
VHDL

Introduction to

tools

TSTE12

Datorteknik

Kent Palmkvist, Thomas Johansson

Version 0.8

30. Aug. 2020

1

1 Introduction
This handbook is your guide to the VHDL simulation tool set used in the course. You will have use
for this to complete the homework and in future use of the simulator during the project. This
document explains a summary of methods useful for the laboratory work and throughout the
project. References to other documents are given for more details.

1.1 General

The purpose of this exercise is to introduce tools for implementation of designs using VHDL. The
tools introduced in the tutorial are also used in the project part of this course. The tools used are
Modelsim from Mentor Graphics for VHDL simulation, and HDL Designer, which also come from
Mentor Graphics, for design and architectural/graphical design approach.

It is assumed that the reader has a basic knowledge to VHDL. This tutorial is basically focused on
the tools, not the exercise of writing code.

This document is divided into several small parts. In small parts we supply the basics for several
vital parts in the design path. In this chapter we introduce the example designs. Chapter 2 gives a
brief introduction to VHDL simulation with Modelsim as a stand alone application. The third
chapter explains the basics of graphical design entry for VHDL. In some additional parts we also
broaden the views for test and procedures for handling this inside Modelsim.

The tutorial starts in chapter 2, “Modelsim Introduction“. Before that, we need to define the
environment and the design examples used throughout the tutorial.

1.2 Example Design

The example used in these tutorials is a 4-bit ripple carry adder with registers at the outputs, see
Figure 1. We will use this circuit to demonstrate different kinds of coding styles and ways to
increasingly refine a model by performing hierarchical design. As we continuously refine the
model, we also demonstrate the tools including simulator and compiler.

We want to model a 4-bit adder with carry-in and carry-out. The output from the adder should be
registered, i.e. latched into a D-flipflop. This is done because we want to hold the result for one
extra clock cycle after the summation has taken place. We start with the first model, Figure 1, “4-bit
registered ripple carry adder example design behavioral model“. The corresponding VHDL code of
this design is shown in the text box below. The code is behavioral, and does not clearly indicate
how this adder will be implemented.

2

Figure 1: 4-bit registered ripple carry adder example design behavioral model

Registered
Adder

s
3

b
1

a
1

a
2
b

2
a

3
b

3

c
out

c
in

b
0

s
1

a
0

s
0

s
2

reset
clk

The behavioral model is then refined into a structural model where simpler functions are combined
in an hierarchical fasion to implement the function, as shown in Figure 2.

The design is now described as a system of one flip-flop, one 4-bit register, and a 4-bit adder that
peforms the same function as the behavior model from Figure 1.

3

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY example_design IS
 PORT (
 a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 b : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 cin : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 cout : OUT STD_LOGIC;
 s : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END example_design;

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ARCHITECTURE behav OF example_design IS
BEGIN
 PROCESS(clk, reset)
 VARIABLE tmp : UNSIGNED(4 DOWNTO 0);
 VARIABLE tmp_cin : UNSIGNED(1 DOWNTO 0);
 BEGIN
 IF (reset = '1') THEN
 tmp := (OTHERS => '0');
 ELSIF rising_edge(clk) THEN
 tmp_cin := '0' & cin;
 tmp := UNSIGNED('0'&a)+UNSIGNED('0'&b)+tmp_cin;
 END IF;
 s <= std_logic_vector(tmp(3 DOWNTO 0));
 cout <= tmp(4);
 END PROCESS;
END behav;

Figure 2: 4-bit registered adder, first hierarchical model

Adder

s
3

b
1

a
1

a
2
b

2
a

3
b

3

c
out

c
in

b
0

s
1

a
0

s
0

s
2

reset
clkRegisterDreset

clk

The adder subsystem has an interface as shown in Figure 3. It adds the two 4-bit input vectors a and
b together with the carry input bit cin. The result consists of the 4-bit sum and an output carry bit.
The corresponding VHDL code is shown in the box below.

