

TSTE12 Design of Digital Systems
Lecture 12
Kent Palmkvist

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 2

Agenda

• Microprocessor structures and programming

• Assembly language

• C-language low level programming

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 3

Practical issues
• Project presentation no later than 27/10

• I have not checked exams, may require an earlier date if exams
27/10

• Two sessions
– 2-3 groups/session

• 1 group presents while others are acting as audience, then swap

• 20 minutes for each group, including demo

• Projector, DE2-board, screen, keyboard, speakers available in
presentation room.

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 4

Microprocessor usage
• Suitable for complex programming

– User interfaces
– Complex state machine behavior

• Standard components

• Longer response time
– Responses in range of us, ms, or more

• High resource utilization
– ALU, registers etc.

• Sequential processing

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 5

Why leave microprogrammed
structures

● Assembly language simplifies programming
– No need to understand all small details
– Lot of timing issues hidden

● Smaller memory footprint than microprogrammed
– Previous microprogrammed example: long sequence of event for loading

register value
– Many control bits never used at the same time

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 6

Why leave microprogrammed
structures, cont.

● Increase reuse
– Architecture of processor may change while keeping the assembly

language format
● Example: 8086->80386->pentium->core2->i7
● Sometimes binary compatible

– Compilers of high-level languages
● C/C++, JAVA, Python, Perl,....

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 7

Model computer example

● Computer
– Central processing unit

● Program pointer
● Instruction register
● Ackumulator

– Memory
● Program
● Data

– Peripherals
● Inputs
● outputs

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 8

General Microprocessor Structure

● Similar to microprogrammed structure

● Program information stored in memory
– Shared with data contents

● Program counter
– Point to next instruction to execute

● Instruction Register
– Current executed instruction (not visible to programmer)

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 9

Programmer model

● General Purpose Registers
– Single or multiple registers

● Special purpose registers
– Program counter (PC, point to next instruction to execute)
– Stack pointer (SP, temporary space + return adresses)
– Index registers (addressing modes, pointers)
– Flag register (indicate result properties from operations, e.g. plus, zero)

● Memory space
– Read or write to memory cells
– Some addresses does not have memory cells

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 10

Microprocessor behavior

● Fetch
– Read Program instruction from memory (pointed to by program counter

(PC) register)

● Decode
– Determine what to happen, create control signals, fetch register values

● Execute
– Update register values, move data to/from memory, arithmetic/logic

operations, jumps,M

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 11

Assembly level programming

● Describe each instruction used to implement behavior
– Work on internal registers and/or memory cells

● Platform dependent
– Each processor family have their own instruction set
– Many models of the same CPU family share instruction set (e.g., 8086 –

core i7)

● Maximum detail (compared to C etc.)

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 12

Instruction types

● Memory access
– Includes I/O input and output
– Support various addressing modes

● Arithmetic and logic
– Modify/calculate register values
– Include shift and rotate

● Register transfer
– Move values between registers

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 13

Instruction types, cont.

● Branch and Jump
– Includes conditional branch/jump

● Stack, Subroutines
– pop/push, call, return from subroutine

● Control
– Enable/disable interrupts, hardware breakpoints etc

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 14

Adressing modes

● Immediate
– Data in instruction itself, e.g. movia r1,0x12

● Direct
– Address defined in instruction, e.g ldw r1,0x1234

● Indirect
– Register contains address to use, e.g. ldw r1,0(r2)

● Indexed
– Address plus offset, e.g. ldw r1,0x1324(r2)

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 15

Assembly program example

● Calculate the
sum of
products

.include "nios_macros.s"

.global _start
_start:

movia r2, AVECTOR /* Register r2 is a pointer to vector A */
movia r3, BVECTOR /* Register r3 is a pointer to vector B */
movia r4, N
ldw r4, 0(r4) /* Register r4 is used as the counter for loop iterations */
add r5, r0, r0 /* Register r5 is used to accumulate the product */

LOOP: ldw r6, 0(r2) /* Load the next element of vector A */
ldw r7, 0(r3) /* Load the next element of vector B */
mul r8, r6, r7 /* Compute the product of next pair of elements */
add r5, r5, r8 /* Add to the sum */
addi r2, r2, 4 /* Increment the pointer to vector A */
addi r3, r3, 4 /* Increment the pointer to vector B */
subi r4, r4, 1 /* Decrement the counter */
bgt r4, r0, LOOP /* Loop again if not finished */
stw r5, DOT_PRODUCT(r0) /* Store the result in memory */

