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1 Switched-capacitor
circuits

1.1 Background

Since around mid 70’s, it has been possible to implement complete, single-chip integrated
switched-capacitor (SC) filters. This has increased the interest for such a discrete-time fil-
ter and in most discrete-time implementations today you will find some kind of switched-
capacitor filter or at least some SC building blocks, such as sample-and-hold and/or accu-
mulators (integrators).

In SC circuits, we require three components; switches, capacitors, and operational ampli-
fiers. Normally these three components can all be implemented in a fairly standard
CMOS! process. In fact, due to the CMOS process, we are able to create operational
amplifiers (opamps) without input leakage currents. This is very important in an SC cir-
cuit. The accuracy and quality of the SC circuits will mostly depend on the quality of the
capacitors in the given process. Therefore, we might sometimes require special layers,
e.g., additional poly-silicon layers, to create linear® capacitors. There are switched tech-
niques, such as the switched-current (SI) or switched-voltage (SV) techniques, where we
do not have to rely on linear capacitors. These technique suffer from other limitations
though.

The main advantage with SC circuits are that the operation of the circuits is normally
determined by capacitor ratios, unlike for example active-RC filters where the operation
is determined by the relation between a resistance and a capacitance. Hence, we can
implement our circuit to be less sensitive to mismatch errors. Thereby the SC circuit is
mostly very linear and that is why it has become so “popular”.

The main disadvantages with SC circuits are that you normally need linear capacitors
and good matching between them and you need operational amplifiers. Good matching
between the capacitors implies a large chip area. The use of operational amplifiers nor-
mally implies a lower limit on the supply voltage required.

1.2 Basics of a sampled circuit

Using SC circuits implies sampling of voltages or charges. Due to the switching operation,
the voltages throughout the circuit are sampled and held. This implies that the voltages
(in the ideal case) are piecewise constant — in the real case they are normally dependent
on a settling behavior, etc. Anyway, the voltages in the circuit will be given by expressions
similar to

v(t) = Z vin) - pit-nT), / ‘ (1.1)
n=0

where v(n) is the voltage level, T is the update or sample period, and p(¢) is the pulse
function as

1. CMOS: Complementerary Metal Oxide Semiconductor.
2. Linear capacitors imply that the capacitance does not change with the voltage applied across the capacitor.
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p(®) ={ 1 0=t<T (1.2)
0 t=2T

which states the piecewise constant voltage. From (1.1) and (1.2) we deduce that v(n) is
the information — the signal — and p(t) is the signal carrier.

If we consider the frequency domain, we see that the spectrum becomes
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= Z v(n) - e~JjonT. jp(t -nT)-ejot-nTidt = V(e/oT) - sinc(w), (1.3)
n=0 —

where ® = 2nf. We see that the output spectrum V(e/®T) is weighted by the sinc func-
tion, sin(nf)/nf . We also know that the spectra of a discrete-time signal repeats it self
at multiples of the sample frequency throughout the frequency domain. In Fig. 1 we find
an example of how the spectrum of a piecewise constant signal is weighted in an SC cir-
cuit. ' .
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Figure 1: Principle of the weighting of the spectra in a switched-capacitor circuit.
From the discussion above, we understand two important properties of SC circuits:

+ The output spectrum is weighted and therefore, we cannot use an update period
that is in the same order of magnitude as the signal bandwidth without getting a
distorted waveform.

 The output spectrum repeats it self and therefore we need to design an analog, con-
tinuous-time low pass filter that removes the higher frequency components.
Together with the sample theorem, this implies that we require a sample frequency
that is higher than the signal bandwidth in order to increase the passband width of
the filter. ‘

Actually, a single filter can be designed to tackle both properties above, but then we suffer
from the fact that as soon as we introduce an analog filter, we introduce the same com-
plexity we wanted to avoid by using the linear SC technique. However, if we use a sample
frequency much higher than the signal bandwidth we will reduce the sinc distortion and
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we will separate the repetivive signal bands to eventually be able to implement the low
pass filter by passive components. It should also be noted that some of the anti-sinc
weighting can be done in the SC circuit itself, by carefully tuning the transfer function to
amplify at higher frequencies.

1.3 Our first switched capacitor

To better understand the operation of SC circuits we normally consider the charge on the
capacitors and how it is transferred through the circuit when opening and closing the

switches.

For a capacitor of capacitance C we have that the charge can be written as the product of
the voltage across the plates and the capacitance, i.e.,

qt) = C-v(d). (1.4)

The larger capacitance, C, the more charge, g, can be stored for a fixed voltage, v. An
ideal capacitance does (obviously) not have any resistive components and hence the
charge (holes or electrons) will instantaneously be transported to the plates of the capaci-
tor as soon as the voltage is applied across the plates. In the time domain, this can be
described by a Dirac impulse. In reality we will have some resistance in wires, cables, con-

tacts, etc., smoothening the impulse.

An unconnected capacitor will conserve the charge on its plates, since there is no DC path
to ground (or common voltage source) from both plates through which the charge can be
transported. Again, this is of course only true to a certain extent, since we always have
secondary paths between the plates. Anyway, the key point with this statement is that by
using this property in an SC circuit we can create small “memory” cells, i.e., delay ele-
ments or z-! in the z -domain. These are used to create discrete-time systems with differ-
ent transfer functions.

Now, consider the single capacitor shown in Fig. 2 (a) for two different settings of the
switch. We have indicated the positive and negative plates on the capacitor. This notation
will help us throughout the work later when we analyze more complex circuits. The nega-
tive plate is grounded and the positive plate can be connected to either one of two nodes
V', and V, through the switch S;. We let S, connect the positive plate and V| during
the time period from 2T to 2T + T /2. This will be referred to as the first phase (¢,) of
operation. During the time period 2T + T/2 to kT + T the plate is connected to V,
instead. Logically, we refer to this as the second phase (¢,) of operation. It is however
common to use even more phases in an SC circuit. To simplify notation, we will through-
out the textuse T = T/2 as well.

