TSTE12 Design of Digital Systems

Kent Palmkvist

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02

Outline (today)

- Course administrative
 - Goals
 - Literature
 - Requirements
 - Deadlines
 - Project
- Design flow overview

2024-09-02 3

Course goals

- · Structured design flow
- · Design of larger digital systems
 - including fast prototyping using FPGA
- Learn VHDL (example of a Hardware Description Language)
- · A project is included to learn and practice design
- Use of LIPS project model

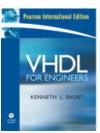
TSTE12 Design of Digital Systems, Lecture 1

2024-09-02

Previous evaluation of the course

- Response rate 34.3% => Is it representative?
- Overall course grade: 4.5
 - Scale: 1:worst, 5:best
- Modifications from last year
 - New operating system (RHEL8)
 - New software versions
 - Use of VHDL-2008 (not required)

2024-09-02


Course components

- 12 Lectures
- 3 handins
- 3 lab tasks
- 1 project task
- Web page: www.isy.liu.se/edu/kurs/TSTE12
- · Lisam course room for handin/sign up etc.

Book suggestion (not mandatory to get)

- "VHDL for Engineers", Kenneth L. Short, Pearson Education
 - ISBN 9780135018101, 2008, 720 pages
- · Most of the material can also be found by combining other sources
 - Alternative books
 - FPGA and ASIC vendor web sites
- Other web sites

2024-09-02 7

Example of alternative books

- · "VHDL Designer", Stefan Sjöholm, Lennart Lindh. Prentice Hall
 - ISBN: 0134734149; 1997, 496 pages
- · "VHDL, Analysis and Modeling of Digital Systems", Zainalabedin Navabi, McGraw-Hill
 - ISBN 0-07-046479-0
- "FPGA-Based System Design", Wayne Wolf, Prentice Hall
 - ISBN 0-13-142461-012 Lectures

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02

LIPS Project model

- · "Project model LIPS", T. Svensson, C. Krysander, Studentlitteratur
 - ISBN 9789144075266 (Out of print)
- "Projektmodellen LIPS", T. Svensson, C. Krysander, Studentlitteratur
 - ISBN 9789144075259
- · Describes the project model used in this and other CDIO courses.
- · Also a website available: https://lips.isy.liu.se

2024-09-02

Additional course material

- · Lab Notes
 - Downloadable from the web page http://www.isy.liu.se/en/edu/kurs/TSTE12/laboration
- Tools tutorial
 - Downloadable from the web page http://www.isy.liu.se/en/edu/kurs/TSTE12/kursmaterial
- Plenty of additional web material on VHDL and logic synthesis

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 10

Lectures

- Introduce material
- Give an overview of language and usage of the language (not only for synthesis)
- · Describe a design flow, from behavioral level down to layout
- Give hints
 - Hardware
 - Language usage
 - Tool usage
- Some material not in the book

2024-09-02 11

Note about lecture 5

- Lecture 5 (Thursday 12/9) will discuss the LIPS project model
- · Y and D program students may have seen this already
 - TSEA27 Elektronikprojekt Y
 - TSEA56 Elektronik kandidatprojekt
 - TSEA29 Konstruktion med mikrodator (KMM)
 - You are welcome to attend this anyway

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 12

Note about lectures 11-12

- Lecture 11 and 12 will discuss microprogramming and low level programming
- Y and D program students may have seen this already
 - TSEA83 Datorkonstruktion
 - TSEA28 Datorteknik Y
 - You are welcome anyway

2024-09-02 13

Tutorial tasks

- · Test language and simulation
 - Help understand VHDL
 - Make it possible to carry out hand-in tasks
- Tutorial material on the web
 - https://www.isy.liu.se/en/edu/kurs/TSTE12/kursmaterial
- Intended to be used as a startup task before handin and lab

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 14

Handin task (homework)

- Three separate hand-ins, each solved **individually**
- One week available to complete each one
 - v38 Monday 16 Sept. v39 Monday 23 Sept.
 - v40 Monday 30 Sept. v41 Monday 7 Oct.
 - v42 Monday 14 Oct. v43 Monday 21 Oct.
- All info will be available on the web (homework)
- · Theory and programming based on lectures and on book
 - Increasing difficulty level.
- 4th set v44 Monday 28 Oct. v45 Monday 4 Nov.

2024-09-02 15

Lab task 1-2

- Exercise use of design tools
 - Design flow used in project
- Lab1: PS/2 Keyboard decoder
- Lab2: VGA Graphic Controller
- Carried out in groups of 1-2 persons
 - Lab sign up on lisam pages
- Lab group sign up required to get access to CAD tools

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 16

Lab task 1-2, cont.

