
2 - Shared Resources

TSEA81 - Computer Engineering and Real-time Systems

This document is released - 2014-11-07 - first version

Author - Ola Dahl, Andreas Ehliar

Lecture - 2 - Shared Resources

This lecture note treats shared resources and mutual exclusion.
The lecture note also describes semaphores, and how semaphores
can be used to obtain mutual exclusion. The lecture note also gives
information related to real-time operating systems, such as usage,
in Section ??, and hardware adaptations, in Section ??. The notation
[RT] refers to the book Realtidsprogrammering1. 1 https://www.studentlitteratur.se/

#31445

Shared resources

A shared resource is a resource which is accessed by one or more tasks.
A shared resource can be data, e.g. a common buffer between two
communicating tasks. A shared resource can also be hardware, e.g. a
display unit, a timer, or an A/D converter.

Section 4.1 in [RT] describes shared resources, using a program
example, which is based on the program in the file odd_even.c, used in
Assignment 1 - Introduction, Shared Resources.

Critical Regions

Section 4.1 in [RT] also introduces the concepts

• critical region, which is a sequence in the program code of a task
where a shared resource is used,

• relatively indivisible critical region which is a critical region where
the task is allowed to be interrupted but no other task is allowed to
use the shared resource, and

• absolutely indivisible critical region which is a critical region where
the task is not allowed to be interrupted.

Mutual Exclusion

A common requirement on a real-time program with shared re-
sources is that only one task at a time is allowed access to a shared
resource. This can be formulated as a wish to obtain mutual exclusion
between the tasks that need access to a shared resource.

https://www.studentlitteratur.se/#31445
https://www.studentlitteratur.se/#31445


2 - shared resources 2

There are situations where it is not necessary to require that a
critical region is indivisible. One such situation occurs when there
is a shared resource which can be simultaneously read by several
tasks, but only one task at a time is allowed to write to the shared
resource. This problem formulation is referred to as readers-writers,
and is described briefly in Section 4.3 in [RT].

Mutexes

Semaphores can be used to implement mutual exclusion. Section
5.1.1 in [RT] treats semaphores, and shows how semaphores can be
used to ensure mutual exclusion.

A semaphore is presented in Section 5.1.1 as a data type with
three operations: one operation for initialisation, and two operations
denoted Wait and Signal. Mutual exclusion using a semaphore is
obtained by enclosing every critical region with calls to Wait and
Signal, and by initialising the semaphore to the value one.

Semaphores are available in real-time operating systems, but also
in ordinary operating systems like Windows and Linux. The use of
semaphores in Simple_OS for the purpose of implementing mutual
exclusion is described in Section 5.1.1 in [RT], which also illustrates
the use of semaphores by extending the example from Section 4.1.

An example of using semaphores to protect an array can be seen
in the following listing:

int array[10];

si_semaphore Mutex;

void shift_task(void)

{

int i, tmp;

for(i=0; i < 10; i++){

array[i] = i;

}

while(1){

si_sem_wait(&Mutex);

tmp=array[0];

for(i=0; i <= 8 ; i++){

array[i]=array[i+1];

}

array[9] = tmp;

si_sem_signal(&Mutex);

}

}



2 - shared resources 3

/* print_task: print task */

void print_task(void)

{

int sum,i = 0;

while (1) {

sum=0;

si_sem_wait(&Mutex);

for(i=0; i < 10; i++){

sum += array[i];

}

si_sem_signal(&Mutex);

console_put_string("Sum: ");

console_put_hex(sum);

console_put_string("\n");

si_wait_n_ms(1000);

}

}

When this example is run under simple os, it will print the same
sum at all times. However, if the calls to si_sem_wait() and si_sem_signal()
are removed, it will almost always print different values.

It is possible to implement mutual exclusion without using semaphores.
One method, which can be used when there is only one processor,
is to disable interrupts during execution in a critical region. This
leads to an absolutely indivisible critical region. There are also other
methods, which are based on algorithms for implementing mutual
exclusion without using semaphores, and which can be used in mul-
tiprocessor systems. Mutual exclusion without semaphores is treated
in Section 5.1.2 in [RT].

