

TSTE12 Design of Digital Systems
Lecture 4
Kent Palmkvist

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 2

Agenda

• Practical issues

• Short tool overview

• Introduction to VHDL, continued
– Timing
– Testbench

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 3

TSTE12 Deadlines Y,D,ED

• First meeting with supervisor should happen no later than today!
– Determine project manager (contact person)
– Questions (short meeting)

• Lab 1 deadline Wednesday 11 September at 21.00
– Require pass to continue project!

• Tuesday 10 September: First version of requirement specification
– We use LIPS ”light”, want to capture expected behavior of

final result in requirement specification

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 4

TSTE12 Deadlines MELE, erasmus

• Group definition Wednesday 11 September (afternoon)
– On web, include supervisor assignment

• Friday 13 September: First meeting with supervisor
– Determine project manager (contact person)
– Question (short meeting)

• Tuesday 17 September: First version of requirement specification

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 5

MUX lab access

● LiU-card should now give access to MUX2 lab

– Email me if you can not get into the lab

● Lab available 5-23 every day
– Make sure to verify in schedule server if lab is available outside course

schedule
– MUX2 mostly used only for TSTE12
– MUX1 also sometimes available (used more by other courses)

● Remote login: use thinlinc

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 6

Project issues

● Expected project participation conduct

– Do no be late to meetings
– Inform the rest of the group if you have problem attending a meeting (in

advance if possible)
– Keep track of your project work, noting amount and type of task

● Documents should be discussed and approved by supervisor

● Possible to fail project even if design works

● Possible for individual to fail project even if rest of group get a pass!

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 7

Project hints

● Hints about Requirement specification

– Possible subsystem: control, display, audio processing
– Add plenty of features
– Set priority (low, medium, high)
– Avoid multiple requirements in one requirement statement

● Hints about design specification

– Should indicate idea about general building blocks
● Interfaces (signals/data to communicate)
● Behavior

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 8

Design flow and tools

● Three types of examined activities in the course

– Handin
– Lab
– Project

● For handins (start next week): use simple text editor + modelsim

– Start the TSTE12handin shell
– Write code, compile, simulate, finally upload code

● Chapter 2 tutorial notes shows how to use modelsim
http://www.isy.liu.se/edu/kurs/TSTE12/kursmaterial/

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 9

HDL Designer tool

● Design entry tool, main entry tool to the project

– Tutorial chapter 3 introduce this www.isy.liu.se/edu/kurs/TSTE12/kursmaterial
● Tools used to manage libraries, design, and other tools for use by larger designer

groups

– Graphic and text design entry
– Tool startup configurations
– Support many different languages and tools
– Version control, team management....

● Highly configurable

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 10

HDL Designer tool, cont.

● Top level: The project
– Defined by xxx.hdp file
– Contains list of libraries, (1 or more)

● Each library contains design units
– Described as components (green and blue

boxes)
– Each unit have different view

● Graphic and/or textual
● Various forms of architectures (text, block, FSM, …)
● A default architecture view is indicated by a blue arrow

● Interfaces with simulation and synthesis tools

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 11

HDL Designer tool, cont.

● Green boxes (components)

– Fixed interface (does not automatically update)
– Possible to reuse in multiple designs

● Blue boxes (subsystems)

– Updates interface when adding/removing inputs/outputs in block diagram
(remember to save schematic to update VHDL)

● Tools can generate valid VHDL from graphical
representation (schematics, state machines, etc.)

● State machine example in lab3 lab material

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 12

File I/O

● Possible to read or write a file (1993 allow both on same file)

● Formatted IO
– Not generally human readable (platform dependent)

● TEXT IO
– Human readable

● Special package includes definitions
– STD.TEXTIO
– Functions for open file, read a complete line, and read individual data

from the line

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 13

Later revisions
● Mostly simplifications and additional function support

● 1993:
– 8-bit ASCII, identifier restrictions relaxed, declarations simplifications
– Shared variables (global variables outside processes).
– Improved reporting in assert statements

● 2008:
– Simplified sensitivity lists (keyword all to include all signals used)
– Simplified conditions, allow bit and std_logic values as result of condition
– Read of output ports on entity

● Tools does not always support latest revision!