- · Deadlines Y, D and ED
 - Lab 1: week 37, Wednesday 11 September, 21:00
 - Lab 2: week 38, Wednesday 18 September, 21:00
- · Deadlines all other students
 - Lab 1: week 38, Wednesday 18 September, 21:00
 - Lab 2: week 39, Wednesday 25 September, 21:00
- · Lab 1 deadline is a hard deadline
 - Project participation require lab 1 complete before deadline
- Lab 2 deadline is soft deadline, lab results will be checked after the project finished

2024-09-02 17

Lab task 3

- · Program an existing design
 - Microprogrammed VGA Controller
- Introduce low level programming
 - Microprogramming (lower abstraction than assembly language and C)
- Automatic pass if you got a pass on
 - TSEA28 Datorteknik Y
 - TSEA83 Datorkonstruktion
- Deadline lab 3: week 44, Friday 1 Nov.

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 18

Lab tasks, cont.

- Labs group list
 - Must be decided at least one day before first exercise/lab to allow for group setup
 - Each group will have their own directory for the lab
 - If you want to work together (max 2 persons/group) sign up on lab list and send email to me (one mail from each person)
- You are encouraged to work on your own outside schedule! Use scheduled times for questions and demonstration of results.

2024-09-02 19

Lab sign-up

- · Lab session sign-up lists on Lisam
 - Open today Monday 2/9 11.00
 - Lab group name (grupp_A, grupp_B) defines when a lab is allocated for you (guaranteed access)
- Lab group definition
 - If you want to work together with someone on the lab
 - max 2 persons in each group
 - Make sure the other person is ok with you signing up in the same group

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 20

Lab location

- Mux 1, 2^{nd} floor corridor C between entrance 25 and 27
 - Mux2 used by other courses, but do have HW and SW
 - Usually not scheduled for any other course
 - Make sure to check schedule before working outside allocated hours
- Available all time except 23-05 (and other scheduled courses).
 - Do what you need to do at the lab
 - Close to handin deadline: Probably work on handin
 - Close to lab deadline: focus on the lab task
- Learn....

2024-09-02 21

Make sure you are registered for the course

- · Sign up on the lab list in lisam for access to lab and handin
- Email me (kent.palmkvist@liu.se) if you do NOT want to participate in the project.
- Non-registered participants can not get access to the tools and lab/project directories
- May take a day or two to setup login/tools

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 22

Project task

- Separate scheduled lab and project time: Use for whats needed at the moment: lab, handin, or project
- Project groups are determined by me!
 - Matlab script used
 - Make you meet other people
 - 5-6 persons / group
 - 4 credits (högskolepoäng) for project
 - => project work ~ 80h per person (at least)!
- · Few basic project tasks available
 - Idea is to reduce tension in group

2024-09-02 23

Project task, cont.

- Supervisors
 - Olov Andersson
 - Kent Palmkvist
- · Meetings agreed on at least one day in advance
 - Sign up on paper outside the supervisors office (or whatever the supervisor specifies)
- Documents to discuss must be submitted at least 24 h before meeting!

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 24

Project task, cont.

- Weekly group meetings (without supervisor)
 - Report progress + spent time to supervisor by email (use template)
 - Must have at least one group meeting each week
 - Email must be sent no later than 2 days after the meeting
- You must keep track of the amount of time spent on the project (and on what)!
- Keep a personal diary where you note project work (hours spent + what type of work)

2024-09-02 25

Project task, cont.

- · First meeting of group
 - Meet all group members and supervisor
 - Deadline Y,D program students: Friday 6 Sept.
 - Deadline all other students: Friday 13 Sept.
- Different deadlines for Y, D and ED compared to other students
 - Y, D and ED have prior experience with project management, tools, and computer system

