10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 2

Agenda

» Microprocessor structures and programming
* Assembly language
* C-language low level programming

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 3

Practical issues

* Project presentation no later than 27/10

* I have not checked exams, may require an earlier date if exams
27/10

* Two sessions

- 2-3 groups/session
* 1 group presents while others are acting as audience, then swap
* 20 minutes for each group, including demo

* Projector, DE2-board, screen, keyboard, speakers available in
presentation room.

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 4

Microprocessor usage

 Suitable for complex programming
- User interfaces
- Complex state machine behavior

« Standard components

* Longer response time
- Responses in range of us, ms, or more

* High resource utilization
- ALU, registers etc.

* Sequential processing

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 5

Why leave microprogrammed
structures

* Assembly language simplifies programming
- No need to understand all small details
- Lot of timing issues hidden

* Smaller memory footprint than microprogrammed

- Previous microprogrammed example: long sequence of event for loading
register value

- Many control bits never used at the same time

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 6

Why leave microprogrammed
structures, cont.

* Increase reuse

- Architecture of processor may change while keeping the assembly
language format

+ Example: 8086->80386->pentium->core2->i7
* Sometimes binary compatible

- Compilers of high-level languages
*« C/C++, JAVA, Python, Perl,....

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12

Model computer example

« Computer

- Central processing
* Program pointer
* Instruction regist
* Ackumulator

- Memory
* Program
* Data

- Peripherals
* Inputs
* outputs

Dator

2023-10-09

Centralenhet

Minne

Program

‘ Programpekare ‘

LDA 24

‘ Instruktionsreg. ‘

Ackumulatorreg.

Data

7

IN-

enhet

IN-

Teg.

24| data

UT-
TEg. UT-
enhet

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12

2023-10-09

General Microprocessor Structure

* Program counter

Similar to microprogrammed structure

Program information stored in memory
- Shared with data contents

- Point to next instruction to execute

Instruction Register
- Current executed instruction (not visible to programmer)

8

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 9

Programmer model

* General Purpose Registers
- Single or multiple registers

* Special purpose registers
- Program counter (PC, point to next instruction to execute)
- Stack pointer (SP, temporary space + return adresses)
- Index registers (addressing modes, pointers)
- Flag register (indicate result properties from operations, e.g. plus, zero)

* Memory space
- Read or write to memory cells
- Some addresses does not have memory cells

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 10

Microprocessor behavior

* Fetch
- Read Program instruction from memory (pointed to by program counter
(PC) register)

* Decode
- Determine what to happen, create control signals, fetch register values

« Execute

- Update register values, move data to/from memory, arithmetic/logic
operations, jumps,M

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 11

Assembly level programming

* Describe each instruction used to implement behavior
- Work on internal registers and/or memory cells

* Platform dependent
- Each processor family have their own instruction set
- Many models of the same CPU family share instruction set (e.g., 8086 -
core i7)

*« Maximum detail (compared to C etc.)

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 12

Instruction types

* Memory access
- Includes I/O input and output
- Support various addressing modes

* Arithmetic and logic
- Modify/calculate register values
- Include shift and rotate

* Register transfer
- Move values between registers

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12

Instruction types, cont.

* Branch and Jump
- Includes conditional branch/jump

» Stack, Subroutines
- pop/push, call, return from subroutine

* Control
- Enable/disable interrupts, hardware breakpoints etc

2023-10-09

13

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12

Adressing modes

Immediate
- Data in instruction itself, e.g. movia r1,0x12

Direct
- Address defined in instruction, e.g ldw r1,0x1234

Indirect
- Register contains address to use, e.g. ldw r1,0(r2)

Indexed
- Address plus offset, e.g. ldw r1,0x1324(r2)

2023-10-09

14

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12

2023-10-09 15

Assembly program example

.include "nios_macros.s"

e Calculate the

sum of
products

_start:

LOOP:

STOP:

N:

.global _start

movia r2, AVECTOR /* Register r2 is a pointer to vector A */
movia r3, BVECTOR /* Register r3 is a pointer to vector B */

movia r4, N
Idw r4, 0(r4)
add r5, r0, r0
Idw r6, 0(r2)
Idw r7, 0(r3)
mul r8, r6, r7
add r5, r5, r8
addir2,r2,4
addir3, r3, 4
subird, r4, 1
bgt r4, r0, LOOP

br STOP

.word

AVECTOR: .word
BVECTOR: .word
DOT_PRODUCT: .skip 4

/* Register r4 is used as the counter for loop iterations */
/* Register r5 is used to accumulate the product */
/* Load the next element of vector A */

