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Tutorial 3: Mixer Solutions 

Problem 1 

Consider the active mixer shown in the figure below where the LO has abrupt edges and a 50% 

duty cycle. Also, channel-length modulation and body effect are negligible. The load resistors 

exhibit mismatch, but the circuit is otherwise symmetric. Assume 𝑀1 carries a bias current of 𝐼𝑆𝑆. 

Determine the output offset voltage. 

 

Fig. 1.1 Active mixer with load mismatch 

Solution: 

𝑉𝐼𝐹(𝑡) is expressed as 

𝑉𝐼𝐹(𝑡) = 𝑉𝐼𝐹
+(𝑡) − 𝑉𝐼𝐹

−(𝑡)                                                                             

𝑉𝐼𝐹(𝑡) = 𝑖𝐼𝐹
+ (𝑡) ∙ 𝑅𝐷 − 𝑖𝐼𝐹

− (𝑡) ∙ (1 + 𝛼)𝑅𝐷                                               

⇒ 𝑉𝐼𝐹(𝑡) = (𝑖𝐼𝐹
+ (𝑡) − 𝑖𝐼𝐹

− (𝑡))𝑅𝐷 − 𝑖𝐼𝐹
− (𝑡)𝛼 𝑅𝐷                                 (1.1) 

Notice from (1.1) that the offset in 𝑉𝐼𝐹(𝑡) corresponds to the second term, 𝑖𝐼𝐹
− (𝑡) ∙ 𝛼 𝑅𝐷. Therefore, 

elaborating for 𝑖𝐼𝐹
− (𝑡), which corresponds to the product between 𝑖𝑅𝐹(𝑡) and a train of rectangular 

pulses with amplitude 1 and period 𝑇𝐿𝑂. We have, 

𝑖𝐼𝐹
− (𝑡) = 𝑔𝑚1𝑖𝑅𝐹(𝑡) ∙ [

1

2
+∑sinc (

𝑘𝜋

2
)  cos (𝑘𝜔𝐿𝑂𝑡 −

3𝑘𝜋

2
)

∞

𝑘=1

]                     (1.2) 

Since, we are interested in 𝜔𝐿𝑂, we work only with 𝑘 = 1 in (1.2), which simplifies to 

𝑖𝐼𝐹
− (𝑡) = 𝑖𝑅𝐹(𝑡) ∙ [

1

2
−
2

𝜋
 sin(𝜔𝐿𝑂𝑡)]                                          (1.3) 
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On the other hand, 𝑖𝑅𝐹 can be expressed as a complex envelope signal with a dc component by  

𝑖𝑅𝐹(𝑡) =  𝐼𝐷𝐶 + 𝑔𝑚1𝑉𝑅𝐹(𝑡)                                                                   

⇒ 𝑖𝑅𝐹(𝑡) =  𝐼𝐷𝐶 + 𝑔𝑚1a(t)cos[𝜔𝑅𝐹𝑡 + 𝜃(𝑡)]                           (1.4) 

Substituting (1.4) into (1.3) and solving for 𝑖𝐼𝐹
− (𝑡), we have 

𝑖𝐼𝐹
− (𝑡) =

𝐼𝐷𝐶
2
+
𝑔𝑚1𝑉𝑅𝐹(𝑡)

2
−
2𝐼𝐷𝐶sin(𝜔𝐿𝑂𝑡)

𝜋
−
2𝑔𝑚1𝑉𝑅𝐹(𝑡) sin(𝜔𝐿𝑂𝑡)

𝜋
          (1.5) 

Applying a low-pass filter to (1.5), we obtain for 𝑖𝐼𝐹
− (𝑡), 

⇒ 𝑖𝐼𝐹
− (𝑡) =

𝐼𝐷𝐶
2
−
𝑔𝑚1a(t)

𝜋
[cos((𝜔𝑅𝐹 −𝜔𝐿𝑂)𝑡 + 𝜃(𝑡))]                         (1.6) 

Now, calculating for the offset voltage, we have 

𝑉𝐼𝐹_𝑜𝑓𝑓𝑠𝑒𝑡(𝑡) =
𝐼𝐷𝐶
2
𝛼 𝑅𝐷 −

𝑔𝑚1a(t)

𝜋
[cos((𝜔𝑅𝐹 − 𝜔𝐿𝑂)𝑡 + 𝜃(𝑡))]𝛼 𝑅𝐷 ∎      (1.7) 