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 26

Project documentation

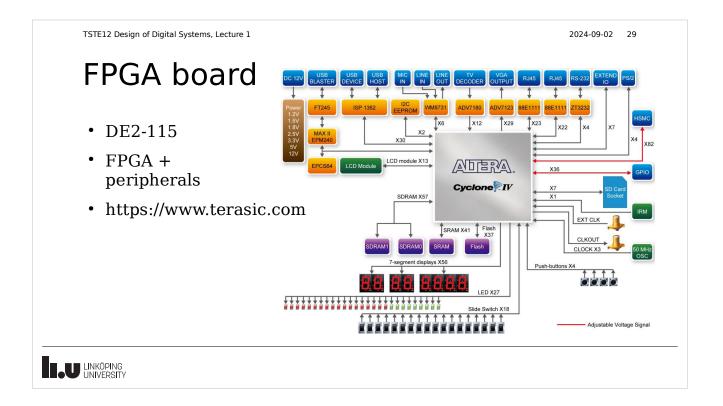
- Requirement specification (what, not how)
 - Deadline initial version (meeting with supervisor)
 Y, D, ED: Tuesday 10 Sept.
 Others: Tuesday 17 Sept.
 - Final version Friday 13 Sept. / Friday 20 Sept.
- Project plan, Design specification
 - Deadline initial version (meeting with supervisor)
 Tuesday 17 Sept. / Tuesday 24 Sept.
 - Final version Friday 20 Sept. / Friday 27 Sept.
- Final Report
 - Deadline Friday 24 Oct. / Friday 1 Nov.

2024-09-02 27

Project task, cont.

- All group members must attend the meetings where the documents are discussed
 - Meeting held together with the project supervisor
- Presentation
 - One oral presentation (ALL project members participate)
 - Include a demonstration of the project result

TSTE12 Design of Digital Systems, Lecture 1


2024-09-02 28

Project task description

- Sound, screen, keyboard
- Available hardware (DE2-115)
 - FPGA (> 3Mbit memory, 114 480 Logic element ~ 1 million logic gates)
 - Memory (8 MByte Flash, 2 MByte SRAM)
 - A/D, D/A (44 kHz 20 bit stereo)
 - Push-buttons, Switches
 - 7-segment LEDs
 - 16x2 LCD display, 24 bit VGA
- SD-card interface, IR remote control

2024-09-02 30

Project task definition

- Common requirements
 - Audio in and out (at least 20 bit, 44 kHz sample rate, stereo)
 - Volume and balance control (minimum 10 steps each)
 - Use VGA screen to indicate current settings/status
- Additional features possible
 - SD-card or use of RAM for audio recording/playback
- IR remote control

2024-09-02 31

Project task definition, cont.

- · Different major choices
 - Signal presentation (oscilloscope or signal level average)
 - Signal modification (echo, various sound effects, loudness control, or mono supression)
- Little more details available at the project web page of the course (including hardware descriptions)

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 32

Software to be used

- FPGA Advantage (Siemens)
 - Complete toolset for digital system development
 - HDL Designer design entry
 - Modelsim HDL Simulator
 - Precision HDL Synthesis
 - State of the art software (commercial high-end)
- Intel (altera) Quartus
 - Backend CAD tool for the used FPGA (used by Precision)
- Software only available in labs Mux1 and Mux2

2024-09-02 33

Software, cont.

- Openoffice/Libreoffice
 - Complete Microsoft Office replacement
 - Text editor
 - Drawing
 - Spreadsheet
 - Presentation
 - Free Software (download from www.openoffice.org and/or www.libreoffice.org)
 - Multi-platform (Unix, Windows, MacOS)
- · Available in all computer labs at ISY

TSTE12 Design of Digital Systems, Lecture 1

2022-08-29 34

Introduction to the design flow

Background

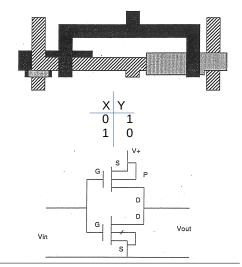
Description

Design flow

2024-09-02 35

System description

- Many possible systems (various application areas)
 - Electronics (TV, Computers, MP3 players)
 - Communication (Mobile phones, WLAN)
- Different levels
 - Baseband vs mobile phone vs cell vs country vs world
- Realtime vs non-realtime
 - Phone vs Internet
 - Subsystems in internet still real-time
- VGA control signals vs LED control signal



TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 36

Description domains

- Physical (only material and geometry)
 - Inverter layout (does not define functionality on its own)
- Behavoural (black box)
 - Inverter behavoural (truth table)
- Functional (data flow)
 - Boolean expression
 - -Y = not X
- Structural
 - Transistor schematic

2024-09-02 37

Abstraction levels

- Different levels of detail
 - System
 - Chip
 - Register
 - Logical
 - Transistor
 - Silicon
- All levels has both structural and behavoural descriptions

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 38

Abstraction transformations

- Synthesis: high abstraction level -> low abstraction level
 - Adds details
- Analysis
 - performance/property evaluation
- Optimization
 - not changing abstraction level
- Abstraction: low abstraction level -> high abstraction level
 - Hide details
- Validation/Verification
 - compare different abstraction levels