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 14

VHDL timing and concurrency

● Simulation of concurrent events (hardware) on a sequential
computer

● Must have the same result from simulation independent of
execution order of individual event

● Delay is an important property of hardware that must be
simulated

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 15

Signals vs Variables

● Electronic signals can not change values in 0 seconds
– Always slopes on voltages going from 0 to 1

● Common sequential code assumes variables are updated before
next statement is executed

● Expect different result depending on if variables or signals are
used

● Both variables and signals can be used in synthesized code

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 16

Signal vs Variable example

● Inputs with changing value at different times

● Result depends on if signals or variables as assigned

X: 1 4 5 5 3
Y: 2 2 2 3 2
Z: 0 3 2 2 2
initial t1 t1+2 t1+4 t1+6

AS <= X*Y after 2 ns;
BS <= AS+Z after 2 ns;
AS: 2 2 8 10 15
BS: 2 2 5 10 12
 initial t1 t1+2 t1+4 t1+6

AV := X*Y;
BV := AV + Z;
AV: 2 8 10 15 6
BV: 2 11 12 17 8
 initial t1 t1+2 t1+4 t1+6

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 17

Signal assignment with delta delay

● Minimum delay is a delta delay

● Delta delay is > 0 s but much smaller than the minimum
timestep of the simulator

X: 1 4 4 4
Y: 2 2 2 2
Z: 0 3 3 3
initial t1 t1+delta t1+2*delta
AS <= X*Y;
BS <= AS+Z;
AS: 2 2 8 8
BS: 2 2 5 11

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 18

Delta delay

● Can not be explicitly specified

● Delta delays will never add up to a simulation delay in seconds
(standard time)

● Sometimes referred to as Macro (simulation time) and micro
(delta delays) timing.

● Time may stand still in simulation by continuous signal updates
– Example: process triggered by a signal that it is updating
– Combinatorial loops without macro delay in assignments
– Delta delay is increasing but not the simulation time

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 19

Simulation models

● Delta delay only
– Functional verification of models

● Standard time unit delay only
– Validate system timing

● Mixed
– Delta delay where delay is not important
– Standard time unit delay where delay is significant
– Study system timing

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 20

VHDL timing

● Two types of time in VHDL

– Variables: no delay in update
– Signals: standard time delay and/or delta delay

● Delta delay
– Never adds up to a standard time unit
– Default delay when assigning signals unless delay is specified

● Known as macro and micro timing

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 21

Timing implementation in simulation
● Simulator program flow

1) If no entries in queue then stop, else increase time to next time entry in
queue

2) Start a new simulation cycle without advancing simulation time. Remove
all entries scheduled for current simulation time, update all signals.
Activate triggered processes

3) Execute activated processes. Schedule new time queue entries.

4) If there are new transactions on signals due to assignment with delta
delay, then goto 2, otherwise goto 1

● Concurrent assignment can be seen as processes

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 22

Unexpected simulation results

● Time may stand still in simulation by continuous signal updates

– Example: process triggered by a signal that it is updating
– Combinatorial loops without macro delay in assignments

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 23

Simulation models

● Delta delay only

– Functional verification of models
● Standard time unit delay only

– Validate system timing
● Mixed

– Delta delay where delay is not important
– Standard time unit delay where delay is significant
– Study system timing

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 24

Example of models

● A simple buffer examples

– All buffer have
different propagation
delay

– Difference in delta
delays are difficult to
see in waveform
windows

– Possible to create
multiple delta delay

Entity BUFF is
 port (X: in BIT; Z out BIT);
end;

Architecture ONE of BUFF is
 signal Y: BIT;
begin
 process(X)
 variable Y : BIT;
 begin
 Z <= X;
 end process;
end ONE;

architecture TWO of BUF is
 signal Y: BIT;
begin
 process(X)
 begin
 Y <= X;
 end process
 Z <= Y;
end TWO;

architecture THREE of BUF is
 signal Y1,Y2: BIT;
begin
 Y1 <= X;
 Y3 <= Y2;
 Y2 <= Y1;
 Z <= Y3;
end THREE;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 25

Example models, cont.