Peterson’s algorithm

Section 5.1.2 in [RT] describes how an algorithm called Peterson’s
algorithm2 can be used to achieve mutual exclusion. The example 2 http://en.wikipedia.org/wiki/

Peterson%27s_algorithmuses two tasks, here shown in the following listing:

/* global variables */

int flag[2];

int turn;

/* task P0 */

void P0(void)

{

while (1)

http://en.wikipedia.org/wiki/Peterson%27s_algorithm
http://en.wikipedia.org/wiki/Peterson%27s_algorithm


2 - shared resources 4

{

flag[0] = 1;

turn = 1;

while (flag[1] && turn == 1)

{

/* do nothing */

}

CRITICAL REGION

flag[0] = 0;

}

}

/* task P1 */

void P1(void)

{

while (1)

{

flag[1] = 1;

turn = 0;

while (flag[0] && turn == 0)

{

/* do nothing */

}

CRITICAL REGION

flag[1] = 0;

}

}

The following reasoning can be used to show that Peterson’s algo-
rithm, as listed above, gives mutual exclusion.

Mutual exclusion is violated, either if both tasks P0 and P1 in the
above listing enter their critical regions simultaneously, or if one of
the tasks enter its critical region while the other task is executing
inside its critical region.

Both tasks can enter their critical regions simultaneously, if the
conditions in the while-statments in the two tasks are false at the
same time. If both tasks are executing their while-statements, we see,
from the listing above, that the variables flag[0] and flag[1] both have
the value one. And, since the variable turn always have one of the
values one or zero, the conditions turn == 1 and turn == 0 cannot
both be false at the same time.



2 - shared resources 5

For the case of one task entering its critical region while the other
task is executing inside its critical region, suppose that P0 is execut-
ing inside its critical region. Then, P1 can enter its critical region if
the condition in the while-statement in P1 becomes false. This can
happen if flag[0] is zero, or if turn is one. Since P0 is executing inside
its critical region, we see, from the listing of P0 above, that flag[0] is
one. It remains to check the value of turn. From the listing above, we
see that turn is set to one by P0 and set to zero by P1. So if turn shall
have the value one, when P0 is executing inside its critical region
and P1 is executing its while-statement to enter its critical region, the
assignment of turn by P0 must have happened after the assignment
of turn by P1. But this could not have happend, since then it would
have been impossible for P0 to enter its critical section, which contra-
dicts our assumption of P0 executing inside its critical region. Hence,
mutual exclusion is obtained.

As described in Section 5.1.2 in [RT], it is also possible to deter-
mine that both tasks P0 and P1 cannot stay in their while-statments
for an indefinite time, since the conditions in the while-statements
cannot be true at the same time.

It is also shown, in Section Section 5.1.2 in [RT], that if the vari-
able turn is removed, mutual exclusion is indeed obtained, but it
is possible to come to a situation where both tasks execute in their
while-statements for an indefinite amount of time.

Another modification of Peterson’s algorithm is to instead remove
the variables flag[0] and flag[1]. The resulting algorithm becomes

/* global variables */

int turn;

/* task P0 */

void P0(void)

{

while (1)

{

turn = 1;

while (turn == 1)

{

/* do nothing */

}

CRITICAL REGION

}

}

/* task P1 */



2 - shared resources 6

void P1(void)

{

while (1)

{

turn = 0;

while (turn == 0)

{

/* do nothing */

}

CRITICAL REGION

}

}

As can be seen in this listing, both tasks cannot enter their critical
regions simultaneously. It is also not possible for P1 to enter its criti-
cal region when P0 executes inside its critical region, since when this
is the case, the variable turn must have the value zero, otherwise it
would not have been possible for P0 to enter its critical region, giving
a contradiction as in the reasoning above for Peterson’s algorithm.
However, the construction in this algorithm requires that the two
tasks enter their critical regions in sequence, and further if one of the
tasks spend time in executing code outside its critical region (after
the critical region but before the assignment of turn), this will prevent
the other task from entering its critical region.

Note however that the code above should be seen as pseudo code
as it will probably not work correctly out-of-the box in a real system.
One problem is that a compiler has a large degree of freedom to
reorganize the code during the optimization phase. Special measures
has to be taken to ensure that this doesn’t happen. In C this can be
done by using the volatile keyword.

Another issue with the code above is that in a multiprocessor/multicore
system with processors that has out of order execution, one task may
not see the memory accesses in the same order as the other task. This
can be solved by using so called memory barriers.

Hardware support for Mutual Exclusion

The method of disabling interrupts for the purpose of acheiving
mutual exclusion uses the built-in property of the hardware (the
processor) to disable and enable interrupts.