STOP: br STOP

N: .word 6 /* Specify the number of elements */
AVECTOR: .word 5, 3, −6, 19, 8, 12 /* Specify the elements of vector A */
BVECTOR: .word 2, 14, −3, 2, −5, 36 /* Specify the elements of vector B */
DOT_PRODUCT: .skip 4

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 16

Assembly results

● Translate
instruction
to binary
form

● Indicate
value in
each
memory
adress

 1 .include "nios_macros.s"
 2
 3 .global _start
 4 _start:
 5 0000 34008000 movia r2, AVECTOR /* Register r2 is a pointer to vector A */
 5 04008010
 6 0008 3400C000 movia r3, BVECTOR /* Register r3 is a pointer to vector B */
 6 0400C018
 7 0010 34000001 movia r4, N
 7 04000021
 8 0018 17000021 ldw r4, 0(r4) /* Register r4 is used as the counter for loop iterations */
 9 001c 3A880B00 add r5, r0, r0 /* Register r5 is used to accumulate the product */
 10 0020 17008011 LOOP: ldw r6, 0(r2) /* Load the next element of vector A */
 11 0024 1700C019 ldw r7, 0(r3) /* Load the next element of vector B */
 12 0028 3A38D131 mul r8, r6, r7 /* Compute the product of next pair of elements */
 13 002c 3A880B2A add r5, r5, r8 /* Add to the sum */
 14 0030 04018010 addi r2, r2, 4 /* Increment the pointer to vector A */
 15 0034 0401C018 addi r3, r3, 4 /* Increment the pointer to vector B */
 16 0038 C4FF3F21 subi r4, r4, 1 /* Decrement the counter */
 17 003c 16F83F01 bgt r4, r0, LOOP /* Loop again if not finished */
 18 0040 15004001 stw r5, DOT_PRODUCT(r0) /* Store the result in memory */
 19 0044 06FF3F00 STOP: br STOP
 20
 21 N:
 22 0048 06000000 .word 6 /* Specify the number of elements */
 23 AVECTOR:
 24 004c 05000000 .word 5, 3, -6, 19, 8, 12 /* Specify the elements of vector A */
 24 03000000
 24 FAFFFFFF
 24 13000000
 24 08000000
 25 BVECTOR:
 26 0064 02000000 .word 2, 14, -3, 2, -5, 36 /* Specify the elements of vector B */
 26 0E000000
 26 FDFFFFFF
 26 02000000
 26 FBFFFFFF
 27 DOT_PRODUCT:
 28 007c 00000000 .skip 4...

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 17

Program flow

● Very similar to microcode
– Single sequential execution of instructions
– Branch/jump used to implement loops, conditional statements

● Subroutines implements function calls
– Subroutine call saves next instructions location before jump to subroutine
– At end of subroutine restore PC to make jump back to instruction after

subroutine call

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 18

Interrupts

● Give response without polling/checking continuously

● Interrupt sequence due to external event
– Timer, I/O, Illegal instruction, etc.

● Interrupt routine at predefined location in memory

● Sequence being interrupted must not notice interrupt
– Save processor state, and restore after completed interrupt routine
– Similar to a subroutine call, but without any instruction making the call

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 19

C-level programming

● Platform independent or with little platform dependence
– Big endian vs little endian
– Word size (8, 16, 32, 64)

● Possible to describe interrupt routines etc (same as assembly
language)

● Use of hardware through memory mapped I/O
– Store values into registers
– Read values from registers

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 20

C-level programming, cont.

● Registers in the processor not directly accessible
– Compiler decides where to put variables (registers, memory etc.)

● Simple constructs may be translated into long sequences of
assembly code

● Less control of code

● Possible to mix with assembly language

10/09/2023 00:07

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 21

I/O example

● Parallel input port for switches
– Decode memory address, read value directly

● Parallel output port for LED
– Write to a

register
driving the
LEDs

● Pointers
used to
reference
memory

#define SWITCHES_BASE_ADDRESS 0x10000010
#define LEDR_BASE_ADDRESS 0x10001000

int main(void)
{
 int * red_leds = (int *) LEDR_BASE_ADDRESS; /* red_leds is a pointer to the LEDRs */
 volatile int * switches = (int *) SWITCHES_BASE_ADDRESS; /* switches point to toggle switches */
 while(1)
 {
 *(red_leds) = *(switches); /* Red LEDR[k] is set equal to SW[k] */
 }
 return 0;
}

2023-10-09TSTE12 Design of Digital Systems, Lecture 12 22

Additional subjects

● Floating point calculations and hardware

● Caches

● Virtual memory

●

10/09/2023 00:07

10/09/2023 00:07