We analyze the circuit by investigating the charge during the two phases. We have illus-
trated how the redistribution of charge in Fig. 2 (b). So, during ¢, the charge on the
capacitor will be

qgo) = C-V, (1.5)
and during ¢, the charge will be
q(0,) = C-V,. (1.6)

Thereby we see that if V| # V, we will have a change in the charge on the plates — a cer-
tain amount of charge must have been transported from V', to V,. This charge difference
can be written as

Ag = q(0))—-q9,) = C-[V,-V ]. (1.7)
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Figure 2: A switched capacitor with switch connecting the positive plate to either V1 or V2.

This charge “package” is transported during one sample period and hence the average
current, I, can be written as :

= Ag _q@)-q) C .,
1= =" =7 (V,=V)). (1.8)

Here we see that the average current can be written as a factor C/T times a voltage,
V,— V. This is virtually Ohm’s law for a resistor, where the conductance corresponds to
G = C/T,ie, R = T/C. We conclude that a switched capacitor behaves as a rests-
tance. This is the essential part of the swiched-capacitor technique and we have sketched

the principle in Fig. 3.
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Figure 3: A switched capacitor simulates the behavior of a resistance.

We require however the sample period T to be rather small to guarantee a good analogy
between the two cases. The choice of T is related to the bandwidth of the system and the
“accuracy” of the integration. This is covered more closely in Sec. 1.5, where we discuss
different ways to map the transfer function from the continuous-time to the discrete-time
domain. So, if we want to be “sloppy” we can say that we can realize the operation of an
active-RC filter by replacing all the resistors by switched capacitors. This will however
require a too high oversampling ratio and there are better, alternative SC circuits that

perform a similar operation. It is a good tool for understanding the operation of the circuit
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though. As another tool we develop a strategy for determining the operation of SC circuits
by investigating how the charge is transported throughout the circuit. First, we must
understand how an opamp can help us improve the circuits.

1.4 Using operational amplifiers in SC circuits

Previously, we have considered the passive components (well, apart from the switch
which is kind of active). Now we include the operational amplifier (opamp) which is used
to increase the driving capability and for some other purposes.

One of the most important features is that we can reproduce a voltage and distribute it to
several different sources without affecting the voltage source. Here the source can be the
voltage across a capacitor, which obviously is sensitive towards loss of charge on its
plates. Another feature is that we can provide the circuit with virtual grounds. With a vir-
tual ground, we understand a node that has no AC content, hence it is perfectly constant,
but it is at the same time not connected to the common ground. This is useful for the
charge conservation as well.

Consider the circuit in Fig. 4. This is an operational amplifier in a buffer configuration.
The output voltage is equal to the voltage applied to the positive input. In this case this is
given by the voltage across the capacitor. (We assume that the capacitor has been charged
during another phase of operation). Using this configuration yields an output voltage with
great driving capability, hence its output can be distributed to several different sinks. At
the same time the input voltage is separated from all those sinks. Hence, we can have a
weak, sensitive source that is isolated through the amplifier. Now, this is exactly what we
are looking for in our case — we have the voltage across a capacitor which is very sensi-
tive to any loss in charge which we at the same time want to use to distribute to other
capacitors.

V= O/ - -
+ —0
- + V
N cap
/18
Vcap ;\\ -—-——-—-—é- C
hve
Figure 4: Opamp in a buffer configuration reproducing the voltage across a capacitor.

Consider the circuit in Fig. 5 where we have an ideal opamp with its positive input is con-
nected to a constant (DC) voltage source, V p.. Since the gain of the amplifier is infinitely
high, the voltage difference between the negative and positive inputs must be zero.
Hence, the voltage at the negative input is Vp, as well (virtual ground). The negative
input of the opamp is connected to a capacitor in series with a resistor down to ground. (The
resistor is simply a model of a switch and its resistance may very well be set to 0 Ohms in
this example.) Although the resistor connects one of the plates to ground it will not drain
the charge stored in the capacitor, since no charge can disappear from the opamp’s nega-
tive input!. Thereby, we have V. over the capacitor and 0 V over the resistor. (Once
again, we assume that the charge on the capacitor has been transported there during
another phase of operation.

I. Assuming that the input stage to the opamp consists of MOS transistors.
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Figure §: Opamp in a buffer configuration creating a virtual ground.

In Fig. 6 we find our first simple switched-capacitor accumulator (SCA) or sometimes also
crudely referred to as an integrator. Normally, though, we associate an integrator with a
continuous-time operation and accumulator with discrete-time behavior. The principle is
the same as the active-RC integrator, but we have now replaced the series resistor with
the switched shunt capacitor as described in Sec. 1.3. The switches indicate the phase of
operation.
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Figure 6: Example of a switched capacitor accumulator during (a) first and (b) second phase. In (¢) and (d)
the charge transportation is illustrated.

<

During the first phase (¢,) - Fig. 6 (c) — we see that C, is charged by the input voltage
and hence the charge on the positive plate of this capacitor will be given by

q,RT) = C, [v,,(kT)-0] = C, - v,,(kT). (1.9)
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The negative plate will get its charge from the ground, providing with equal amount of
negative charge for equilibrium. Here we will also use the assumption that the input volt-
age is the output from another SC circuit (or similar) and thereby it will be piecewise con-
stant over a whole sample period. This implies that

VinRT) = v, (kT - 1) (1.10)

as well. The negative opamp input is disconnected from C,; and since we have CMOS
opamps, no charge can disappear from this node. There is no DC path to ground, since the
feedback capacitor blocks any DC current. Thereby the charge on this capacitor will be
determined by the charge on the plate during the previous period:

qo(kT) = q,(RT -1). (1.11)

Since the positive input is connected to ground and the gain of the amplifier is infinite the
voltage on the negative input will be 0 as well. Thereby, we have that

q,(RT) = Cy - [V, (RT)-0] = Cy-v,,,(RT). (1.12)
Combining (1.11} and (1.12) gives us the memory function on the output:
Cy [, (BT)=0] = Cy - [V kT - 1) = 0] = v, ,(BT) = v,,,(RT - 7). . (1.13)

During the second phase (¢,) — see Fig. 6 (d) — we disconnect the input voltage and we
connect C; to the negative opamp input. Now something must happen; we have
increased the amount of capacitance (and charge) to the negative opamp input but the
voltage in this node must be kept constant at 0 V due to the infinite gain of the opamp. We
see that the voltage across C; must be 0 V as well since it is connected between ground
and virtual ground. Capacitor C; must loose all of its charge. Since its positive plate is
connected to virtual ground and the charge will not just “disappear” — it will flow to the
negative plate of C,, since no charge can go into the opamp. The opamp output can be
considered as an ideal voltage source and it will provide the postive plate of C, with
enough charge to compensate for the change of charge.