● Two almost identical buffers

– Have very different simulation behavour
– Both probably generate same hardware in

synthesis
● Lacking entries in sensitivity list

– Solution: Always add all input signals to the
sensitivity list

● Drawback: unnecessary process triggering may give
slower simulation

Architecture FIVE of BUFF is
 signal Y5: BIT;
begin
 process(X)
 begin
 Y5 <= X;
 Z <= Y5;
 end process;
end FIVE;

architecture FIVE_A of BUF is
 signal Y5: BIT;
begin
 process(X,Y5)
 begin
 Y5 <= X;
 Z <= Y5;
 end process
end FIVE_A;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 26

Inertial and Transport delay

● Delay can be of two types (3 in VHDL93)

– Inertial
● If input change again before end of delay then do not update output
● Filter out short glitches (RC delay)

– Transport
● “True” delay of signal (like transmission lines)

– Reject (VHDL93)
● Q_tmp <= A after 4 ns; Q <= Q_tmp after 6 ns;

Z <= I after 10 ns;

Z <= transport I after 10 ns;

Q <= reject 4 ns inertial a after 10 ns;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 27

Implementation of Inertial and
Transport delay in simulator

● Important to understand why a signal change may not reach the assigned signal

● Transaction

– Pair of value and time. What value when
● Waveform

– A series of transactions (sorted by time value)
● Current value of driver

● Value of transaction whose time is not greater than current simulation time.
Removed when simulation time is updated if next transaction time is reached

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 28

Waveform update algorithm

1. All old transactions with time at or after earliest new
transaction are deleted. Add new transactions to the waveform

If inertial then
– 2. Mark all new transactions
– 3. Mark old transaction if it immediately precedes a marked transition and

its value is the same as the marked transaction
– 4. Mark the current value transaction

5. All unmarked transactions are removed

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 29

Waveform update example

● Z <= I after 10 ns; (I is a 5 ns pulse starting at t=0)

● First change Z updated to '1' at t=0, (10,'1') transaction added
– Both current and transaction marked and kept

● Second change, Z updated to '0' at t=5, (15,'0') transaction added

● If inertial: (10,'1') not marked, removed

● End result: the pulse on I is not visible on Z (filtered out)

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 30

Inertial delay side effects

● Process for generating reset signal Res

– Only executed once at start
– First assignment is eliminated by second assignment

● Use transport or combined assignment to get pulse

Res <= transport '1' after 50 ns;

Res <= transport '0' after 100 ns;
● Generate complete waveform instead

Res <= '1' after 50 ns, '0' after 100 ns;

Process
 begin
 Res <= '1' after 50 ns;
 Res <= '0' after 100 ns;
 wait;
 end process;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 31

Modeling of combinational and
sequential logic

● Simple approach.

– Process sensitivity list = circuit inputs
– Compute new value using variables
– Assign output signal with delay
– Possible to synthesize (ignoring delay)

● Models uses generic in the port

– Adds parameters to components without need of a signal
– May have default values in entity declaration

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 32

Combinational logic examples

● Gates

– Generic states delay
– May have default delay defined

entity NAND2 is
 generic(DEL: TIME);
 port(I1,I2: in BIT; O: out BIT);
end NAND2;

architecture DF of NAND2 is
begin
 O <= I1 nand I2 after DEL;
end DF;

architecture STRUCTURAL of ONES_COUNT is

component XOR_GATE
port (X,Y : in bit; O : out bit);
end component;

component NAND_GATE
Generic (DEL: TIME := 3 ns);
port (X,Y : in bit; O : out bit);
end component

signal I1, I2, I3 : bit;

begin

U1 : XOR_GATE port map(A(0),A(1),I1);
U2 : XOR_GATE port map(I1,A(2),C(0));
U3 : NAND_GATE generic map(5 ns)
 port map(A(0),A(1),I2);
U4 : NAND_GATE port map(A(2),I1,I3);
U5 : NAND_GATE port map(I2,I3,C(1));

end STRUCTURAL;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 33

Combinational logic examples, cont.