4

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ARCHITECTURE structural OF example_design IS

 COMPONENT adder
 PORT (
 cin : IN STD_LOGIC;
 a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 b : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 carry : OUT STD_LOGIC;
 sum : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
 END COMPONENT;

 COMPONENT DFF
 PORT (
 d : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 q : OUT STD_LOGIC);
 END COMPONENT;

 COMPONENT dff_4bits
 PORT (
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 d_4bits : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 q_4bits : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
 END COMPONENT;

 SIGNAL sum_pipe : STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL cout_pipe : STD_LOGIC;

BEGIN
 xadd : adder PORT MAP (cin, a, b, cout_pipe, sum_pipe);
 xDFF : DFF PORT MAP (cout_pipe, clk, reset, cout);
 xreg : dff_4bits PORT MAP (clk, reset, sum_pipe, s);
END structural;

Figure 3: 4-bit addition subcircuit

sum
3

c
i

n

sum
1
sum

0
sum

2

Adder

b
1

a
1

a
2
b

2
a

3
b

3

carry

b
0

a
0

A basic sequential component is the D-flip-flop. Here a positive edge trigged D- flip-flop with an
asynchronous reset is shown. We normally do not draw the clk and reset signal in schematics. They
are implicitly defined in the figures to each piece of code. The corresponding VHDL code is shown
in the text box below

We also here introduce a 4-bit wide register based on the dff code, as shown below

5

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY DFF IS

 PORT (
 d : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 q : OUT STD_LOGIC);
END DFF;

ARCHITECTURE behav OF DFF IS
BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF (reset = '1') THEN
 q <= '0';
 ELSIF rising_edge(clk) THEN
 q <= d;
 END IF;
 END PROCESS;
END behav;

Figure 4: Basic D flipflop symbol

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY adder IS
 PORT (
 cin : IN STD_LOGIC;
 a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 b : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 carry : OUT STD_LOGIC;
 sum : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END adder;

ARCHITECTURE behav OF adder IS
 SIGNAL tmp : UNSIGNED(4 DOWNTO 0);
 SIGNAL tmp_cin : STD_LOGIC_VECTOR(1 DOWNTO 0)
BEGIN
 tmp_cin <= '0' & cin;
 tmp <= UNSIGNED('0' & a) + UNSIGNED('0' & b) + UNSIGNED(tmp_cin);
 sum <= STD_LOGIC_VECTOR(tmp(3 DOWNTO 0));
 carry <= tmp(4);
END behav;

reset

d

q

D clk

1.3 Further Reading

This chapter was just a short introduction to VHDL to help you through the exercises. For further
studies of VHDL a wide range of material is available on the internet.

At the listed addresses you may find some very useful tips, hints and tricks that might improve your
skills in VHDL.

Some useful VHDL links

http://www.vhdl-online.de/ Good reference material in VHDL. The site include links,
VHDL reference and much more. Very useful.

http://www.altera.com FPGA vendor.

http://www.xilinx.com FPGA vendor.

6

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY dff_4bits IS
 PORT (
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 d_4bits : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 q_4bits : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END dff_4bits;

ARCHITECTURE behav OF dff_4bits IS

BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF (reset = '1') THEN
 q_4bits <= (OTHERS => '0');
 ELSIF rising_edge(clk) THEN
 q_4bits <= d_4bits;
 END IF;
 END PROCESS;
END behav;

Figure 5: 4-bit register symbol

q_4bits
3

d_4bits
3

q_4bits
1

q_4bits
0

q_4bits
2

reset
clkRegister

d_4bits
2

d_4bits
1

d_4bits
0

2 Modelsim Introduction
This chapter describes how to use the Modelsim VHDL simulation environment. The goal of these
exercises is to learn how to use the Modelsim simulation environment on your own to compile and
simulate VHDL code.

The tutorial is formed as a sequence of numbered steps to follow. Each time a system shell
command or simulator command is given it has a special format. First an explanation is written then
the command sequence. The example below illustrates how to list all files in the current directory.
The line starting with the number 1 is the explanation of what the command does, and "ls -al" is the
unix command to type in the terminal window. The commands are always formatted as bold italics.

1. List all files in the current directory

ls -al

First we describe how to set up a new environment. The next step will be to compile the
demonstration files and simulate them.

2.1 Setting up the Tutorial
1. Open up a terminal
2. Load the course module to set up system environment

module load courses/TSTE12
3. Start the special system shell, mentorskal

mentorskal

NOTE! All tools must be started in the Mentor-skal window or using special scripts whos name
start with TSTE12 to get the correct group permissions on all files.