We have that the charge on C, has disappeared

q kT +1) =C,-[0-0] =0 (1.14)
and the charge on C, must be given by its “old” charge plus the “new” charge from C, as
~qo(RT +71) = —q,(kT) +q,(RT). (1.15)

Notice now how we have used the references on the capacitor plates. The charge q, was
stored on the postitive plate of C; and was transported to the negative plate of C,. The
charge on C, can also be written as

@ (RT +7) = Cy- [V, (kT +1)=0) = C, v, (T + 7). (1.16)

Using the expressions from (1.9) through (1.14), and (1.16) in (1.15) gives us the transfer
function as

Cy Vo RT +7) = Cy - v,,,(RT) - C, v,(kT) =
= Cy Vo RT~1)=Cy -0, (kT) = Cy - v, (kT -1) - C, - v, ,(RT - 7). (1.17)

This can be written as
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Vot RT +7) = vm‘t(kT——"c)—g—l ‘U, (RT - 71), (1.18)
2

where we clearly can identify the accumulation of the output voltage. Using the z trans-
form gives us

272V ) =27V, (2 -gl 27V, (2) (1.19)
2

and the transfer function

Az) = Vou.t(z) _ Cl 27!

T V.@ TG T 20

which is the well-known expression for a discrete-time accumulator (integrator). The gain
of the accumulator is given by the capacitor ratio C,/C,. If we would have the continu-
ous-time case, the transfer function would be

-1 -1 C C, 1

SCR, ~sC, T - C, T (1.2

A(s) =

1.5 Some tips and tricks for charge distribution analysis
Here we have compiled some of the properties from the SC circuit with opamp in order to
create a useful tool or strategy for analysing the operation of SC circuits:

* No charge can disappear from unconnected/disconnected capacitor plates

* The absolute charge on the positive plate is equal to the absolute charge on the neg-
ative plate

* A capacitor with same potential on both plates will have an effective zero voltage
across its plates and thereby looses all of its charge

* We use opamps with MOS transistor inputs and thereby, no current can flow into
the opamp inputs

* The output of the ideal opamp operates as an ideal voltage source and can provide
infinite amount of charge

* The circuit will strive for equilibrium and the charge will redistribute to reach that
state within the sample period

* Due to the charge conservation at for example the opamp input node (virtual
ground) the total amount of charge on the plates connected to that node must be
constant held constant

During the analyses of the SC circuits, we investigate three consecutive phases!. This
enables us to derive a transfer function over a whole sample period.

1. Here we assume an SC circuit with only two phases. In general, we mostly need to investigate 3n/2 phases,
where n is the number of phases.
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In SC circuit the clock phases are normally nonoverlapping which means that we have a
short period of time where all switches are open. If the clock phases are overlapping, we
will destroy the transfer function due to unwanted charge sharing.

1.6 More SC building blocks

Above, we considered the basics of SC circuits and how they operate in general. As an
example we illustrated an SC accumulator which mimiced the active-RC integrator by
replacing the resistor with a switched capacitor. We will now take a closer look on some
other building blocks, such as the sample-and-hold (S/H) and the gain circuit. We will also
outline why the accumulator described in Sec. 1.4 is not very good to use in a real imple-
mentation. Its limitation is due to the influence of parasitic components in the capacitors

and switches.

1.6.1 Influence of parasitics in SC accumulators

Capacitors implemented on-chip, i.e., plate-capacitors laid out on the silicon surface (the
substrate), suffer from the drawback that there will also be a large capacitance between
the bottom plate and the actual substrate. Normally, the substrate is grounded and there-
fore there will be a parasitic capacitance between the bottom plate and ground. Unfortu-

- nately, there will also be a parasitic component associated with the top plate due to the

edge of the plate and connection wires increasing the capacitance to the substrate. This
parastic is usually not as large as the bottom-plate parasitic, but it is not neglegible. We
have illustrated the effect in Fig. 7, where the bottom plate has been indicated separately.
Notice that the parasitics couple to ground (or whatever the substrate is connected to)
and not to any of the voltages connected to the plates. '

ViQ Vi ‘
Cprop
C——= c /%g
plate V,0 EEZ\ V,
Figure 7: Parasitic capacitance associated with the top and bottom plate.

Normally, the parasitic components may be large compared to the nominal capacitance,
well in the order of tens of per cent of the actual capacitance. This ratio is very approxi-
mate and it may vary a lot for different capacitors over the chip. Therefore, we must be
very careful when designing our circuit. We must use or implement SC blocks that are
designed so that these parasitic components do not influence the actual transfer function.
They will inevitably influence the speed of the circuit, but we can mostly design our
switches and opamps to compensate for this additional capacitance. We also conclude that
we should be very careful to which nodes we connect the ground plates. They should never
be connected to the sensitive nodes, such as the input node of the opamp.

We will highlight the concept of parasitic capacitance with two examples of SC accumula-
tors circuits as shown in Fig. 8 (a) and (b). We recognize the left SCA from Fig. 6, but we
have modified it slightly by adding a second input, V,. The acumulator in Fig. § (b) does
only have one input. The two circuits are rather similar, but we shall later see what dif-
fers the two from each other.
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The accumulator is one of the most important building blocks in discrete-time filters. As
we also found in (1.20) the accumulator output should be given by the sum of the previous
output value and the input value as

Voutt kT +T) =V, (kT -V, (kT). (1.22)
In the z-domain this can be expressed as
Z: Vout(z) = Vout(z) - Vin(z) ’ (1.23)

and we get the transfer function

Vout(z) - -1 _ z-!
4@ = Viulz) ~ z-1" 1-z1 (1.24)

Consider (1.23) — as mentioned previously, we achieve the transfer function by summing
the stored output value and the stored input value. Hence, we need two capacitors to
store the values separately.
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Figure 8: Two SC accumulators circuits.

