

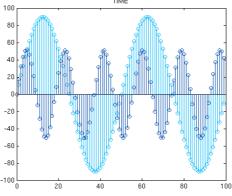
TODAY

- Signal Processing.
- Variables.

SAMPLING

- <u>Sampling</u>: reduction of a continuous (analog) signal to a discrete one.
- <u>Samples</u>: The digital values that represent the values of the analog signal.
- <u>Sampling frequency</u> (*f_s*): number of samples per second taken for a continuous signal to make a discrete signal.
- <u>Sampling period</u> (T_s) : Time between two consecutive samples.

$$f_s = \frac{1}{T_s}$$

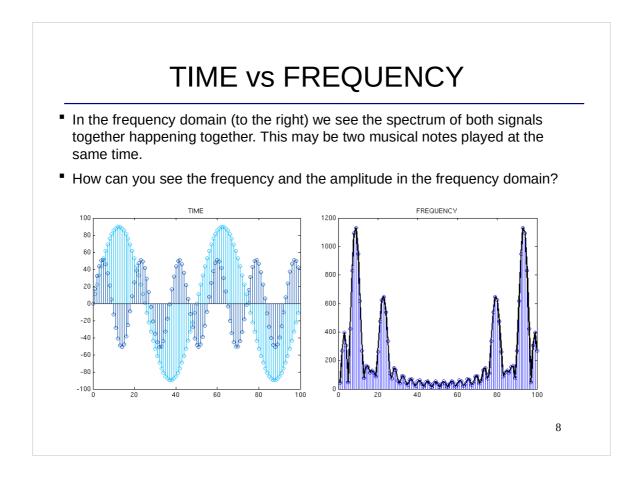

 <u>Nyquist Theorem</u>: The sampling frequency must be at least twice the maximum frequency of a signal, in order to be able to reconstruct that signal:

$$f_s \geq 2 \cdot f_{MAX}$$

4

EXAMPLE

- Here we can see two signals in the time domain with different frequencies and different amplitudes. Which is the amplitude and the frequency of each of the signals?
- If both signals happen at the same time, the sample at that time will be equal to the sum of their values at that time.
- The binary number in our system at a certain clock cycle is just the value of the sample at that time.


5

DECIBELS

- Decibels are a logaritmic unit used to express the ratio of two values of a physical quantity. Sometimes one of the values is a reference value, such as for sounds.
- As it is a ratio between two values of the same physical quantity, decibels do not have any physical dimension.
- When the ratio is large, it allows for working with small numbers instead of large values.
- We generally use decibels to relate the power of two signals.
- A multiplication in linear units corresponds to an addition in decibels.

$$\Delta P(dB) = P_o - P_I(dB) = 10 \cdot \log_{10} \left(\frac{P_o}{P_I}\right) = 10 \cdot \log_{10} \left(\frac{V_o}{V_I}\right)^2 = 20 \cdot \log_{10} \left(\frac{V_o}{V_I}\right)$$
$$\frac{V_o}{V_I} = 10^{\left(\frac{\Delta P(dB)}{20}\right)}$$

DECIBEL SCALE		
	130	Gunshot, Metal concert
Threshold of pain	120	Jet Plane take off
	110	Industrial noise
	100	Subway train
	90	Bass drum
	80	Loud radio
Hairdryer, Noisy restaurant	70	
Busy street, Alarm clock	60	
Conversation	50	
Moderate snoring	40	
Whisper, Light snoring	30	
Quiet room	20	Source:
Breathing	10	http://byjus.com/physics/decibel/
Threshold of human hearing	0	7

MULTIPLYING WITH FRACTIONS

Multiplications with fraction when having unsigned and/or signed values

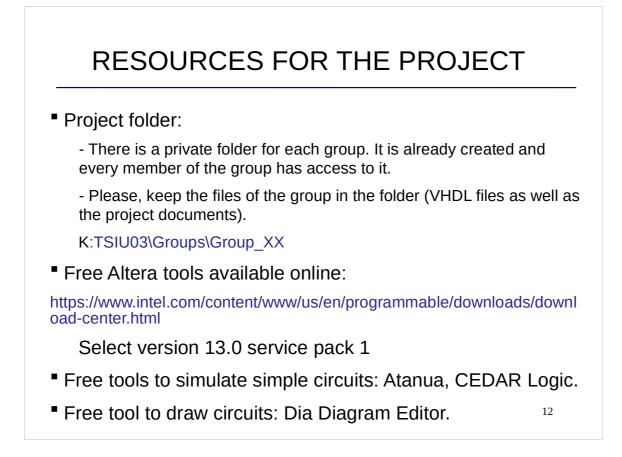
- · Values often interpreted as integers
- Multiplication with fractional values
 - Rewrite coefficient to be a large integer 2^k and then multiply with $1/2^k$
- Example: multiply and 8 bit signed value with constant 0.75
 - 0.75 = 0.75*4/4=3/4
 - Multiply first input with 3 (=> 10 bit signed value)
 - Divide result by 4 => shift result two steps to the right. Result now 8 bit

9

VARIABLES

- Variables can only be used inside a process.
- They can have any data type (as is true for signals and constants).

```
process (clk, rst)
variable m: integer; -- declaration similar to signals
begin
if rst = '1' then
   m := 0; -- Initialization using :=
elsif rising_edge (clk) then
   m := a; -- To assign values, we use :=
...
```


- IMP: signals are not updated during process execution (only at the end of the process), but variables are updated during process execution, i.e., they can store temporary values.
- Limited use in VHDL: If you want to create a connection in the circuit, use a signal.

SIGNALS v.s. VARIABLES

What do these two pieces of code do when they are included in a process with clk in the sensitivity list?

```
if rising_edge (clk) thenif rising_edge (clk) thenq <= q + 1;q := q + 1;if enable = '0' thenif enable = '0' thenq <= q;q := q;end if;end if;end if;end if;
```

```
11
```


CHECKLIST FOR LECTURE 9

- ADC, DAC, sampling, time and frequency, decibels.
- VHDL: variable, :=

13

AT HOME

- Review the checklist for lecture 9 and check that you understand all the concepts and you know how to use them.
- Go through the checklists of all the lectures to check that you understand all the concepts in the course.

NEXT LECTURE

- Guest lecture given by Jose Nunez-Yanez
- Summary of VHDL

15