4. If the labgroup number is unknown check this with
id -a
Find the entry for the group tste12lab, e.g. tste12lab99, which would mean group number
99. This is your group number.
NOTE! If you are not a member of a laboratory group, please talk with the teacher.

5. Set your working directory to the labgroup home directory. Change 99 in the command to
your group number
cd /courses/TSTE12/labs/labgrp99
NOTE! Do NOT work in your own home directory (e.g., abrli987, djikh999, winch945)
unless you are working on the handin tasks. Use the directory
‘/courses/TSTE12/labs/labgrp<nn>’ for tutorial and lab tasks.

6. Copy all necessary files from the course material directory into your directory. Please take
notice of the dot in the command
cp -R /courses/TSTE12/material/VHDL-tutorial .

7. Enter the tutorial directory with
cd VHDL-tutorial

NOTE!! All the following text assumes that your current working directory is the
VHDL-tutorial directory unless otherwise noted!!!!

7

2.2 Compiling and simulating the VHDL files

In VHDL we need a connection between the file systems reference and the logical library used
inside VHDL. This is provided with library map file. Logical libraries provide a very easy way to
make portable code. Only the library map file describe the physical connection to the file system.
We here use the default logical library name work.

8. Create the compile library
vlib work

9. Create a library map file
vmap work ./work

You are now ready to compile vhdl code.
10. Compile the example design with the behavioral architecture by entering the command:

vcom -work work src/example_design_entity.vhdl
vcom -work work src/example_design_behav.vhdl
We can specify all design units to compile in the same line. If no library name is specified it
is assumed the name is “work”, hence we may also write
vcom src/example_design_entity.vhdl src/example_design_behav.vhdl

11. Start the simulator
vsim -lib work

12. Look at the simulator start window in Figure 6.
13. Locate the library work. Expand this by clicking on the "+" to the left of the name. Select

the unit example_design, right-click and select “Simulate without optimization”.
14. The window now change to look like Figure 7, “Modelsim simulation window“.
15. Bring up the simulation windows necessary for this simulation by entering menu View, and

check that the windows Objects, Locals, and Files are checked.

8

16. Select the Files tab in the subwindow to the left. View the files included in the current
simulation by clicking on the “+” to the left of “sim”. Select example_design_behav.vhdl,
right-click and select “view source”.

17. To add top-level signals to the Wave window, click in the Objects window, then select the
menu Add. Select “To wave” and "Signals in region" from the menu.

18. The values shown for the a, b and s vectors are using a different representation, e.g., 4’h3.
This corresponds to a 4 element vector that has the value 3.

19. Apply stimulus to the clock input by moving the pointer to the Objects window. Right click
on the clk signal, and select "Modify” and then “Apply Clock...". Enter Duty=50,
period=100 ns, first edge=falling and then press Ok.
In the transcipt subwindow should now have appeared

force -freeze sim:/example_design/clk 0 0, 1 {50 ns} -r {100 ns}
It is interpreted by the simulator to mean:

Force clk to the value 0 at the current time
Then force clk to 1 at 50 ns after the current time
Repeat this cycle every 100 ns

You will see the effects of this force command as soon as you tell the simulator to run. First we
have to apply stimulus to the other inputs.

20. Apply stimulus to the reset input by moving the pointer to the Objects window. Select the
reset signal. Enter the menu Objects and select Force. Change value to 1 and press Ok.

21. In the main simulator window select Simulate/ Run / Run 100. This causes the simulation to
run and then stop after 100 ns.

22. Run another 100 ns and inspect the wave forms in the wave window.
23. Change reset to the value 0 and simulate another 200 ns.

9

24. Set a few values of a, b, cin on your own and simulate to verify the functionality of the
design. Use force to apply new signal values on the signals a, b, cin.

Reading binary values can be difficult. You will now change the radix in which the signal value is
displayed.

25. Add five copies of the signal s to the wave window. Do this by moving the pointer to the
objects window. Select signal s. Select menu Add / To wave / "Selected Signals". Repeat this
five times.

26. Move the pointer to the wave window and select one of the s signals.
27. Select menu Wave / Format / Radix / unsigned. Repeat this on the other sum signals and

apply radix binary, decimal, hexadecimal and octal.
28. Run for 200 ns, Change the value on the signal a, b and cin and simulate again.
29. To repeatedly press run 100 ns is time consuming. Change the default runtime by moving

the pointer to the main window. Press the left mouse button over the field with 100 in the
left half of the toolbar buttons. Change the value to 200 and press the icon to the right of the
value field. One can also enter the command "run" in the transcript window.