We investigate the parasitics by adding the additional capacitance down to ground from
each plate of all capacitors and both ends of switches down to ground. Consider the modi-
fied accumulators from Fig. 8 shown in Fig. 9, where we have added most of the parasit-
ics.

First we start with the gain circuit shown i m Fi 1g 9 (a). We identify the two main capaci-
tors C; and C,. We also find the C,,,, C,,, C,; and C,, to be connected in parallel
with the input or output voltage. These are noAD es fed by an operational amplifier and
hence will not influence the result, since the voltage applied to that node is independent
of the capacitance. C,s, C,¢, C,, and C,¢ are shorted between ground (or virtual
ground) and ground, hence they Vvﬂl never mﬁuence the result, since they are always
empty of charge. The parasitics remaining are C g and C, ;.

During phase ¢, we charge capacitor C, with the two input voltages v, and v,. The neg-
ative input of the opamp is disconnected. Hence, we get

q,(RT) = C, - [v,(kT) - v(RT)], (1.25)

but we also see that we charge C po by the input voltage v, and C p10 Dby the input voltage
U,, hence

q,9kRT) = Cpo-v (kT) and g,10kT) = Cpio- Ua(RT). (1.26)

10

;
.
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Figure 9: Two SC accumulators circuits with indicated parasitic components.
The charge on the feedback capacitance is
qZ(kT) = C2 ‘ {Uout(kT) - O] = Cz N Uout(kT) . (1.27)

Since the charge cannot disappear from the plates of C,, we see that the charge must
equal that from the previous clock phase. We have '

g, (kT) = q,(RT -7) = Cy- 0, (RT - 7), (1.28)
hence
VoutlkT) = v, (kT - 7). (1.29)

During the next phase (¢,), we have the switches changed to their other position. Now,
we see that C |, is shorted and hence all the charge will cancel and not influence the
transfer function. C o will also be shorted and loose all of its charge. Here however, the
charge will not “disappear” — it will flow towards the negative plate of C,. (Once again -
no charge can flow into the opamp inputs). We have that the charge on C, can be written

as

G BT +7) = Cy - [Uo kT + 1) = 0] = Cp - v (KT + 7). (1.30)
This charge must equal the “old” charge plus the “new” charge. Hence we get

G (kT +7) = q(RT) +q(RT) +q ok T). (1.31)
Using (1.25/, 1 1.26/, +1.28), and (1.30) in (1.31) gives us

Co v,y kT +71) = Cy 0, (kT =)+ (C; + C ) - vy(RT) - C,-v.(kT). (1.32)

Assuming that the inputs are piecewise constant, hence v (k T) = v,(kT - 1) gives us the
z -transform as

C, V,{z) 21?2 =
= C, Voul2) 27124+ (C +Chg) - Vi(2) - 2712 - C - Vi(2). (1.33)

11
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To simplify the discussion, we will also assume that V,(z) is grounded, i.e., Viz) = 0.
Notice that with this assumption we have actually recreated our SCA from Fig. 6. There-
fore we get

CZ ' Vout(z) = CZ ' Vout(z) : z..l + (CI + Cp9) : Vl(z)’ : z'_l ’ (1.34)
or given as a transfer function

Vout(Z) _ CI -+ Cp9 . z-l
Va2 = C, -zt

A(z) = (1.35)

Here we see that the parasitic component affects the gain of the circuit — in general, it
affects the transfer function of the circuit. Therefore, we call this a parasitic sensitive SC
circuit. Luckily it does not affect the pole, which normally is an even worse problem, since
we mostly can compensate for gain errors rather easily.

Now, consider the accumulator in Fig. 9 (b). We can neglect the parasitics C,,;, C,,, C 3
and C,,, since they are connected in parallel with the input or output voltages. C P55
Cs, ¢ p7» @and C g are always shorted between grounds. The parasitics remaining are
once again Co and C, ). Actually we can directly see that C po 18 switched between
ground and virtual ground, hence, it will never store any charge and will not influence the
transfer function. The only remaining parasitic component is C P10+

During the first phase (0,) we have the charge on the first capacitor as

q,(kT) = C, - [v;,(kT)-0] = C,-v,,(kT) (1.36)
and the charge on the second capacitor is | '

q2(kT) = Cy- [0,,,(RT)-0] = C,- v, (kT). (1.37)

Since the charge cannot disappear from the feedback capacitor C, we understand that
the charge must be conserved from the last phase:

q,(kT) = q (kT -1) = C, v,,,kT -7), (1.38)
hence
Vot RT =7) = Vou(RT). (1.39)

The parasitic is charged as well:
qp10kT) = Cpoio [V (RT)-0] = Cpio- Vi (RT) (1.40)

During the next phase (¢,) we see that C, is switched and the plates will become con-
nected between ground and virtual ground. Both plates have the same potential and
hence it must loose all of its charge. The circuit strives for equilibrium and the charge will
be transported from the negative plate to the negative plate of C,. The opamp will com-
pensate with charge to the positive plate of C, . The charge on the positive plate of C, is
drained in the ground. At the same time C, will keep its charge from the previous phase.