/* Load the next element of vector B */

/* Compute the product of next pair of elements */
/* Add to the sum */

/* Increment the pointer to vector A */

/* Increment the pointer to vector B */

/* Decrement the counter */

/* Loop again if not finished */

stw r5, DOT_PRODUCT(r0) /* Store the result in memory */

6 /* Specify the number of elements */
5, 3, —6, 19, 8, 12 /* Specify the elements of vector A */
2,14, -3, 2, =5, 36 /* Specify the elements of vector B */

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12

Assemb] y res UItS

5
5
6
6
7
7

 Translate

0000

0008

0010

8 0018

instruction @
. 11
to binary :

3

form ir

* Indicate
valuein 2z
each 24
memory
adress 2

001c
0020
0024
0028
002c
0030
0034
0038
003c
0040
0044

0048

004c

0064

007c

34008000
04008010
3400C000
0400C018
34000001
04000021
17000021
3A880B00
17008011
1700C019
3A38D131
3A880B2A
04018010
0401c018
C4FF3F21
16F83F01
15004001
06FF3F00

06000000

05000000
03000000
FAFFFFFF
13000000
08000000

02000000
0E000000
FDFFFFFF
02000000
FBFFFFFF

00000000

movia r2,

movia r3, BVECTOR

movia r4, N

ldw r4,
add r5,
LOOP : ldw r6,
ldw r7,
mul r8,
add r5,

addi r2,
addi r3,

0(r4)
r0, r0
0(xr2)
0(r3)
r6, r7
r5, r8
r2, 4
r3, 4

subi r4, r4, 1

bgt r4, r0, LOOP

stw r5,
STOP: br STOP
N:
.word 6
AVECTOR:

AVECTOR

DOT_PRODUCT (r0) /*

.word 5, 3, -6, 19,

BVECTOR:

.word 2, 14, -3, 2,

DOT_PRODUCT:
.skip 4...

36 /*

2023-10-09 16

Register r2 is a pointer to vector A */

Register r3 is a pointer to vector B */

Register r4 is used as the counter for loop iterations */
Register r5 is used to accumulate the product */
Load the next element of vector A */

Load the next element of vector B */

Compute the product of next pair of elements */
Add to the sum */

Increment the pointer to vector A */

Increment the pointer to vector B */

Decrement the counter */

Loop again if not finished */

Store the result in memory */

Specify the number of elements */

Specify the elements of vector A */

Specify the elements of vector B */

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 17

Program flow

* Very similar to microcode
- Single sequential execution of instructions
- Branch/jump used to implement loops, conditional statements

* Subroutines implements function calls
- Subroutine call saves next instructions location before jump to subroutine

- At end of subroutine restore PC to make jump back to instruction after
subroutine call

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 18

Interrupts

* Give response without polling/checking continuously

Interrupt sequence due to external event
- Timer, I/O, Illegal instruction, etc.

Interrupt routine at predefined location in memory

* Sequence being interrupted must not notice interrupt
- Save processor state, and restore after completed interrupt routine
- Similar to a subroutine call, but without any instruction making the call

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 19
|]
C-level programming

* Platform independent or with little platform dependence
- Big endian vs little endian
- Word size (8, 16, 32, 64)

* Possible to describe interrupt routines etc (same as assembly
language)

* Use of hardware through memory mapped I/O
- Store values into registers
- Read values from registers

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12 2023-10-09 20

C-level programming, cont.

* Registers in the processor not directly accessible
- Compiler decides where to put variables (registers, memory etc.)

* Simple constructs may be translated into long sequences of
assembly code

 Less control of code

» Possible to mix with assembly language

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

TSTE12 Design of Digital Systems, Lecture 12

/O example

» Parallel input port for switches
- Decode memory address, read value directly

» Parallel output port for LED

- Write to0 @ 4define SWITCHES BASE_ADDRESS 0x10000010

reg‘ister #define LEDR_BASE_ADDRESS 0x10001000
derlIlg the int main(void)
LEDs
int * red_leds = (int *) LEDR_BASE_ADDRESS;
° Pointers volatile int * switches = (int *) SWITCHES_BASE_ADDRESS;
while(1)
used to {
*(red_leds) = *(switches);
reference (red_leds) = (switches)
memory return 0;

}

2023-10-09 21

/* red_leds is a pointer to the LEDRs */
/* switches point to toggle switches */

/* Red LEDR[K] is set equal to SW[k] */

LINKOPING
II.“ UNIVERSITY

TSTE12 Design of Digital Systems, Lecture 12

Additional subjects

Floating point calculations and hardware

Caches

Virtual memory

2023-10-09 22

LINKOPING
II.“ UNIVERSITY

10/09/2023 00:07