The Locals window is still empty. This is because variables are temporary and may only be
observed during simulation halt inside a process. To obtain this we will insert a breakpoint in the
VHDL code. Next, you will set a breakpoint in the process on line 11.

30. Move the pointer to the example_design_behav.vhdl subwindow. If necessary use the
vertical scrollbar, scroll until line 11 is visible. Click at or left of line number 11 to set the
breakpoint. You should see a red dot to the right of to the line number when the breakpoint
is set. This breakpoint can be toggled on and off by clicking on it.

31. Simulate again.
32. The simulator will hit the breakpoint, as shown by a blue arrow in the Source window and

by a message in the ModelSim transcript window. Also note that the parameters and
variables within the function are displayed in the Locals window.

33. Click Step into to single-step through the simulation. Step into is the button containing a
blue arrow pointing down onto a blue dot. Keep the mouse pointer over the buttons for a few
seconds and a help text appear to guide which button to press.
Notice that the values change in the Locals window. You can keep clicking Step into if you
wish.

34. In main window select menu Simulate / Run / Continue
35. Notice the simulation continues until the next breakpoint.
36. Remove the breakpoint.

Next is a demonstration of cursors to probe for values and measure time intervals. We also
experiment with scrolling and zooming.

37. In the Wave window, click on the green plus sign under the signal names. Placing the curson
on top of this button should give the help text “insert cursor”.

38. A yellow vertical line appears. Press left mouse button over the vertical line and move the
mouse pointer, and notice how the wave signal values change in the table on the left.

39. Change input values on a, b and cin for about ten values and simulate 2000 ns for each
combination.

40. The wave window will not be able to show all signals values due to long simulation time.
Use Wave / Zoom / Zoom Full to adjust this. In the same manner it is possible to zoom in
and out.

41. An easier way to achieve zoom is the following. Place the mouse pointer in the wave
window. Press and hold (middle) mouse wheel. Make a stroke 45 degrees up left. This is the
same as zoom full / view all.

42. Explore the other strokes as well. Zoom out is a keystroke 45 degrees up right. Zoom in is
any key stroke below the horizontal line, ie keystroke 45 degrees down left or right.

10

Next is a demonstration how to trace signal transitions in the wave window.
43. Select a signal by pressing the signal name in the wave window. Make sure the name is

high-lighted.
44. Locate the transition toolbar buttons. They are blue arrows pointing left and right towards a

green signal transition.
45. Press the arrow point towards right and notice how the cursor change position. This way one

may trace changes in signals very easily.

Measure times in the wave window
46. Add an extra cursor in the wave window.
47. Move one of the cursor and watch the time change on the line combining the two cursors.

This way we have a very easy way to measure time between events. This knowledge will be
useful later in the course.

How to stop a running simulation
48. Locate the break button. It is the third button to the left of the default simulation time.
49. Type "run 1000000000" in the transcript window.
50. Look at the lower left corner of the main window. Notice how the simulation time is

increasing.
51. Wait for a few seconds. Then press the break button. The simulation has now stopped at

current simulation time.

End the simulator and the currently loaded simulation.
52. Quit the simulator by using menu File/Quit.

To quit without the dialogue box and without saving data. Enter in the transcript window.
quit -force
This command exits the simulator without saving data.

53. In the shell, view the transcript file
cat transcript
All lines the transcript file not starting with a # is a valid modelsim command. This may be
useful to create macro files to ease simulation executions. If the transcript file is edited and
saved under a suitable name it might be executed from inside modelsim. We will soon
demonstrate this with a prepared macro file.

2.3 Simulating the hierarchical model

The first model of the example design has now been verified. If we developed our model, the next
step would be to refine the behavioural model into a structural model. This model is already
prepared as we described in 1.2, “Example Design” . The next step is to compile, simulate and
verify the structural model. This structural version of example_design contains an adder and
registers as instantiated components.

54. View the code pieces in the Mentorskal window with
cat src/dff.vhdl
cat src/dff_4bits.vhdl
cat src/adder.vhdl
cat src/example_design_structural.vhdl

This is a small design. As the complexity grows the control over the design structure may be
hard to manage. In chapter 3 HDL Designer Introduction, we demonstrate how to manage
the complex designs with a graphical design entry.