Hence, we get
Using the voltage notations, we get

Co VouukT +7) = Cy - v, kT + C, - v, (AT). (1.42)

12
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The parasitic is switched from the input to ground. It will loose all of its charge since both
plates are connected to ground. However all of that charge will get lost to the ground and
will not be transported anywhere else within the circuit, hence

gpiokT +71) = Cpy- [0-0]. (1.43)

Using the result in (1.38) and that the input voltage is piecewise constant during the
entire sample period, v;,(RT) = v,,(RT - 1) gives us

Co v, kT +7) = Cy -0,y (RT -1)+ C, - v,,,(RT - 7). (1.44)
Or expressed with the z -transform we get

C,-V,u(2) 212 = Cy-V, (2) 2712+ C, -V, (2) - 212 (1.45)
and the transfer function becomes

3 _ Vout(z) _ Cl z-! . N
A(Z) = Vin(z) = C——2 '1—.—_;:1', (1.46)

which is our desired transfer function. The parasitics do not affect the transfer function
and therefore we call this type a parasitic insensitive SC circuit.

1.6.2 Sample-and-hold

Besides the accumulator the sample-and-hold (S/H) or track-and-hold (T/H) circuits are
important. Technically, any SC circuit performs a sampling function, but we will discuss
the S/H as a separat building blocks, since we normally add some special features to
them. Here we want to sample the input signal and use the opamp to reproduce it and
drive a number of different stages. Typical applications are for the ADC and also at the
input to e.g. SC filters. The S/H can also be implemented to have a gain given by a capaci-
tor ratio, similar to the cases in (1.35) and (1.46).

Consider the S/H circuit shown in Fig. 10. This circuit is also referred to as an SC gain
circuit. Unlike the other SC circuits we have investigated, this does not accumulate the
voltage at its output.

Vin RG] J} Vin &1
- C .
l[ G, o||® G
L o [
CI Cl

=\
/

{2} (h
=g

Figure 10: SC sample-and-hold during its two phases.

The drawback with this sample-and-hold circuit is that the gain of the circuit is depen-
dent on the matching of the capacitors C,; and C,. This error source can be quite domi-
nating in any high-resolution application.

13
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We will now do a charge redistribution analysis of the circuit. During the first phase (¢,)
we have no charge on C,, since it is shorted between ground and virtual ground:

q,kT) =C,-[0-0] =0. (1.47)
Capacitor C, is charged by the input voltage and hence

q,(RT) = C, - [v,,(RT)-0] = C,-v;,(kT). (1.48)
The charge on C, is given by the output voltage:

q1kT) = Cy - [0, (kT) = 0] = Cy - v,,kT). (149

During the next phase (¢,), we add the C, to the input and the output is fed back to the
negative input of the opamp. Hence, the output voltage is forced to 0 V. The charge on C,
becomes

g, kRT+1) = C, - [v,, (kT +71)-0] = C;-v,,(kT +1). (1.50)
The charge on C, is given by
q,(kRT +1) = Cy- [v;,,(RT +71)-0] = C, - v;,(kT + 7). (1.51)

We see that the positive plate of C; is left disconnected. This implies that the charge on
C, is maintained from the previous phase, since no charge can disappear from an uncon-
nected plate:

q:RT +1) = q;(RT) = C;-v,,,(RT). : (1.52)

Notice that this equation does not say anything about the output voltage during this
phase. We now consider the charge conservation. From phase 1 to phase 2 the only charge
that is conserved is the charge on C; (!). The charges on C, and C, are completely deter-
mined by the voltage applied at the input for this time period. Therefore, we have to
investigate what happens when we switch from phase 2 to phase 1. Again we have — see
equations (1.47) through (1.49): ‘

¢:kT+7T) = C,-[0-0] =0, (1.53)

g, (kT +T) = Cy- [, (kT +T)-0] = C,-v,, (kT +T) (1.54)
and

q;(RT +T) = Cy - [0, (BT +T)~0] = Cy-v,,kT+T). (1.55)

Here the charge conservation is a key issue. The total amount of charge associated with
the negative opamp input must be conserved from the previous phase. Hence we have

QRT +T)+q (kT +T)+qRT +T) = q(kT +7) +q,(RT + 1) + q5(RT + 7). (1.56)
Combining (1.50) through (1.52) with (1.53) through (1.55) in (1.56) gives us

0+4C, v, (RT+T)+Cy-v,, (kT +T) =
= Cl * Uin(kT + T) -+ C2 " vin(kT + ’C) + C3 ¢ Uout(kT) . (157)

Assuming that the input voltage is piecewise constant over the entire sample period as
determined by v,,(RT) = v;,(RT + 7). We get

C2 . Uin(kT + T) et (Ci + Cz) . Uin(kT) = C3 . U()ut(kT) - C3 v Uout(kT + T) . (158)
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Using the z transform gives us the following expression
C2 * Vin(Z) VA (Cl + Cz) ¢ Vin(Z) = C3 N Vout(Z) - C3 * Vout(Z) 2. (159)
The transfer function becomes

Voulz)  Ci=(C,+Cy) 2z Cy 1-(1+C1/Cy)-27!
Vin(Z) - C3 * (1 "Z‘l) - C3 1 "'Z—l )

H(z) = (1.60)

We see that this is a filtering function. We have one pole at DC and one zero that can be
moved by the C,/C, ratio. If we now make the somewhat strange assumption that
C, = 0 we get a transfer function that is

Vout(z) - CZ 1-z2"! - CZ
V. & = " = | (1.61)

He) = C, 1-2z"! C,

Hence we have a gain function, where the ratio between C, and C; determines the gain.
The switching of C; is necessary to induce charge at the negative opamp input — other-
wise this would be undefined.

As an alternative to the S/H above, we consider the S/H circuit shown in Fig. 11. As well
as the previous circuit, this also uses a feature called autozeroing which allows us to can-
cel out much of the offset error. However, the gain of the circuit is unity — it is not possible
to achieve any amplification, since there is only one capacitor. We will get back to this
example after we have discussed the influence of nonideal components in SC circuits, see
Sec. 1.7.5.

O
—
E——
Vin Cl I
o—0 e -
J_ + Vout
Figure 11: SC sample-and-hold with autozeroing.

1.7 Nonideal components

In reality we obviously do not have ideal components. We have already touched upon the
influence of parasitics in the capacitors. In addition to this, we typically have the influ-
ence of the resistance in the switches as well as the finite gain and bandwidth of the oper-
ational amplifiers. There are more error sources, such as the limited driving capability of
the opamps (slew rate), signal-dependent capacitance, noise, etc. They will however be
left for the student to investigate.

