IRQ1.

The one thing that these keyboards do not generate is ASCII values. With a typical AT keyboard
having more than 101 keys, a single byte could not store codes for all the individual keys, plus these
keys along with shift, control, or alt, etc. Also for some functions there is no ASCII equivalent, for
example 'page up', 'page down', 'insert', 'home', etc.

When the keyboard controller finds that a key is being pressed or released it will send this keystroke
information, known as scan codes, to the PC motherboard. There are two different types of scan
codes - make codes and break codes.

The communications protocol is bi-directional, but here we only discuss the keyboard to host part.

 A.1.1 make code

A make code is sent whenever a key is pressed or held down. Each key, including 'shift', 'control'
and 'alt', sends a specific code when pressed. Cursor control keys, 'delete', 'page up', 'page down',
'ins', 'home' and 'end', send extended make codes. The make code is preceded by 'E0'h to indicate an
extended code. The only exception is the 'pause' key that starts with a unique 'El'h byte.

 A.1.2 break code

A break code is sent when a key is released. The break code is the make code preceded by 'F0'h
byte. For extended keys the break code has an 'E0'h preceding the 'F0'h and make code value. The
only exception is the 'pause' key as it does not have a break code and does not auto-repeat when
held down.

 A.1.3 key code

Every key is assigned its own unique code so that the host computer processing the information
from the keyboard can determine exactly what happened to which key simply by looking at the scan
codes received. There is no direct relationship between the scan code generated by a particular key
and the character printed on the key top.

The set of make and break codes for each key comprises a scan code set. There are three standard
scan code sets -numbered 1, 2, and 3 - stored within the keyboard controller. Scan code set 1 is
retained for compatibility for older IBM XT computers. Scan set 3 is very similar to the set 2 but
the extended codes are different. Scan code set 2 is the default for all AT keyboards and all scan
codes discussed here are from this set.

13

 A.1.4 scan code

If, for example, you press 'shift' and 'A' then both keys will generate their own scan codes, the 'A'
scan code value is not changed if a shift or control key is also pressed. Pressing the letter 'A'
generates 'lC'h make code and when released the break code is 'F0'h, 'lC'h.

Pressing 'shift' and 'A' keys will generate the following scan codes :

The make code for the 'shift' key is sent '12'h.

The make code for the 'A' key is sent 'lC'h.

The break code for the 'A' key is sent 'F0'h, 'lC'h.

The break code for the 'shift' key is sent 'F0'h,' 12'h.

If the right shift was pressed then the make code is '59'h and break code is 'F0'h, '59'h.

By analysing these scan codes the PC software can determine which key was pressed. By looking at
the shift keystroke the software can distinguish between upper and lower case.

 A.1.5 Keyboard serial data

The AT keyboard transmission protocol is a serial format, with one line providing the data and the
other line providing the clock. The data length is 11 bits with one start bit (logic 0), 8 data bits (lsb
first), odd parity bit and a stop bit (logic 1). The clock rate is approximately 10 to 30kHz and varies
from keyboard to keyboard.

 A.2 Scancodes and commands

 A.2.1 Keyboard layouts with codes

Scan code tables
Keyboard alpha numeric scan codes

14

Key Make Break

A '1C'h ’F0’h ‘1C’h

B '32'h 'F0’h '32'h

C '21'h 'F0’h '21'h

D '23'h 'F0’h '23'h

E '24'h 'F0’h '24'h

F '2B'h 'F0’h '2B'h

G '34'h 'F0’h '34'h

H '33'h 'F0’h '33'h

I '43'h 'F0’h '43'h

J '3B'h 'F0’h '3B'h

K '42'h 'F0’h '42'h

L '4B'h 'F0’h ‘4b'h

M '3A'h 'F0’h '3A'h

N '31'h 'F0’h ‘31'h

O '44'h 'F0’h '44'h

P '4D'h 'F0’h '4D'h

Q '15'h 'F0’h ‘15'h

R '2D'h 'F0’h '20'h

S '1B'h 'F0’h ‘1B'h

T '2C'h 'F0’h '2C’h

U '3C'h 'F0’h '3C’h

V '2A'h 'F0’h '2A'h

W '1D'h 'F0’h ‘1D'h

X '22'h 'F0’h '22'h

Y '35'h 'F0’h '35'h

15

Key Make Break

Z '1A'h 'F0’h ‘1A'h

1 '16'h 'F0’h ‘16'h

2 '1E'h 'F0’h ‘1E'h

3 '26'h 'F0'h '26'h

4 '25'h 'F0'h '25'h

5 '2E'h 'F0'h '2E'h

6 '36'h 'F0'h '36'h

7 '3D'h 'F0'h '3D'h

8 '3E'h 'F0'h '3E'h

9 '46'h 'F0'h '46'h

0 '45'h 'F0'h '45'h

 A.3 Further reading

 A.3.1 Web references

https://kbdlayout.info/KBDSW/scancodes

https://www.win.tue.nl/~aeb/linux/kbd/scancodes.html

16