55. Compile the design units
vcom src/dff.vhdl

11

vcom src/dff_4bits.vhdl
vcom src/adder.vhdl
vcom src/example_design_structural.vhdl
Take notice of that the design entity is already compiled. We now only add one more
architecture to the design. Important is also the order of compilation.

56. Start the simulator
vsim

57. Load the the design example_design and simulate it with the architecture structural. The
architecture to use can be selected by clicking on the plus to the left of example_design in
the library window, and then right-click on the wanted architecture.

58. Select the menu Tools/Tcl/Execute macro.... In the dialog box open the dofiles directory and
select the file example_design.do
Feel free to inspect the file later. It is a text file.

59. Press open and take notice of the actions.
60. Continue to verify the functionality.
61. Place the mouse pointer over the main window. Expand the design structure of example

design in the sim window.
62. Double click on one of xdff, xadd, xreg to look at the corresponding source file. Selecting

design units this way make it possible to access all sub blocks and place, e.g. breakpoints in
the code.

63. You should now have basic skills good enough to complete all necessary simulations during
the course. In later chapters there are a few tips and tricks to increase your simulation skills.

64. Quit the simulator.

12

3 HDL Designer Introduction
The purpose with this exercise is to introduce tools for implementation of designs using VHDL. The
tools introduced in the tutorial is also used in the project part of this course. The tools we will use
are Modelsim from Mentor Graphics for VHDL simulation and HDL Designer which also come
from Mentor Graphics for design and architectural/graphical design approach.

3.1 Background

We first define the basics of the HDL designer environment and component concepts. The
previously simulated example_design will be reimplemented using the design tools.

To demonstrate the possibility of hierarchical design we utilize the ability to create one or more
views to each component. We first add the component symbol and a behavioral architecture. The
design is then simulated and validated.

The next step is to add hierarchy in the example design and we introduce the block diagram and use
this to refine the example design structure.

3.2 Top-down design

We here define a model as a step in the design flow of successive refinement. To each model a
number of sub blocks exist, that are achieved as sufficiently defined blocks are obtained. The goals
for each model are stated in advance.

In top-down design we develop the system stepwise by synthesizing and validating each level. The
design levels are successively partitioned into sub blocks. This process for decomposition is
repeated until sufficiently simple blocks are obtained, as illustrated in Figure 8.

The process of decomposition with successive refinement also guarantees that larger and more
important issues are resolved before the detailed issues. By only making small modifications
between successive models, the managing and validation of models becomes simpler. Furthermore,
a correct design becomes more likely.

13

Since the only thing that changes is the structure of each level in the design process, the design will
at all levels be possible to validate against the top model with the same validation methods. This
framework for testing is described later in the course, using testbenches and macro files.

3.3 Getting started

The HDL Designer tool needs to be setup the first time you use it. This setup consists of configuring
default simulation tools, synthesis tools, etc. The settings presented in 3.3.2 Configuring HDL
Designer the first time is only necessary to perform once.

3.3.1 Starting the tool

It is assumed that the reader has a basic knowledge in VHDL. This tutorial is focused on the tools,
not the exercise of writing code. The project module must be added, all system setup is included in
the course module. You will then be able to start a special terminal shell called "mentorskal". In
case you do not use this environment you have to load a special mentor module. Ask the course
administration about the actual module to load.

The next 6 steps are vital before starting any tool used in this tutorial.
1. Open up a terminal
2. Load the course module to set up system environment

module load courses/TSTE12

NOTE! All tools must be started in the Mentorskal window to get the correct group permissions on
all files.

3. Start the special system shell, mentorskal
mentorskal

4. If the lab group number is unknown check this with
id -a
Find the entry for the group tste12lab, eg tste12lab99, which would mean group number 99.
This is your group number.
NOTE! If you are not a member of a laboratory group, please talk with the teacher.

5. Set your working directory to the labgroup home folder. Change 99 in the command to your
group number
cd /courses/TSTE12/labs/labgrp99
Do NOT work in your own home directory (e.g., abrli987, djikh999, winch945), use the
directory ‘/courses/TSTE12/labs/labgrp<nn>’.