15
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1.7.1 Opamps with input offset voltage

One important issue is the influence of offset voltage at the input of the opamp. This can
typically occur if there is mismatch between the transistors in the input differential pair.
Consider the example of the accumulator from Fig. 9 (b) but shown in Fig. 12 with an off-

|
ol le
C —-—
J; —0
+ Yout
=2 4
& Vos

Figure 12:  Illustration of offset voltage at the input of the amplifier.

set voltage, V., on the positive input of the opamp. We still assume an infinite gain and
hence the voltage on the negative input will become V , as well. '

We will run through the charge redistribution analysis for the different phases. This time
we will do it slightly differently to be able to cope with the offset error. We see that during
the first phase (¢;) we get :

q,(RT) = C, - [v,,(RT)-0] = C, v, (kT). (1.62)
The charge on the feedback capacitor will however become

g, kT) = Cy - [v,,,(RT) -V ,,]. (1.63)
Since the charge must be conserved at the opamp’s negative input node, we get that

72kT) = q (kT -1) = C, - [VoutRT -T)-V ]. (1.64)

This gives us the (well-known) relation
Vout(RT) = v,,, (kT -1). (1.65)

During the next phase (¢,), we have that C 1 Will not loose all of its charge due to the
non-zero voltage level at the negative input. The charge must be given by

qkT+1) = C,-[0- Vol = =C,- V. (1.66)
The charge on the feedback capacitor must be given by
7:kT+1) = Cy - [v,,, (kT +7)-V,,]. (1.67)

Due to the charge conservation between phase ¢, and ¢, at the negative input node we
get the following relation

~q(RT) - q,(kT) = -qRT +1)—q,(kT + 1), (1.68)

hence the “new” charge must equal the “old” charge. We get

16
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C, v, (RT) + Cy - [V (RT) = Vo] = —C, -V +Cy [0, sRT +7) = Vo] (1.69)
which becomes
C, v, (kT)+C,- U,ukT) = =C -V + C,- vout(kT +7T). ‘ (1.70)

Once again assuming that the input voltage is maintained constant during one sample
period and using (1.65). Now we get that

C, ;BT =1) +Cy - 0, (BT = 7) = ~C, Voot Cy Vo (RT + 7). (1.71)
Using thé z -transform gives us the output as
Cl 2,'~l C] l
Vout(z) = b-; . -i-:—;-:i . Vin(z) + -C-; . ‘1—:"-2-:1 . Vos. (172)

We do not have to care about the delay term for the offset voltage z-12 From (1.72) we
see that the offset voltage will be accumulated on the output as well. Therefore, we must
be sure that we have a small enough offset voltage which does not saturate the accumula-
tor output or use an autozeroed SCA (see Sec. 1.7.5).

1.7.2 Opamps with finite gain

Another limitation is the influence of the finite gain in the amplifier. When we have a
finite gain, the voltage difference between the opamp inputs is not zero. If the positive
input is left grounded, the negative input will become v, = -V ous®)/ Ay, where A is the
gain of the amplifier and v,,,, is its output voltage. ’

As an example, we will once again use the accumulator from Fig. 9 (b) but we have now
added the (signal-dependent) voltage source at the negative input node. ’

|| &
© I@
. Vx
+
—O
Vour
=
C,——
@
Vin f
o—-0 O——l
Figure 13: SC accumulator with non-zero input voltage difference due to finite gain.

We run through the charge redistribution analysis: We see that during the first phase
(¢,) we get for capacitor C,:

q,(kT) = C, - [v,,(RT)-0] = C, v, (kT). (1.73)
The charge on the feedback capacitor will however become
" (- , "Uout(kT)—E _ , w [ 1 \; :
q:(kT> = C; Lbout(kT} - AG ‘é = CQ : bout(kT) . (\\1 + X—Q) . (174)
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Since the charge must be conserved at the opamp’s negative input node, we get that
g2k T) = qykT -7) = C, - vout(kT~r)-(1 +l}.o). (1.75)

This gives us the relation between the output voltage at different time instants:
VoutRT) = v,,, (kT -1). (1.76)

During phase ¢,, C, will once again not loose all of its charge due to the non-zero voltage -
difference at the opamp input. The charge must now be given by

= k kT
q, kT +7) = Cl.[o_w] = CI.M_ .77
Ay Ay
The charge on the feedback éapacitor must be given by
- T 1+A
kT +1) = C,- [vout(kT +7)— -i’z'i%_ﬂ)] = Cy- 0, (BT +7) - Z 0 (1.78)
4y 0

Due to the charge conservation between phase ¢, and ¢, at the negative input node we
get the following relation

hence the “new” charge must equal the “old” charge. We get
1+A
Cr v,k +C,-v,,(RT - 1) - M
Ay
kT 1+A
= CI'M+C2'00ut(kT+T)' + 4o (1.80)

A

As usual, we assume that the input voltage is constant during the whole sample period
and using (1.76), we we get

Ay 7

1+A C,+C
Cy 0BT 1)+ C,- v, (BT 1) 20 _ vout(kT+t)-(Cz+ 1 2). (1.81)
A, A, &
Using the z -transform gives us the output as
C,+C, 1+A

CI ) Vin(z> 27l = Vout(z) ’ [02 + IAO k} - CZ ) Vout(z) cz7h. Ao O- (1.82)

Now we can find the transfer function as
_ Vout(z) Cl P
Aiz) = V. 5’;'/‘ 1+C,/Co I A (1.83)

1+ ——— -zt
L A, ) A,

We rewrite this slightly and we get
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= z”! C,/C,
4 PP D S '1 1+C,/C,’ (1.84)
LC/C A
1+ A4,

We see that we have two errors — one gain error and that the pole has moved away from
z = 1. The latter implies that the integration is not ideal, we have a lossy SCA.