The first term in (1.7) is the DC_offset and it does not cancel. Notice that the larger the mismatch, 

the larger the DC_offset is. Then, the second term in (1.7) degrades the voltage gain at 𝜔𝐼𝐹, so that  

𝐴𝑉 =
𝑉𝐼𝐹(𝑡)

𝑉𝑅𝐹(𝑡)
= 𝑔𝑚1𝑅𝐷(2 − 𝛼) ∎                                              (1.8) 
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Problem 2 

Shown below is the front-end of a 1.8-GHz receiver. The LO frequency is chosen to be 900 MHz 

and the load inductors and capacitances resonate with a quality factor Q at IF. Assume 𝑀1 is biased 

at a current 𝐼1, and the mixer and LO are perfectly symmetric. Also assume 𝑀2 and 𝑀3 are ideal 

switches (they switch abruptly and completely). Compute (a) the measured level of the 900-MHz 

at the output in the absence of an RF signal, (b) the LO-IF feedthrough with the presence only of 

the gate-drain capacitance 𝐶𝐺𝐷. Neglect gate-source and gate-bulk capacitance. 

 

Fig. 2.1 Receiver front-end 

Solution: 

a) The measured level of the 900-MHz at the output in the absence of an RF signal. 

𝑉𝐿𝑂
+ (𝑡) =

1

2
+
2

𝜋
sin(𝜔𝐿𝑂𝑡) +

2

3𝜋
sin(3𝜔𝐿𝑂𝑡) +

2

5𝜋
sin(5𝜔𝐿𝑂𝑡) + ⋯ 

𝑉𝐿𝑂
− (𝑡) =

1

2
−
2

𝜋
sin(𝜔𝐿𝑂𝑡) −

2

3𝜋
sin(3𝜔𝐿𝑂𝑡) −

2

5𝜋
sin(5𝜔𝐿𝑂𝑡) + ⋯ 

𝑖𝑅𝐹(𝑡) = 𝐼1 + 𝐼𝑅𝐹 cos𝜔𝑅𝐹𝑡                                                                          

No RF signal: 𝐼𝑅𝐹 = 0 ⇒ 𝑖𝑅𝐹(𝑡) = 𝐼1. The output current at IF is given by: 

𝑖𝐼𝐹
+ (𝑡) = 𝑉𝐿𝑂

+ (𝑡) × 𝑖𝑅𝐹(𝑡) = [
1

2
+
2

𝜋
sin(𝜔𝐿𝑂𝑡) +

2

3𝜋
sin(3𝜔𝐿𝑂𝑡) +

2

5𝜋
sin(5𝜔𝐿𝑂𝑡) + ⋯] × 𝐼1 

𝑖𝐼𝐹
+ (𝑡) =  

𝐼1
2
+
2𝐼1
𝜋
sin𝜔𝐿𝑂𝑡 

𝑖𝐼𝐹
− (𝑡) = 𝑉𝐿𝑂

− (𝑡) × 𝑖𝑅𝐹(𝑡) = [
1

2
−
2

𝜋
sin(𝜔𝐿𝑂𝑡) −

2

3𝜋
sin(3𝜔𝐿𝑂𝑡) −

2

5𝜋
sin(5𝜔𝐿𝑂𝑡) − ⋯] × 𝐼1 

𝑖𝐼𝐹
− (𝑡) =  

𝐼1
2
−
2𝐼1
𝜋
sin𝜔𝐿𝑂𝑡 
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𝑖𝐼𝐹(𝑡) = 𝑖𝐼𝐹
+ (𝑡) − 𝑖𝐼𝐹

− (𝑡) =
4𝐼1
𝜋
sin𝜔𝐿𝑂𝑡 

𝑉𝐼𝐹(𝑡) = 𝑖𝐼𝐹(𝑡) × 𝑅𝑃 =
4𝐼1𝑅𝑃
𝜋

sin𝜔𝐿𝑂𝑡  ∎ 

b) Working with one of the single-ended sections and considering only the parasitic gate-drain 

capacitance 𝐶𝐺𝐷, the LO-IF feedthrough can be derived from the circuit shown in Fig. 2.2.  Notice 

that only 𝑉𝐿𝑂
+  is operating. 

