

Lecture 5, ATIK

Switched-capacitor circuits 1 Basics, Accumulators

diléda marité

www.lin.sc/onliv

chearingth ratheteknik 2000

is afterwards

What did we do last time?

Differential circuits

Why differential? CMRR, CMR

Operational amplifiers

More on how we design them Cookbook recipes PSRR

Circuit noise

Thermal and flicker noise Noise bandwidth

What will we do today?

Switched capacitor operation

Charge redistribution Parasitics

Typical building blocks

Accumulators

Switched capacitor - Background

Resistors are evil... bulky and noisy and nonlinear

Inductors are evil ... bulky and have low Q value

In CMOS design, we want to stick to transistors and capacitors (preferrably only the transistors)

How can we mimick a resistor using transistors and capacitors

The net charge

$$\Delta Q(nT+\tau) = q_1(nT+\tau) - q_1(nT) = C_1 \cdot \left(v_2(nT+\tau) - v_1(nT) \right)$$

The average current during one period

$$I_{avg} = \frac{\Delta Q(nT+\tau)}{T} = \frac{C_1}{T} \cdot \left(v_2(nT+\tau) - v_1(nT) \right)$$

Switched capacitor, cont'd

Compiled

$$I_{avg}(nT+\tau) = \frac{C_1}{T} \cdot \left(v_2(nT+T) - v_1(nT) \right) = \frac{C_1}{T} \cdot \Delta V(nT+\tau)$$

Simulates a resistance

 $R_{eq} = \frac{T}{C_1}$

With shorter sampling periods, the resistance decreases

Less charge is transported in average

The larger capacitor, the resistance decreases

More current can be handled

Characteristics

When is this assumption valid?

We're taking an average of something, indicating signal frequency has to be small compared to sample frequency

Pulse-amplitude modulated signal (PAM)

We should look at the flat areas where attenuation is low.

 $f_{signal} \ll f_{sample}$

Why are ratios better? And why should we use pears with pears?

A ratio gives

$$\begin{aligned} \frac{C_1 + \Delta C_1}{C_2 + \Delta C_2} = & \frac{C_1}{C_2} \cdot \frac{1 + \frac{\Delta C_1}{C_1}}{1 + \frac{\Delta C_2}{C_2}} = & \frac{C_1}{C_2} \cdot \frac{1 + \rho_1}{1 + \rho_2} \approx \\ & \frac{C_1}{C_2} \cdot (1 + \rho_1) \cdot (1 - \rho_2) \approx \frac{C_1}{C_2} \cdot (1 - \rho^2) \end{aligned}$$

Whereas a product gives

 $(C + \Delta C) \cdot (R + \Delta R) = RC \cdot (1 + \rho_C) \cdot (1 + \rho_R) \approx RC \cdot (1 + 2\rho + \rho^2)$

Using the switched capacitor: An RC link

A first-order (correct!) analysis.

(Notice that C2 "steals" charge during one phase.)

Phase 1:

$$V_{2}(nT) = V_{2}(nT - \tau)$$
 and $q_{1}(nT) = C_{1} \cdot V_{1}(nT)$

Phase 2:

 $q_{2}(nT+\tau) = C_{2} \cdot V_{2}(nT+\tau)$ and $q_{1}(nT+\tau) = C_{1} \cdot V_{2}(nT+\tau)$

Charge must be preserved on the two caps:

 $q_{1}(nT+\tau)+q_{2}(nT+\tau)=q_{1}(nT)+q_{2}(nT)$ $(C_{1}+C_{2})\cdot V_{2}(nT+\tau)=C_{1}\cdot V_{1}(nT)+C_{2}\cdot V_{2}(nT)$ $(C_{1}+C_{2})\cdot V_{2}(nT+T)=C_{1}\cdot V_{1}(nT)+C_{2}\cdot V_{2}(nT)$

Use the frequency domain!

$$(C_1 + C_2) \cdot z \cdot V_2(z) - C_2 \cdot V_2(z) = C_1 \cdot V_1(z) \Rightarrow \frac{V_2(z)}{V_1(z)} = \frac{C_1}{(C_1 + C_2)z - C_2}$$

Using the switched capacitor: An RC link

Do a mathematically "incorrect" substitution

When is this assumption valid?

$$\frac{V_2(s)}{V_1(s)} = \frac{C_1}{(C_1 + C_2)e^{sT} - C_2} \approx \frac{C_1}{(C_1 + C_2)(1 + sT) - C_2} = \frac{C_1}{C_1 + (C_1 + C_2)sT} = \frac{1}{1 + \frac{sT}{C_1}}$$

LIU EXPANDING REALITY

The capacitors are not isolated from each other

Loss in bandwidth the factor can never be larger than 1 (!)

Using the SC: Active integrator

The input capacitor will see virtual ground and thus not C2

Use the standard continuous-time approach

$$\frac{V_{2}(t)}{V_{1}(t)} \approx \frac{-1}{s R_{eq} C_{2}} = \frac{-C_{1}/C_{2}}{s T}$$

The virtual ground will effectively drain C_1 in every second phase, i.e., the charge drop is independent on C_2.