There are two ways to start the HDL designer application, TSTE12lab and TSTE12proj. These
commands checks the group number assigned to you, and moves automatically to the correct
project or lab directory before starting HDL designer.

6. Use the started terminal as your terminal.
7. Now start the HDL designer environment from the mentorskal

TSTE12lab
or
TSTE12proj

There will appear a window looking like Figure 9, “Default HDL Designer window”. This is the
initial appearance of HDL designer. The first time you start HDL Designer is a setup assistant

14

opened, as shown in Figure 10. Follow the step below in 3.3.2 Configuring HDL Designer the first
time the first time to configure the tool.

3.3.2 Configuring HDL Designer the first time

The HDL Designer tool requires some initial configuration to be performed before it may be used.
The following step should only be necessary the first time the tool is started. It will create some
configuration files in your home directory, and use that configuration for any future usage.

It is possible to start the HDS setup assistant wizard later by selecting Help->HDS Setup Assistant.

The following entries should be set in the HDS Setup Assistant Wizard once it starts.
1. Select Next
2. Set the default language to VHDL’93 both for graph and text, select next
3. Select FPGA as the type of design to create, and select both Altera and Xilinx FPGA

technology, select next

15

4. Select the default MODEL_SIM simulator, select next
5. Select the default PRECISION synthesis tool, select next
6. Deselect HDL Wrapper Generation from C++ and I/O Designer, select Finish
7. Select cancel when given option to add a design or create a new design contents.

A web browser is necessary to read the software documentation etc. The one to use must be defined.

8. Select Options→HTML browser. Set it to /usr/bin/firefox.
HDL Designer automatically adds some default library definitions to all designs. This have to be
modified in our case. The following step sets the default library set to include ieee.numeric_std.

9. Select Options->VHDL in the main windows. Select the Default Packages subwindows.
Change the text by replacing the reference to ieee.std_logic_arith with a reference to
ieee.numeric_std as shown in Figure 11.

16

3.3.3 Creating a new project

A project is a collection of libraries containing the design files. Libraries in a project can be of three
types; regular, protected, and downstream only. The design you create should be placed in a regular
library.

1. Select File->New->project. The current opened project (if any) must be closed before a new
project can be created, select ok if asked to do so.

2. Add a name to your project. In this example we have used my_project. You may also enter a
short description of your project. See Figure 12.

3. Make sure the directory in which the project is created is correct. Use the Browse button to
select another directory. It should point to the proper lab or project directory. Press the next
button to continue to the next step.

4. Select Next. Select “Open the project” and press Finish to end the project setup. You are
now ready to enter design data into the project design library.

3.3.4 Creating the symbol

We are now ready to enter the component interface. The interface and its corresponding symbol
corresponds to the VHDL entity description.

1. To define the symbol select File->New->Design content...
2. Select Interface from the dialogue that is shown in Figure 13, “Create a new symbol using

New Design Contents Wizard” and press finish.
3. The symbol editor window appears. The window have a number of possible different views,

selected through the Structure Navigator in the upper right corner of the window.
4. Save the symbol using the file menu/save. Save to the library we created and use

“example_design” as name of the design unit.
5. Now add ports to the symbol. Select the Symbol tab in the symbol editor window. Useful

symbol editing functions are described in Figure 14, “Symbol editor buttons”. Locate them
in the symbol window and press to add an input port. Place the cursor pointer next to the
symbol and click. The port is now attached to the symbol. Right-click to leave the add port
mode.

6. Edit the port definition to suit our definition. Double-click on the port text to edit the name
and definition. Figure 15 shows the completed symbol. This can also be done using the
textual interface window as shown in Figure 16 Symbol editor window with completed
example_design interface.

17

Figure 12 Project creation window

18

7. Add remaining ports to have a complete symbol as shown in Figure 15, “Symbol editor
window with example_design symbol“.

8. Save the symbol.

3.3.5 Add a view to the symbol

The views to each component symbol define the behavior/architecture. There are several different
ways to define this. All views are translated to VHDL based on the graphical views. The first we
explore is a user written VHDL view.

1. In the symbol window press right mouse button on the symbol and choose "Open / New
view"

2. We reach the window in Figure 17, “Open Down Create New View, add a VHDL combined
view”. Select VHDL File and Combined file type. Select also VHDL'93. Press next.