 

Fig. 2.2 (a) Single-ended with LO-IF feedthrough (b) transformation from parallel to series   

From Fig. 2.2 (b), the presence of 𝑉𝐿𝑂
+  at node 𝑉𝑥 can be derived by the following expressions,  

𝑉𝐿𝑂
+ − 𝑉𝑥

𝑍𝐶
=
𝑉𝑥 − 𝑉𝐷𝐷
𝑍𝐿 + 𝑅𝑠

                                                                         

⇒  𝑉𝑥 [
𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠
(𝑍𝐿 + 𝑅𝑠)𝑍𝐶

] =
𝑉𝐿𝑂
+

𝑍𝐶
+

𝑉𝐷𝐷
𝑍𝐿 + 𝑅𝑠

                                                 

⇒ 𝑉𝑥 =
𝑉𝐿𝑂
+ (𝑍𝐿 + 𝑅𝑠)

𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠
+

𝑉𝐷𝐷𝑍𝐶
𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠

                                       (2.1) 

The voltage 𝑉𝐿𝑂
+  is considered to be a train of rectangular pulses. Its representation in the time 

domain can be obtained from the Fourier series. Following the analysis in problem 1, but this time 

considering 𝛼 = 0.5 and 𝑉 = 1, we have 

𝑉𝐿𝑂
+ =

1

2
+∑sinc (

𝑘𝜋

2
)  cos(𝑘𝜔𝐿𝑂𝑡 −

𝑘𝜋
2⁄ )

∞

𝑘=1

                                  (2.2) 

Since we are interested in the frequency component at 𝜔𝐿𝑂, we work with 𝑘 = 1. Substituting 

(2.2) into (2.1), the LO-IF feedthrough can be expressed as, 
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𝑉𝑥 =
(𝑍𝐿 + 𝑅𝑠)

𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠
[
1

2
+
2

𝜋
cos(𝜔𝐿𝑂𝑡 −

𝜋
2⁄ )]  +

𝑉𝐷𝐷𝑍𝐶
𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠

                             

=
(𝑍𝐿 + 𝑅𝑠)

𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠
[
1

2
+
2

𝜋
sin(𝜔𝐿𝑂𝑡)] +

𝑉𝐷𝐷𝑍𝐶
𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠

                               (2.3) 

Carrying out the same analysis, but for 𝑉𝐿𝑂
−  with 𝑘 = 1, we have 

𝑉𝐿𝑂
− |𝑘=1 =

1

2
−
2

𝜋
 sin(𝜔𝐿𝑂𝑡)                                                     (2.4) 

Therefore, the LO-IF feedthrough in the other section of the circuit, 𝑉𝑦 equals 

𝑉𝑦 =  
(𝑍𝐿 + 𝑅𝑠)

𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠
[
1

2
−
2

𝜋
sin(𝜔𝐿𝑂𝑡)] +

𝑉𝐷𝐷𝑍𝐶
𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠

                              (2.5) 

Finally, the differential voltage 𝑉𝑥 − 𝑉𝑦, corresponding to the total contribution of the LO-IF 

feedthrough is expressed as 

𝑉𝑥 − 𝑉𝑦 = 
4

𝜋
 
(𝑍𝐿 + 𝑅𝑠)

(𝑍𝐶 + 𝑍𝐿 + 𝑅𝑠)
sin(𝜔𝐿𝑂𝑡)                                   (2.6) 

Notice that the DC component is cancelled out  
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Problem 3 

The circuit shown below is a dual-gate mixer used in traditional microwave design. Assume abrupt 

edges and a 50% duty cycle for the LO and neglect channel-length modulation and body effect. 

 

Fig. 3.1 Dual-gate mixer 

a) Assume that 𝑀1 is an ideal switch. Determine the frequency components which appear at 

the mixer IF port. 

b) Assume when 𝑀1 is on, it has an on-resistance of 𝑅𝑜𝑛1. Compute the voltage conversion 

gain of the circuit. Assume 𝑀2 does not enter the triode region and denote its 

transconductance by 𝑔𝑚2. 

c) Assume when 𝑀1 is an ideal switch. Compute the voltage conversion gain of the circuit. 