1.7.3 Switches with non-zero on-resistance

In reality, the switch (and wires, etc.) will have a certain resistance when they are closed.
We will here just quickly overview how this influences the result. Call the parasitic resis-
tance of the switch R, . Since the charge current “'chrough”1 the capacitor, i(t), is given
by the time-derivative of the charge, we have the that

dt dt

With the resistance of the switch, we have that the voltage across the capacitor can be
written as

it) = WO _ o dv®) (1.85)

vet) = v,)-R,, - it) = v,,¢t)-R,,C- C%[vin(t) -ve(®)]. (1.86)
This gives us an expression for the capacitor voltage as

vet)-R,,C - dvjt(t) = v,,@)-R,,C- dvé’;(t). (1.87)
Now we assume that the input voltage is constant (the time-deﬁvative is Zero)

d”é};(t) =0 (1.88)
and we get the well-known result

ve(t)-R,,C - 9%@ = 0,,(0) = vo(t) = v;,(0) - [1 —e™/FerC], (1.89)

Since we are considering a discrete-time system, we are only interested in the voltages at
multiples of the sample time 2T /2. Hence, we have

vekT +T/2) = v,(kT) - [1 — e T/2FanC], (1.90)

Now, we have to design the circuit to be insensitive to the switch resistance. We want the
settling error to be small, and hence we have
-T/2R,,C ~Ing
e onT L e = RG'LC < o, (1.91)

1/

where € is a relative tolerance measure and 1, = R,,C is the time constant of the
capacitor.

1. The current does not really flow through the capacitor, it is the charge transported to the plates of the capaci-
Lors.
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We now have two important options to choose from to meet the requirement in (1.91). We
can (a) either design the circuit so that the relation above is met by reducing R, or C or
(b) we can do it by reducing the sampling time T'. Consider the simulation result in
Fig. 14, where we have plotted the timing constraints vs. the relative error, €, for differ-
ent sampling frequencies. The error has been varied from 0.01 to 10 per cent and the sam-
ple period from 1 KHz to 10 MHz. Notice the logarithmic scale on both the x and y axes.

-1

10 " ’ | == 10MHz
: — 1MHz
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1070 T Tl fermae 4 - - 10KkHz
P T - ~— 1kHz
=
gt T
[ :
o :
Q M
o, e e L :
2107} R
E : h
E o "tee-—-. :
A S SR
= z -,
107} \\
-7 N .

2 107 10° 10’
Relative error [%]

10
Figure 14: Simulated timing constraints as function of the relative error.

We see from (1.91) that for a 1-% error, the maximum time constant is given by
T7=9.2/T which becomes for example 0.9 ps for the 10-MHz sample frequency. With
this discussion we want to illustrate the design methodology for choosing the size of your
capacitors and the size of your switches. Mostly we implement the switches with MOS
transistors or transmission gates!. The on-resistance of an NMOS switch is typically

given by the inverse size of the transistor:

_ 1
R,, = WL B (1.92)

The larger we make the switch the lower resistance, i.e., lower time constant. On the
other hand we will then introduce parasitic capacitance from the switch transistors as

well contributing to a complex analyses of the SC circuit. We will however consider these
as second order effects and are to be considered when we actually implement our circuit.

1.7.4 Opamps with finite bandwidth
Another limitation is the influence of finite bandwidth operational amplifiers. We remem-
ber from the continuous-time case that the transfer function of an opamp with feedback
and relatively high gain could be written as
A
As) = —2 | (1.93)

1+ S
B'mu

1. A transmission gate is a combined PMOS and NMOS switch.
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if we assume a single, dominating pole. ®, is the unity-gain frequency. This unity gain
frequency is typically given by 0, = g,,/Cy where g,, is the transconductance and C
is the capacitance associated with the output node of the opamp. B is the feedback factor
and is dependent on the capacitance (and resistance) in the feedback path. Hence, the
amount of the output voltage that is fed back to the input. We can quit easily see that the
feedback factor varies with the different phases. Consider the example in Fig. 8 (b). Here
we see that during phase ¢, , capacitor C, is not connected to the opamp input and hence
the feedback factor will be larger — closer to 1. During ¢, we have that the feedback factor
must be given by

C,
B = ciC (1.94)

We conclude that it is very important to investigate all phases of operation when you
design opamps for SC circuit. The requirements on the phase margin and slew rate vary
between the different phases.

Anyway, an amplifier with a limited bandwidth implies an amplifier with a finite output
impedance. Therefore, the charging (and discharging) of the capacitors will follow a pat-
tern very similar to that described for the non-ideal switches in Sec. 1.7.3. The opamp
cannot change its output voltage infinitely fast. The output settling will be determined by
the system described by (1.93) and hence the output voltage will typically be given by the
start value at 7" plus the ideal voltage step given by the end value at 2T + 1:

VoutRT +8) = v,,(RT) + Av, (ET +1)-[1 -e7/ %], (1.95)

where T = T/2 and 15 = 1/Pw, is the time constant of the opamp. At the sampling
instant, £ = T, we get

Vot BT +7) = v,,,(RT) + Av,, (kT +7) - [1 —e™ 0], (1.96)

In the same way as for the switch on-resistance we understand from (1.96) that it is obvi-
ous that we must have a sample period that is much higher than the time constant to
guarantee a small error.

Now we have a quite nice relation between the maximum allowable voltage step (Av,,,),
the sampling frequency (f = 1/T), the current through the opamp (I = g2 ), and the
capacitance (C,, C, =« p).

If we include a second pole in the transfer function (1.93) we will get the phase margin
(which is a function of the “distance” between the poles) as a design parameter as well.
See for example pp. 232-9 in |1}. In SC circuits a rule of thumb is to design our opamp to
guarantee a 70-degree phase margin.