3. Name the architecture to behav. Press finish.
4. Inspect the window Figure 18, “New VHDL combined view”. The complete combined view

is shown. However, only the architectural is to be changed here. The entity part is generated
from the symbol.

5. Add the missing code in the architectural part. The code is described in section 1.2,
“Example Design“ as architecture behav. It is the same code we simulated in section 2.2,
“Compiling and simulating the VHDL files“.

6. Save the VHDL view.
7. Use Document->Check Syntax to verify that the code syntax is correct. This is also done

automatically when the file is saved.
8. If there was a syntax error use the error message to locate the error. Correct the syntax errors

and repeat from 6 above until no errors remain.

19

20

Figure 18 New VHDL combined view

Figure 17 Open Down Create New View, add a VHDL combined view

3.4 Validate the design – single level

There is now a complete design. The first step is to generate the VHDL code, compile this to
validate a lexically correct code. In the next step a functional validation is performed with
simulation

1. First we have to add a toolbar button to the design manager window. Enter the menu Tasks
and select "Tasks and templates".

2. A window now appear to the right in the design manager window.

Locate the tasks window tab in the right part of the window.
3. Select the icon "Modelsim Compile" with the left mouse button, Press right mouse button on

the icon, in the pop-up menu select "Add to" and then Toolbar.
We have now installed the compile toolbar button.

4. Select the design unit "example_design" in the design manager window.
5. Locate the Generate toolbar button. Keep the mouse pointer over the buttons and a help text

appear as guide. Press the drop menu at the Generate button and select "Perform generation
on graphics files (Single)"

The tool now generates interface VHDL code and concatenates it with the behavioral code we
entered. Locate and correct any errors that appear in the transcript window. The next step is to
compile and simulate.

6. Locate the Modelsim Compile toolbar button. Keep the mouse pointer over the buttons and
a help text appear as guide. Press the drop menu at the Compile button and select "Runs
Modelsim compilation (Single)".

Locate and correct any errors that appear in the transcript window. It is not possible to simulate the
design if it not is compiled without errors.

7. Locate the Modelsim Flow toolbar button. Keep the mouse pointer over the buttons and a
help text appear as guide. Press the drop menu at the Compile button and select "Generate
and run entire Modelsim flow (Single)".

8. The dialog box to start modelsim simulator appear. Press Ok and wait until the simulator has
started.

9. Validate the design with the methods as the pure VHDL model. Here it is possible to save a
lot of time with the use of modelsim macro files.

3.5 Additional views

In this part, the concept of successive refinement using hierarchy is demonstrated. We use block
diagram to implement a schematic and refine the structure of the design.

3.5.1 Hierarchy
1. Open the symbol editor window.
2. Press and release right mouse button over the symbol. From the popup menu select Open /

"New View...".
3. In the "Open Down Create New View" window select the type "Block Diagram". Press

button "Next" in the dialog box and then button "Finish" on the next dialog box.
4. Save the schematic. Move the mouse pointer to the menu File and then select Save. Is is also

possible to use the keyboard shortcut pressing Control and S simultaneously, i.e. Ctrl-S.
Save your changes frequently.

21

The schematic that appears will once completed describe the same structure as shown in Figure 2,
but this far only the port connections have been automatically added. The interface is extracted from
the symbol interface. Compare the ports in the schematic to the symbol. The next step is to add
blocks and connections.

5. Add three blocks to the schematic. Locate the blue block entry in the toolbar buttons. Press
the button and place three blocks in the schematic using the left mouse button. End placing
blocks with the right mouse button. Resize and arrange the blocks on the schematic.

6. Connect the ports to the associated blocks. Place the mouse over the red circle. Press and
keep down the left mouse button over the circle and drag over the block it should be
connected to. Release the mouse button and the wire is now connected to the block.

Next is to add a global connector and illustrate the use of connect by name.
7. Add a global connector to the clk port. This way clk will be implicitly declared on all block

interfaces in the schematic. Locate the yellow round dot entry in the toolbar buttons. Place
the connector close to the red circle of the clk net. Drag and drop the red circle from clk net
on the connector to connect them.

8. Connect an input port/net to the dff and dff4 blocks. Locate the "Add signal" toolbar button.
Add the reset signal by pressing left mouse button outside the block followed by pressing
left mouse button inside the block. The signal will have a name like sig0. We will change
this in the next step. Continue adding the second reset signal and end using the right mouse
button.