 

Solution: 

a) The current appearing in the transistor 𝑀2 due to the input voltage 𝑉𝑅𝐹 can be expressed as 

𝑖𝑅𝐹(𝑡) = 𝐼𝐷𝐶 + 𝑔𝑚2𝑉𝑅𝐹(𝑡)                                                           (3.1) 

Due to the switching action of 𝑀1, the resultant current at the output corresponds to the product 

between 𝑖𝑅𝐹 and a rectangular signal with 50% duty cycle. This can be expressed as follows 

𝑖𝑜𝑢𝑡(𝑡) = [𝐼𝐷𝐶 + 𝑔𝑚2𝑉𝑅𝐹(𝑡)] × [
1

2
+∑sinc (

𝑘𝜋

2
)  cos(𝑘𝜔𝐿𝑂𝑡 −

𝑘𝜋
2⁄ )

∞

𝑘=1

]          (3.2)  

Besides, 𝑉𝑅𝐹 can be expressed as a complex envelope by  

𝑉𝑅𝐹(𝑡) =  a(t) ∙ cos[𝜔𝑅𝐹𝑡 + 𝜃(𝑡)]                                           (3.3) 

Substituting (3.3) into (3.2) we have 

𝑖𝑜𝑢𝑡(𝑡) = [𝐼𝐷𝐶 + 𝑔𝑚2a(t) cos[𝜔𝑅𝐹𝑡 + 𝜃(𝑡)]] ∙ [∑
1

2
+ sinc (

𝑘𝜋

2
)  cos(𝑘𝜔𝐿𝑂𝑡 −

𝑘𝜋
2⁄ )

∞

𝑘=1

] (3.4) 
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From (3.4) we can obtain all frequency components at the mixer’s output for different 𝑘 values. 

Working with 𝑘 = 1, then (3.4) can be expressed as 

𝑖𝑜𝑢𝑡(𝑡) = [𝐼𝐷𝐶 + 𝑔𝑚2a(t) cos[𝜔𝑅𝐹𝑡 + 𝜃(𝑡)]] ∙ [
1

2
+ 
2

𝜋
sin(𝜔𝐿𝑂𝑡)]       

⇒ 𝑖𝑜𝑢𝑡(𝑡) =
𝐼𝐷𝐶
2⏟

𝐷𝐶 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
2𝐼𝐷𝐶
𝜋
sin(𝜔𝐿𝑂𝑡)⏟          

𝐿𝑂 𝑀𝑖𝑥𝑖𝑛𝑔 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

+
𝑔𝑚2a(t)

2
cos[𝜔𝑅𝐹𝑡 + 𝜃(𝑡)]⏟                

𝑅𝐹 𝑀𝑖𝑥𝑖𝑛𝑔 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

+
𝑔𝑚2a(t)

𝜋
[sin((𝜔𝑅𝐹 − 𝜔𝐿𝑂)𝑡 + 𝜃(𝑡))⏟                

𝐼𝐹

+ sin((𝜔𝑅𝐹 + 𝜔𝐿𝑂)𝑡 + 𝜃(𝑡))⏟                
𝐻𝐹 (𝑡𝑜 𝑏𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)

]∎ (3.5)      

b) The output voltage 𝑉𝑜𝑢𝑡 due to the action of 𝑉𝑅𝐹 and the presence of on-resistance 𝑅𝑜𝑛can be 

derived through the small-signal model shown in Fig. 3.2. 

 

Fig. 3.2 Small-signal model with on-resistance 𝑅𝑜𝑛 

Initially, solving for 𝑉𝐺𝑆, we have  

𝑉𝐺𝑆 = 𝑉𝑅𝐹 − 𝑉𝑥                                                                        

= 𝑉𝑅𝐹 − 𝑉𝐺𝑆 𝑔𝑚2𝑅𝑜𝑛                                                         

⇒ 𝑉𝐺𝑆(1 + 𝑔𝑚2𝑅𝑜𝑛) = 𝑉𝑅𝐹                                                        

⇒ 𝑉𝐺𝑆 =
𝑉𝑅𝐹

1 + 𝑔𝑚2𝑅𝑜𝑛
                                                       (3.6) 

On the other hand, 𝑉𝑜𝑢𝑡 can be expressed as 

𝑉𝑜𝑢𝑡 = −𝑔𝑚2𝑉𝐺𝑆𝑅𝐷                                                         (3.7) 