Charge redistribution analysis, phase 1

However, just replacement is not accurate enough!

Input capacitor

 $q_1(nT) = C_1 \cdot V_1(nT)$

Storage capacitor

$$q_2(nT) = C_2 \cdot (V_2(nT) - 0) = C_2 \cdot V_2(nT)$$

Notice the "sign" of the capacitors. These are aid markers only.

Charge redistribution analysis, phase 2

Input capacitor

$$q_1(nT+\tau) = C_1 \cdot (0-0) = 0$$
 (Emptied !)

Storage capacitor

$$q_{2}(nT+\tau) = C_{2} \cdot (V_{2}(nT+\tau)-0) = C_{2} \cdot V_{2}(nT+\tau)$$

Stopings

Charge redistribution analysis, 1 to 2

The charge in the system must be preserved!

"Positive" charge on C_1 will float to "negative" plate of C_2.

 $q_2(nT+\tau) = -q_2(nT) - q_1(nT)$

Charge redistribution analysis, 2 to 1

The "negative" charge on C_2 cannot disappear, the voltage across capacitor is preserved:

$$q_2(nT+T) = q_2(nT+\tau)$$

LIU EXPANDING REALITY

Input capacitor is recharged

Charge redistribution analysis, compiled

Instanteneous charging

 $q_1(nT) = C_1 \cdot V_1(nT)$ $q_2(nT) = C_2 \cdot V_2(nT)$

Charge preservation

 $-q_{2}(nT+\tau) = -q_{2}(nT) + q_{1}(nT)$ $q_{2}(nT+T) = q_{2}(nT+\tau)$

Combined

$$C_2 \cdot V_2(nT+T) - C_2 \cdot V_2(nT) = -C_1 \cdot V_1(nT)$$

Go to frequency domain

$$C_2 \cdot V_2(z) \cdot (z-1) = -C_1 \cdot V_1(z) \Rightarrow \frac{V_2(z)}{V_1(z)} = \frac{-C_1/C_2}{z-1}$$

Charge redistribution analysis, checked

Once again, the sloppy frequency transform

 $z = e^{sT} \approx 1 + sT$

Insert

$$\frac{V_2(z)}{V_1(z)} = \frac{-C_1/C_2}{1+sT-1} = \frac{-C_1/C_2}{sT}$$

Now, the two formulas correlate!

Caveats

"High" sample frequency "High" unity-gain frequency Low on-resistance Linear capacitors Buffers required

Passive SC implies losses

If we go to a sampled system, e.g. ADC, we can utilize whole frequency band! (Revisited in discrete-time filter design).

Switched-capacitor in a context

Filters Sigma-delta modulators Sample-and-hold Gain circuits Common-mode feedback circuits Comparators Auto-zeroing Reset circuits

Accumulators/integrators are vital building blocks in many applications

Examples on parasitics

Bottom-plate parasitics

Fringing capacitance to near-by objects

Overlap capacitance (if accuracy is required)

Parasitics, sensitive example

Add parasitics "everywhere"

Each switch Each capacitor plate Each OP node

Cancel those that do not influence the results

Voltage sources Virtual grounds Grounded $v_1(t)$

Effectively changing the value of C1.

One left!

Parasitics, insensitive example

This is also an accumulator

Phase 1:

$$q_1(nT) = C_1 \cdot V_1(nT)$$
, $q_2(nT) = C_2 \cdot V_2(nT)$

Phase 2:

$$q_1(nT+\tau) = 0$$
, $q_2(nT+\tau) = C_2 \cdot V_2(nT+\tau)$

Charge preservation:

 $q_{2}(nT+\tau) = q_{2}(nT) \Rightarrow V_{2}(nT+\tau) = V_{2}(nT)$ -q_{1}(nT)-q_{2}(nT)=-q_{1}(nT-\tau)-q_{2}(nT-\tau)=-q_{2}(nT-\tau) $C_{1} \cdot V_{1}(z) = -C_{2} \cdot (1-z^{-1}) \cdot V_{2}(z) \Rightarrow V_{1}(z) V_{2}(z) = \frac{-C_{1}/C_{2}}{1-z^{-1}}$

Parasitics, insensitive example

Add parasitics "everywhere"

Each switch Each capacitor plate Each OP node

Cancel those that do not influence the results

Voltage sources Virtual grounds Grounded

Parasitics, the check list

These can be ignored:

continuously connected to input voltage source (ideal) or to OP (ideal) outputs (Ideal sources can give/take as much charge as needed)

connected between ground-ground or between "ground-virtual ground" in both phases (the effective charge is zero all the time)

charged from a voltage source or OP during one phase and is discharged to ground during next phase

capacitor plates that are charged during one phase and not connected during next phase

These have to be considered

charged from a voltage source or OP during one phase and discharged to a sensitive (another capacitor plate or virtual ground) during next phase

What did we do today?

HARD ALVES UNIVERSITE

Switched capacitor circuits

The basics Charge-redistribution analysis

Nonidealties

SC parasitics

What will we do next time?

Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system performance, like filters.

Continuous-time filters

Switched capacitor revisited during Discrete-time filter lectures

Data converter lectures