● Two-to-4 decoder

– Set one of the four
outputs to ’1’ based on the
I input value

entity TWO_TO_4_DEC is
 generic(DEL: TIME);
 port(I: in BIT_VECTOR(1 downto 0);
 O: out BIT_VECTOR(3 downto 0));
end TWO_TO_4_DEC;

architecture ALG of TWO_TO_4_DEC is
begin
 process(I)
 begin
 case I is
 when "00" => O<= "0001" after DEL;
 when "01" => O<= "0010" after DEL;
 when "10" => O<= "0100" after DEL;
 when "11" => O<= "1000" after DEL;
 end case;
 end process;
end ALG;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 34

Sequential logic process template

● Must check both event and
level to detect clock edge

– Alternative functions
available in the std_l,ogic
libraries

● rising_edge, falling_edge
● Do NOT do the following:

● This is acting as a flip-flop
based design, but is synthesized
to a latch based one!

process(clk, ...)
begin
 if <async expressions> then
async behavior
 elsif clk'event and clk='1' then
sync behavior
 endif
end process;

process(clk)
begin
 if clk='1' then
sync behavior
 endif
end process;

process(clk)
begin
 if clk='1' then

Q <= D;
 endif
end process;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 35

Sequential logic, cont.

● Latch

– Latches missing the edge detection
– Bad design style
– Synthesis result not working

● Flipflop would only copy D when a
positive edge on Clk

entity LATCH is
 generic(LATCH_DEL:TIME);
 port(D: in BIT_VECTOR(7 downto 0);
 CLK: in BIT;
 LOUT: out BIT_VECTOR(7 downto 0));
end LATCH;

architecture DFLOW of LATCH is
begin
 LATCH: process(clk,D)
 begin
 If (clk=’1’) then
 LOUT <= D after LATCH_DEL;
 end if;
 end process;
end DFLOW;

D
Clk

LOut

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 36

Sequential logic
● JK flipflop with

asynchronous set/reset

– Edge trigged using ’event
– Asynchronous update

● Higher priority than
clocked circuit function

– Synchronous update
● Note use of elsif (must be

used)
● Edge trigged using ’event

architecture ALG of JKFF is
begin
 process(CLK,S,R)
 begin
 if S = '1' and R = '0' then
 Q <= '1' after SRDEL;
 QN <= '0' after SRDEL;
 elsif S = '0' and R = '1' then
 Q <= '0' after SRDEL;
 QN <= '1' after SRDEL;
 elsif CLK'EVENT and CLK = '1' and
 S='0' and R='0' then
 if J = '1' and K = '0' then
 Q <= '1' after CLKDEL;
 QN <= '0' after CLKDEL;
 elsif J = '0' and K ='1' then
 Q <= '0' after CLKDEL;
 QN <= '1' after CLKDEL;
 elsif J= '1' and K= '1' then
 Q <= not Q after CLKDEL;
 QN <= not QN after CLKDEL;
 end if;
 end if;
 end process;
end ALG;

entity JKFF is
 generic(SRDEL,CLKDEL: TIME);
 port(S,R,J,K,CLK: in BIT;
 Q,QN: inout BIT);
end JKFF;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 37

Sequential logic, cont.

● Register with alternative
design

– Use a guarded
statement

– Use ’STABLE instead
of ’EVENT

entity REG is
 generic(DEL: TIME);
 port(RESET,LOAD,CLK: in BIT;
 DATA_IN: in BIT_VECTOR(3 downto 0);
 Q: inout BIT_VECTOR(3 downto 0));
end REG;

architecture DF of REG is
begin
 REG: block(not CLK'STABLE and CLK ='1')
 begin
 Q <= guarded "0000" after DEL when RESET ='1' else
 DATA_IN after DEL when LOAD ='1' else
 Q;
 end block REG;
end DF;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 38

Output feedback problems
● Entity output can NOT be read in the architecture

● Three solutions

– Use INOUT
● Does not match OUT, enables output values to influence internal signal

values
– Use BUFFER

● Does not match OUT, complicates building testbenches etc.
– Use OUT with a temporary signal

● use temporary signal everywhere needed (read and assign), assign entity
out signal at the end of the architecture

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 39

Sequential logic, oscillator

● Run signal indicate when
to start generating clock
pulses.