As described in Section 5.1.2 in [RT], mutual exclusion can be
implemented without using semaphores, and instead using specific
algorithms for mutual exclusion, e.g. Peterson’s algorithm3. 3 http://en.wikipedia.org/wiki/

Peterson%27s_algorithm

http://en.wikipedia.org/wiki/Peterson%27s_algorithm
http://en.wikipedia.org/wiki/Peterson%27s_algorithm


2 - shared resources 7

Peterson’s algorithm, and other algorithms of this kind, assume
that a load-operation can be done atomically, i.e. as one instruction,
and also that a store-operation can be done atomically. An alternative
is to use processor instructions where a load and a store in sequence
can be done atomically. Using this type of instruction, the actual
algorithm for mutual exclusion can be simplified, compared to e.g.
Peterson’s algorithm. One instruction of this type is called test-and-
set.

A test-and-set instruction can be used for reading a variable, e.g.
a boolean variable indicating if a resource is free or not. The test-
and-set instruction enables reading of the variable, then setting the
variable to true, and as a result, returning the value read (i.e. the
value the variable had before it was set), all as an atomic operation.

Mutual exclusion can be implemented by using a test-and-set
instruction, and a boolean variable representing if a shared resource
is available or reserved.

A task starting its execution in a critical region executes a test-and-
set-instruction. If the value read from the boolean variable indicates
that the resource is free, then the task can consider the resource re-
served (since the variable was set to true and read without any inter-
rupts). The task can then continue its execution in the critical region.

If the value read instead indicates that the resource is reserved, the
task continues, repeatedly, to execute the test-and-set-instruction.

A task finishing its execution in a critical region resets the variable,
i.e. assigns the value false to the variable, which then marks the re-
source as free. It is assumed that this assignment is done atomically.

An example of what this looks like in MC68000 assembler can be
found in the listing below:

; MC68000 example of Test-and-set instruction

loop:

TAS (a0) ; Set Z flag according to contents of memory position pointed to

; by a0

BNE loop

CRITICAL REGION HERE

CLR.B (a0) ; Release lock

More about RTOS

When using a real-time operating system, there are certain restric-
tions on how an application program is constructed. For example, the
following aspects need to be considered:



2 - shared resources 8

• Access to the RTOS API, reflected in the use of include directives
and compiler flags. When using Simple_OS as in this course, these
aspects are seen in the Makefiles used for compilation and linking,
in the course assignments and labs.

• Access to the RTOS library, reflected in the use of directory struc-
tures and linker flags. These aspects are also seen in the Makefiles
used.

• Structure of main function, e.g. with respect to initialisation of the
RTOS, creation of tasks, and starting of the RTOS.

• Structure of tasks, reflected in requirements on C-functions that
shall be used as tasks. In Simple_OS, it is required that a task is
written as a C-function with no parameters, and with no return
value. It is also required that the function contains an infinite loop,
i.e. it is not allowed for the function to return.

• Task priorities. In Simple_OS these are set during task creation.

• Usage of the RTOS, reflected in requirements on how to call func-
tions in the RTOS API, and on requirements on how to write inter-
rupt handlers. The Simple_OS API is defined by the file simple_os.h
(and the files included from this file). The file simple_os.h is in-
cluded by all Simple_OS applications.

• Usage of the RTOS for a specific target, e.g. an ARM board. Here,
one may find requirements on e.g. compiler vendor, methods for
download, and usage and implementation of device drivers.

RTOS for different processor architectures

When using an RTOS, certain parts of the RTOS software need adap-
tation to the specific hardware architecture used. There are adapta-
tions that must be done for the specific processor architecture used, e.g.
adaptations for an ARM4 architecture. 4 http://arm.com/

There are also adaptations that must be done for a specific hard-
ware system. The hardware system can e.g. be a development board,
like the Beagleboard5 used in the course, or it could be an ASIC 5 http://beagleboard.org/

System-on-chip, like the ST-Ericsson Thor M7400 Mobile platform6. 6 http://stericsson.com/products/

m7400-thor.jspThe adaptations required typically involves aspects like setup and
initialisation of interrups, interrupt handling and implementation
of interrupt service routines, task stack creation, task switch, and
external device handling, e.g. when implementing drivers for timers,
and peripheral units.

http://arm.com/
http://beagleboard.org/
http://stericsson.com/products/m7400-thor.jsp
http://stericsson.com/products/m7400-thor.jsp