1.7.5 Sample-and-hold revisited

In I'ig. 11 we illustrated a sample-and-hold circuit with so called autozeroing. This tech-
nique is used to minimize the influence of any offset voltage at the input of the opamp. We
investigate the circuit by using the examples shown in Fig. 15. First we assume that the
opamp is ideal. We have one sample and autozeroing phase (¢,) and one hold phase (¢,).
During the autozeroing phase, the input voltage is connected to the positive plate of the
capacitor C and the opamp is connected in a buffer configuration. Since the gain is infi-
nite the output voltage equals the ground voltage. Hence, the charge on the capacitor is

qUkT) = C - [v,,(BT) v,k T)] = C - [v,(kT)-0] = C-v, (kT). (1.97)
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(@) (b)

Figure 15: Sample-and-hold circuit during (a) autozeroing (and sampling) phase and (b) hold phase.
During the next phase, we disconnect the input voltage from the capacitor, break the
buffer feedback and connect the positive plate of the capacitor to the output node. No
charge can disappear from the input of the opamp (to which the negative plate of the
capacitor is connected). This implies that the charge on the capacitor is conserved and
hence the voltage over the capacitor must equal that from the previous phase. We have
that

gkT +1) = C [0, (BT +1)=0] = C-v,, (kT +7) = C-v,,,(RT). - (1.98)
We see that
Vot kT +7) = v,,,(RT), (1.99)

where the output voltage is held during half the sample period. During the other half, it is
reset to 0. We will have an output voltage “moving” fast between 0 and the input voltage
level. Notice also that the input signal is continuous-time and that it is the input voltage
level at the time instant ¢ = 27T that is held at the output. ‘

Now we add some nonidealties: Assume that there is mismatch between the input tran-
sistors of the opamp, hence we have an offset voltage. Also assume that we have a finite
gain of the opamp, A, . The voltage at the negative node will then be given by

V,, - v-i-—‘;‘. (1.100)

During the buffer configuration we see that the negative input is connected to the output
and hence we get

Uou V.
Uout = Vos'i—jz;‘ Uout = m- (1.101)

So during the autozeroing phase of the opamp (sample phase) we have that the true
stored charge on the capacitor is

VOS
qkT) = C[vin(kT)~m]. (1.102)

During the next phase, we fold over the capacitor and we now get that
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qgkT +1) = C-[vout(kT+t)—(VOS—g"—“—ﬁ(—%—_—€wH =

- c.[uMkTm)-@ +Al-0) -Vos] | (1.103)

This “new” charge must equal the “old” charge due to the charge conservation at the neg-
ative input of the opamp and we get

Vos
Uin(kT) + Vos - m _ Uzn(kT) + T+ AO

1+1/4, T 1+1/4, (1.104)

Vot RT + 1) =

We now see that the offset voltage is suppressed by the gain of the opamp: V ./(1 + 4;).
Let for example A, be infinite and you see that we reach the ideal case shown in (1.99).

1.8 Switched-capacitor filters

Since we have analyzed and designed our accumulator we are now able to create discrete-
time filters according to any of the standard methods. (Actually our simplest SC filter is
the accumulator itself which is a high pass filter — not very good though.) We have looked
at the sample-and-hold to put at the input, the SCAs internally in the filter and gain cir-

cuits if they are required.

With a computer program (or from tables) we find our coefficients a; and b; in the trans-
fer function for a certain filter

-1 .z-N
bo+biz7l+...+by-z (1.105)

Hz) = — — -
ag+azl+ .. +ay -z

We can now choose any way of realizing the filter from this function: we can use the direct
forms, cascaded biquad links, or state-variable filters. The design and synthesis becomes
very similar to that of digital filters. We have the same type of limiting factors; overflow
and underflow due to high voltage across the capacitors, truncation noise due to finite
gain and offset on the amplifiers, etc.

One standard solution of a state-variable filter (leapfrog) is shown in Fig. 16. This is a
third-order filter, but increasing the order is relatively straight forward. It simulates the
behavior of an RLC-reference filter. We see that it has three poles generated by the three
SCAs. In the same way as in the continuous-time leapfrog filter, zeros can be created by
introducing cross-coupled capacitors between the negative inputs of the upper and lower
SCA. These will not become switched in the SC implementation either.

Notice that the SCAs are in principle identical with that of Fig. 8 (b), but they are modi-
fied to handle multiple inputs. This is achieved by connecting several capacitors con-
trolled by one switch to the negative opamp input. The upper SCA has three inputs and
the two lower only two inputs. Also notice that the sign of the output of the SCA can eas-
ily be changed by alter the position of the switch S, in Fig. 8 (b). This has been done for
the “middle” SCA in Fig. 16. (Compare with the contmuous time case, where you must
add an inverting buffer for the corresponding integrator).

A “simple” way to find the component values in a filter such as the one displayed above is
to use the continuous-time state representation and perform a bilinear or LDI (lossless
discrete integrator) transformation. Hence, we get something like

H(s) — H(e/*T) — H(z), (1.106)

23



TSTES0 ATIK and TSEI30 AnTIK

T

7
a— | |Ca Vou =
C‘] ' O C9
.\C -
o
i /
! I

||
I

Figure 16: Third-order state-variable filter generated using the LDI transform.

The bilinear transform implies that we replace all the continuous-time integrators as

-1
L 1+27 (1.107)

1——
s 8y 1=-zV’

where s, is a scaling constant as

6V
o B (1.108
50 % Gn(eT/2)’ (1.108)

where ®, is the angular frequency in the continuous-time domain and 07 is the angle in
the digital domain. We can now choose a reference frequency for the scaling. With the LDI
transform we replace all integrators with

L L (1.109)

1 _
s sy zl2—z-112

where s, once again is a scaling constant as
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S = ——a (1.110)
7 2sin(wT/2) '
The bilinear transform is able to cover the entire frequency range, which the LDI trans-
form does not. On the other hand it has some advantages in terms of implementation
complexity. This implies that the LDI transform should be used for narrow-band applica-
tions and the bilinear for wide-band applications. With narrow- and wide-band applica-

tions, we understand the ratio between the signal bandwidth and the sample frequency.

When we implement the discrete-time filter using the continuous-time leapfrog filter we
roughly replace all the continuous-time integrators with the expressions found in (1.107)
through (1.110). Some modifications have to be done, but they are only minor. Once again
though, we should generate our filter and our component values with the help of a com-
puter program.
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