● Feedback example

– Need extra variable
to guarantee complete
clock cycles

– Simulation use only,
will not synthesize

architecture ALG of CLOCK_GENERATOR is
 signal CLOCK: BIT;
begin
 process (RUN,CLOCK)
 variable CLKE: BIT := '0';
 begin
 if RUN='1' and not RUN'STABLE then
 CLKE := '1';
 CLOCK <= transport '0' after PER/2;
 CLOCK <= transport '1' after PER;
 end if;
 if RUN='0' and not RUN'STABLE then
 CLKE := '0';
 end if;
 if CLOCK='1' and not CLOCK'STABLE
 and CLKE = '1'then
 CLOCK <= transport '0' after PER/2;
 CLOCK <= transport '1' after PER;
 end if;
 CLK <= CLOCK;
 end process;
end ALG;

entity CLOCK_GENERATOR
 generic(PER: TIME);
 port(RUN: in BIT;
 CLK: out BIT);
end CLOCK_GENERATOR;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 40

Sequential logic, oscillator

● Wait statement based

– Can not have both wait
and sensitivity list in
process

entity COSC is
 generic(HI_TIME,LO_TIME: TIME);
 port(RUN: in BIT; CLOCK: out BIT := '0');
end COSC;

architecture ALG of COSC is
begin
 process
 begin
 wait until RUN ='1';
 while RUN = '1' loop
 CLOCK <= '1';
 wait for HI_TIME;
 CLOCK <= '0';
 wait for LO_TIME;
 end loop;
 end process;
end ALG;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 41

Numeric calculations
● Bit-vectors (and std_logic_vectors) does not correspond to a numeric value

– ”1011” could mean 11 in decimal (unsigned), or -5 in decimal (2’s
complement), or even -3 if sign-magnitude would be used

● Additional definitions are included in supporting packages to enable arithmetic on
bit-vectors and std_logic_vectors
– ieee.numeric_bit.all
– ieee.numeric_std.all

● Must use defined types signed or unsigned to allow calculations
– Same definitions as bit_vector and std_logic_vector
– Can copy values between types due to same element type

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 42

Type conversion (vectors, signed,
unsigned, integer)

● Casting between vector
datatypes does not
change element pattern
– unsigned(A)
– signed(B)
– std_logic_vector(C)
– bit_vector(D)

● Conversion to/from
integer require separate
translation function

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 43

Numeric calculations example

● Counter incrementing
3-bit count value each
clock cycle

– Asynchronous reset
example

– Clock edge detection
using ’event

architecture KB of INL3_KB is
 begin

 process(C,R)
 variable count : unsigned(1 to 3);
 begin
 if R = '1' then
 count := (others => '0');
 elsif C'event and (C='1') then
 count := count + 1;
 end if;
 Q <= bit_vector(count);
 end process;

 end architecture;

library ieee;
use ieee.numeric_bit.all;

entity INL3_KB is
 port (
 C : in bit;
 R : in bit;
 Q : out bit_vector(1 to 3));
 end entity;

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 44

Numeric calculations details

● Addition does not increment wordlengths

– May get overflow
– Must signextend to detect carry

● Adding different length vectors will sign extend the shortest one
– May still get overflow

● Multiplication always generates an output number of bits equal to the total number
of input bits
– Multiplying a 3-bit input with a 4-bit input generates a 7-bit output result

 101
+011

 000

 0101
+0011

 1000

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 45

Avoid old packages

● Before the introduction of numeric_std and numeric_bit there where other libraries

– std_logic_unsigned, std_logic_signed
– std_logic_arith

● Do NOT use these, they are obsolete
– Made it difficult/impossible to mix signed and unsigned