9. Change name from sig0 to reset. Press right mouse button on the sig0 name and select
Object properties. Alter the name to reset and press Apply. A warning appear the nets are
now connected by name. Press Ok! Repeat this on all reset signals.

10. Next is the addition output connected to the 4-bit register. Locate the "Add bus" toolbar
button. Add the bus pressing left mouse button over the block and then move over to the
next block and press left mouse button again. The signal will have the name look like dbus0.
We change this in the next step.

11. Change name from dbus0 to d_4bits. One way to do this is to press right mouse button on
the dbus0 name and select Object properties. Alter the name to d_4bits. If necessary change
style to bus, type to std_logic_vector and set bound to 3 downto 0. Press Ok

12. Add the reaming signals and buses.

The next step is to add behavior to the blue blocks.
13. Press and release right mouse button on the block that will be named dff. From the popup

menu select Open as / "New View...".
14. We reach the window , “ Open down Create New view - ” . Select VHDL view and

combined view. Press next.
15. Replace the entity name <block> with dff and set architecture name to behav, press Ok.
16. Name the architecture to behav. Press finish.
17. Add the missing code in the architectural part. The code is described in 1.2, “Example

Design“ as architecture behav in the file example_design_behav.vhdl. It is the same code we
simulated in “2.3 Simulating the hierarchical model“.

18. Save the VHDL view.
19. Add behavior to the remaining two blue blocks.
20. Save the schematic.

The block diagram should now be complete. The next step will be generate code, compile and
validate the behavior.

22

3.6 Validate the design - block diagram

There is now a complete design. The first step is to generate the VHDL code, compile this to
validate a lexically correct code. In the next step a functional validation is performed with
simulation

21. We have to make sure that the struct view is the default one, i.e. the view that will be used in
generate and compile.
Select the struct view in the design manager window. Press right mouse button on the name
and release. From the popup menu select "Set Default View". A small blue arrow will now
appear next to the view.

22. Select the design unit "example_design" in the design manager window.
23. Locate the Generate toolbar button. Keep the mouse pointer over the buttons and a help text

appear as guide. Press the drop menu at the Generate button and select "Perform generation
on graphics files (Through blocks)"

The tool now generates interface VHDL code and concatenates it with the behavioral code we
entered. Locate and correct any errors that appear in the transcript window. The next step is to
compile and simulate.

24. Locate the Compile toolbar button. Keep the mouse pointer over the buttons and a help text
appear as guide. Press the drop menu at the Compile button and select "Runs Modelsim
compilation (Through blocks)".

Locate and correct any errors that appear in the transcript window. It is not possible to simulate the
design if it not is compiled without errors.

25. Locate the Modelsim Flow toolbar button. Keep the mouse pointer over the buttons and a
help text appear as guide. Press the drop menu at the Compile button and select "Generate
and run entire Modelsim flow (Through blocks)".

26. The dialog box to start modelsim simulator appear. Press Ok and wait until the simulator has
started.

27. Validate the design with the methods as the pure VHDL model. It is here possible to save a
lot of time with the use of modelsim macro files.

3.7 Tips and tricks

The VHDL generated for a component can be viewed by right-clicking on a component and select
“View generated HDL”.

All generated VHDL code can be removed. The schematics and interface definitions are not
removed, but the VHDL generated from these descriptions is removed. Right-click on the library
name and select “Delete generated HDL from disk”.

If the library you have worked with is not available any more, then create a new library in the
project where the location is set to the same as your previous library (e.g.
/courses/TSTE12/labs/labgrpXX/lab1/KEYBOARD).

23

	1 Introduction
	1.1 General
	1.2 Example Design
	1.3 Further Reading

	2 Modelsim Introduction
	2.1 Setting up the Tutorial
	2.2 Compiling and simulating the VHDL files
	2.3 Simulating the hierarchical model

	3 HDL Designer Introduction
	3.1 Background
	3.2 Top-down design
	3.3 Getting started
	3.3.1 Starting the tool
	3.3.2 Configuring HDL Designer the first time
	3.3.3 Creating a new project
	3.3.4 Creating the symbol
	3.3.5 Add a view to the symbol

	3.4 Validate the design – single level
	3.5 Additional views
	3.5.1 Hierarchy

	3.6 Validate the design - block diagram
	3.7 Tips and tricks

