1 — What is Mathematica

Mathematica is a math program handling symbolic expression. You can for example solve system of equations, solve integrals and plotting graphs.

2 — Starting Mathematica

Mathematica is started by first adding the module

```
module add mathematica
```

or by adding the TSEI30 module in the course administrator tool. The Mathematica program is started by writing

```
mathematica &
```

The notebook will now open on your screen. The magnification of the symbols can be changed by using the menu alternative Format->Magnification. The help to Mathematica is good so check the help if you get stuck.

3 — Basic Commands

To execute a command shift+Enter is used some where in that row.

Solving a system of equations

When you have a one of a system of equations that you like to solve the following syntax is recommended:

where all equations look like lhs = rhs. The vars are the output variables. A is assigned the output.

Example

 $Solve[\{gm1\ Vin+(gds1+gds2)Vx==0\,,\ gm2\ Vx+s\ CL\ Vout==0\}\,, \{Vout\}\,, \{Vx\}\,]$ The outcome of this will be

$$\left\{ \left\{ Vout \rightarrow \frac{gm1gm2Vin}{CL(gds1 + gds2)s} \right\} \right\}$$

Simplifications

There are a lot of ways to simplify expressions. The list below contains some of them.

Command	Description
Simplify[expr]	Simplifies expr with time limit
FullSimplify[expr]	Simplify expr
Expand[expr]	Expand the expr

TSEI30 ANTIK An example — Page 2

Cancel[expr]	Cancels out common terms in the numerator and denominator
PowerExpand	expands all powers of products and powers

Get specific parts of an expression

First[] and Last[] returns the first and last element of a list respectively. Further the denominator and the numerator is found by the commands Denominator and Numerator respectively. All these command can be used when you like to get a specific part of an expression you have received from the command Solve.

Example

$$A = \left\{ \left\{ Vout \rightarrow \frac{gm1gm2Vin}{CL(gds1 + gds2)s} \right\} \right\}$$

The command

Numerator[Last[First[First[A]]]]

will return the expression

gm1gm2Vin

while as the command

Denominator[Last[First[First[A]]]]

will return the denominator.

4 — An example

We like to calculate the transfer function of a common source gain stage with nmos input transistors where we like to take into account the gate-drain parasitic capacitance of the input transistor. The circuit is shown in Figure 1.

Figure 1: The schematic of a common source amplifier

The Mathematica notebook is shown below.

We like to find the expression for the zeros and for an approximation of the poles.

```
In[3]:= num = Numerator[CSSimplified];
In[4]:= zero = Last[First[First[Solve[num == 0, s]]]]
Out[4]= gml/Cgdl

In[5]:= den = Denominator[CSSimplified]
Out[5]= (gds1 + gds2) Gin + (CL Gin + Cgd1 (gds1 + gds2 + Gin + gm1)) s + Cgd1 CL s²
```

We like to convert the denomintor to the form a+b s+c s^2

If the poles are assumed to be well separated then could the poles approximately be given by $(1+s/p1)(1+s/p2)=1+s(1/p1+1/p2)+s^2/(p1 p2)$ approximately $1+s/p1+s^2/(p1+p2)$. Identifying with the denominator above.

$$In[7] := p1 = a/b$$

$$Out[7] = \frac{(gds1 + gds2) Gin}{CL Gin + Cgd1 (gds1 + gds2 + Gin + gm1)}$$

If gds<<gm, gds<<Gin, Cgd<<CL

$$In[8]:=$$
 plsimplified = $\frac{(gds1+gds2) Gin}{CL Gin}$
 $Out[8]=$ $\frac{gds1+gds2}{CL}$
 $In[9]:=$ p2 = a/c/plsimplified

The DC voltage gain

 $Out[9] = \frac{Gin}{Cgd1}$

In[10]:= DCgain = FullSimplify[CommonSource /. s
$$\rightarrow$$
 0]

Out[10]= $\left\{ \left\{ \text{Vout} \rightarrow -\frac{\text{gml Vin}}{\text{gds1} + \text{gds2}} \right\} \right\}$