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 46

Including integers

● Integers can be used for synthesis

– If synthesis tool cannot figure out the limits, the result is 32-bit arithmetic
– Subtypes (limiting range) help to reduce hardware and catch unexpected use

● Integers will be implemented as bitvectors
– Either unsigned or signed (2’s complement)
– Translation between integer and bitvectors exist

x_signed := to_signed(y_int,x_signed’size);
– Translation other way around (unsigned to integer value)

y_int = to_integer(x_signed);

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 47

Another aspect of signal assignment

● One signal can be assigned from different parts of the code

– Support multiple entities driving the same wire
– Example: Databus in a computer connecting multiple memories and CPU

● Modelling must be strict and clear
– Same result independant of simulator tool
– Should not be able to detect the order the processes where calculated

● Not all data types support multiple sources for the value

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 48

Multiple assignment on one signal
● Each process containing a signal assignment will have a driver in the simulator

generating a contribution to the final signal value

– Concurrent signal assignments will have one driver each
– Processes only have one driver for each signal (even with multiple assignment)
– The signal update seen before is done individually on each driver
– One driver does not know anything about other drivers

● When the value of a signal is fetched, the contributions from the different drivers
current values are collected.
– The resulting signal value depends on the definition of how to combine the

values from the different drivers, using a resolution function

2024-09-09TSTE12 Design of Digital Systems, Lecture 4 49

Example of data types supporting
multiple drivers

● Signals driven by multiple drivers must be resolved
– Use a special function that resolves multiple drivers

● Resolution function

– Example: Wired-OR
● signal X1 : WIRED_OR Bit;
● subtype STD_LOGIC is RESOLVED STD_ULOGIC;
● signal Y2 : STD_LOGIC;

– RESOLVED is the resolution function name
● Called every time the value of the signal is calculated
● Gets all driver values as input

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

50

Multivalued logic

● Not enough with 0 and 1 to model “real” logic
● Example: Bus

– Requires bus release
– Signal assignment driver can not drop its value
– Use a value to indicate not driven, and indicate non-

driven signals (Z)
– Need to indicate conflicting driver (X)

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

51

Multivalued logic in VHDL

● Alternative to data type BIT

Type MVL4 is (’X’, ’0’, ’1’, ’Z’);

Type MVL4_VECTOR is array(NATURAL
range <>) of MVL4;

● X leftmost to make it the initial value unless
explicitly initialized in the code

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

52

Multidriver signals

● Requires a resolution signal
● Different combinations possible

– X always overrides others
– 0 and 1 at the same time gives X
– Z and Z gives Z

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

53

Resolution function definition

Subtype DotX is wiredX MVL4;

● WiredX is the name of the resolution function

Function WiredX (V:MVL4_VECTOR)
return MVL4;

● Where V is a vector containing all values of all
drivers of a signal

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

54

Resolution function implementation

● Implement as a loop and lookup table
Function wiredX (V: MVL4_VECTOR) return MVL4 is
 Variable result: MVL4:= ’Z’;
Begin
 For i in V’RANGE loop -- range not known in advance
 Result = table_WIREDX(result,V(i));
 Exit when result = ’X’;
 End loop;
 Return result;
End wiredX;

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

55

Resolution function impl., cont.

● Check of X in loop is not necessary, but speed up
simulation

● Table should then look like:
Type MVL4_TABLE is array (MVL4, MVL4) of MVL4;
Constant table_WIREDX : MVL4_TABLE :=
--
-- X 0 1 Z
--
 ((’X’, ’X’, ’X’, ’X’), -- X
 (’X’, ’0’, ’X’, ’0’), -- 0
 (’X’, ’X’, ’1’, ’1’), -- 1
 (’X’, ’0’, ’1’, ’Z’)); -- Z

TSTE12 Design of Digital Systems Department of Electrical Engineering kent.palmkvist@liu.se
Kent Palmkvist Linköping University http://www.isy.liu.se

56

Resolution function impl. Cont.

● Table lookup may be used for most functions
– Not possible to know the order of the value in V, may

therefore require a more complex algorithm