2024-09-02 39

Design approaches

- Top-down
 - Start with high abstraction level, divide
- Bottom-up
 - Build more and more complex modules
- Meet-in-the-middle
 - Simultaneous bottom-up and top-down
- Edge-in
 - Follow data-flow from input and output

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 40

Representation formats

- Textual
 - Human language text
 - Mathematical equations
 - Computer languages
- Graphical
 - Block diagrams
 - Karnaugh maps
 - State diagrams

2024-09-02 41

Text vs Graphical representation

- · No representation is best in all situations
- Graphics
 - Interrelations
 - Dependencies
- Textual
 - Complex behavior
 - Control structures

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 42

Design optimization

- · Mandatory functionality
 - Functionality
 - Speed (clock cycle period)
- Cost
 - Power consumption
 - Size
 - Speed
- Design should fulfill mandatory requirements while optimizing for the cost

2024-09-02 43

Synthesis tools

- Translate from one design representation to another
 - Makes design choices
- High level to low-level
 - Adds more details
- · Behavior to structural
 - Describe system as interconnected subsystems

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 44

Synthesis example

- Parity function
 - Input R: 4 bit vector
 - Output P : parity bit
- Behavior description (sequential computer program)

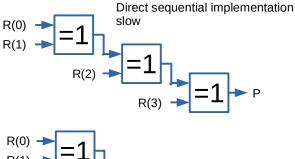
```
X := '0';
For I in 3 downto 0
loop
   X := X xor R(I);
end loop;
P <= X after PROP_DEL;</pre>
```

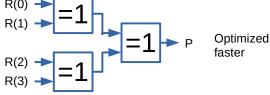
• Step one: translate into functional description

Y = A XOR B XOR C XOR D

2024-09-02 45

Example of synthesis and optimization


• Synthesis: Implemented using XOR gates


$$Y = ((A XOR B) XOR C)$$

 $XOR D$

• Optimization: Rearrange gate structure

$$Y = (A XOR B) XOR$$

(C XOR D)

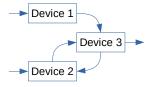
 Gives shorter critical path (2 gate delays instead of 3)

TSTE12 Design of Digital Systems, Lecture 1

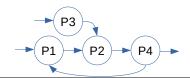
2024-09-02 46

Design tools

- Editors (design entry)
 - Text and graphics
- Simulators
 - Stochastic or deterministic
- Analyzers
 - DRC, Timing analyzers
- Synthesizers
- Optimizers


2024-09-02 47

Simulators


- Important: Need to understand the behavior of the simulator to understand the description language
- Model hardware as set of hardware processes communicating through signals.
- Each process models function and delay of a subsystem


```
Flipflop: Process(Clk)
begin
    if Clk = '1' and Clk'Event then
        Q <= D;
    end if;
end process;
```


Network of devices modeled as a network of processes

TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 48

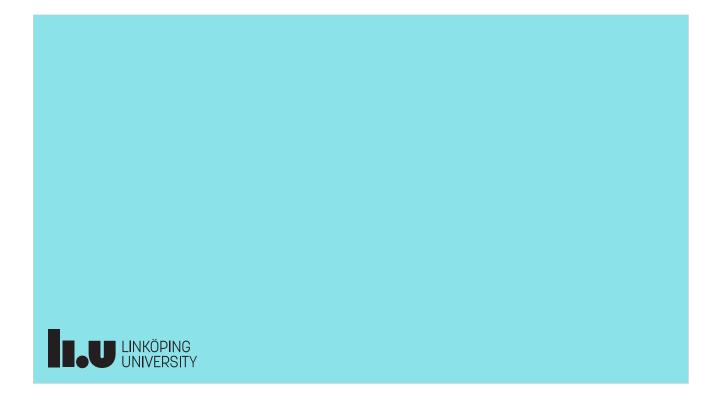
Simulator, cont.

- Discrete event simulator (compared to a fixed time sampled)
 - No fixed time-step or maximal time step
 - Only execute models when activity on the signals
- Signals are sampled or triggering
 - Triggering signal starts processes
- Two types of signal update:
 - Transactions: a value is assigned to a signal
 - Events: new value different from current signal value
- All transactions are stored in a queue

2024-09-02 49

Basic simulator execution

- · Run processes with inputs that have changed
- Any signal that the process update is stored in a queue (sorted by update time)
- Once all processes run (that needed to be run) then increase simulation time and start over


TSTE12 Design of Digital Systems, Lecture 1

2024-09-02 50

Next lecture

- Practical issues
 - Lab setup, access
- VHDL intro
 - Hardware description language
- Syntax, details regarding the language
 - What can be described
 - How to describe
 - How it behaves (when simulated)