Substituting (3.6) into (3.7), we have 

𝑉𝑜𝑢𝑡 =
−𝑔𝑚2𝑅𝐷
1 + 𝑔𝑚2𝑅𝑜𝑛

𝑉𝑅𝐹 = 𝛼𝑉𝑅𝐹                                          (3.8) 
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To obtain the conversion gain, we have to find the IF component. This can be found by the product 

of 𝑉𝑜𝑢𝑡 and the rectangular LO signal with 𝑘 = 1 and using bandpass filter centered at 𝜔𝐼𝐹. This 

can be expressed as   

𝑉𝐼𝐹 = 𝐵𝑃𝐹 {𝛼𝑉𝑅𝐹(𝑡) × [
1

2
+
2

𝜋
cos(𝜔𝐿𝑂𝑡 −

𝜋
2⁄ )]}                                              

= 𝐵𝑃𝐹 {𝑑𝑐 + 
a(t)𝛼

𝜋
∙ cos [(𝜔𝑅𝐹 −𝜔𝐿𝑂)⏟        

𝜔𝐼𝐹

𝑡 + 𝜃(𝑡) − 𝜋 2⁄ ] + 𝐻𝐹 𝑐𝑜𝑚𝑝}  

=  
𝛼a(t)

𝜋
∙ cos [(𝜔𝑅𝐹 − 𝜔𝐿𝑂)⏟        

𝜔𝐼𝐹

𝑡 + 𝜃(𝑡) − 𝜋 2⁄ ]                                  (3.9) 

Then, the voltage conversion gain is equal to  

𝐴𝑉 =
𝑉𝐼𝐹(𝑡)

𝑉𝑅𝐹(𝑡)
                                                                    (3.10) 

Substituting (3.3) and (3.9) into (3.10), we have 

𝐴𝑉 =
𝛼a(t)

a(t)𝜋
=
𝛼

𝜋
=

−𝑔𝑚2𝑅𝐷
𝜋(1 + 𝑔𝑚2𝑅𝑜𝑛)

 ∎                                  (3.11) 

c) When 𝑀1 operates as an ideal switch the on-resistance 𝑅𝑜𝑛 equals zero, and the voltage 

conversion gain can be expressed as 

𝐴𝑉 =
−𝑔𝑚2𝑅𝐷

𝜋
 ∎                                                             (3.12) 
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Appendix: Fourier series representation of rectangular pulses 

A train of rectangular pulses as shown in Fig A.1.  

 

Fig. A.1. Time-domain representation of rectangular pulses 

Its representation in the time domain can be obtained from the Fourier series as 

 𝑥(𝑡) = 𝐶0 +∑2𝐶𝑘𝑒
𝑗𝑘𝜔0𝑡

∞

𝑘=1

                                                                    

where 𝐶𝑘 is the complex coefficient expressed by 

𝐶𝑘 =
1

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗𝑘𝜔𝐿𝑂𝑡

𝑇0

0

𝑑𝑡                                                            

Now, solving for 𝐶𝑘 

𝐶𝑘 = 
𝑉

𝑇0
∫ 𝑒−𝑗𝑘𝜔𝐿𝑂𝑡𝑑𝑡 =  

𝑗𝑉

2𝜋𝑘
(𝑒−𝑗𝜋𝑘 − 1)

𝑇0
2⁄

0

 

=
𝑗𝑉

2𝜋𝑘
[[cos (

𝑘𝜋

2
) − 𝑗sin (

𝑘𝜋

2
)]
2

− 1]                                           

=
𝑗𝑉

2𝜋𝑘
[cos2 (

𝑘𝜋

2
) − 2𝑗cos (

𝑘𝜋

2
) sin (

𝑘𝜋

2
) − sin2 (

𝑘𝜋

2
) − 1] 

=
𝑗𝑉

2𝜋𝑘
[−2𝑗cos (

𝑘𝜋

2
) sin (

𝑘𝜋

2
) − 2sin2 (

𝑘𝜋

2
)]                           

=
𝑉

𝜋𝑘
sin (

𝑘𝜋

2
) [cos (

𝑘𝜋

2
) − 𝑗sin (

𝑘𝜋

2
)]                                        

=
𝑉

𝜋𝑘
sin (

𝑘𝜋

2
) 𝑒−𝑗

𝑘𝜋
2 =

𝑉

2
sinc (

𝑘𝜋

2
)𝑒−𝑗

𝑘𝜋
2  ∎                                                                                           

Now, for 𝑥(𝑡) with 𝐶0 = 𝑉 2⁄ , we have 

𝑥(𝑡)  =
𝑉

2
+∑𝑉sinc (

𝑘𝜋

2
)  cos(𝑘𝜔0𝑡 −

𝑘𝜋
2⁄ )

∞

𝑘=1

 


