
  

 

TSEA44: Computer 
hardware – a 
system on a chip
Lecture 6: Lab 2 intro, Pitfalls when 
coding, debugging, Design for FPGAs

Material by Andreas Ehliar

Agenda

● Lab2 introduction (shown already at end of lecture 4)
● Pitfalls when writing code
● Debugging
● Influence of goal hardware on architecture and code style
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Lab 2 – A JPEG accelerator

1. Design HW

2. Change existing software jpegfiles under uCLinux

a) insert your accelerator

b) insert your DMA

c) insert your instruction
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Our FPGA computer with accelerator
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Raw image format in memory
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0x00ff00ff

8 bit pixels  [0,255]
4 pixels/word

Somewhere 128
must be subtracted 
from each pixel!

… …

Proposed architecture
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Testcases available
● Lab page of the

course webpages

● Includes code for
quantization
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DCT module
● Given to you

– 1D DCT

● 8 in ports (12 bits), 8 out ports (16 bits)

● Fix point arithmetic

● Straightforward implementation of Loeffler's algorithm 
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Proposed architecture
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Transpose Memory

● Rearrange rows to 
columns

– Use distributed RAM

● Synchronous write

● Asynchronous read
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write rows 0 -> 7

read columns 0 ->7

t_wr

t_rd

12
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Proposed architecture
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Proposed architecture
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Proposed architecture
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Some ideas
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You can read 8 pixels per clock,
If you use both ports

You can rebuild the BRAM
to a FIFO 
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Some notes on the WB I/F
● Be careful with wb.ack
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clk

stb

ack

ack

Test benches – 2 alternatives

1) Simulate the whole computer – make sim
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CPU

WB

Boot
ROM

New
Accclk

rst

Par
Port

Insert some code
In the beginning of 
the monitor mon2.c

There are some 
alternatives to 
uncomment

Tip: You can write to 
parport to make it
easier to find things in
ModelSim
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Test benches – 2 alternatives

2) Simulate the accelerator – make sim_jpeg
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New
Acc

wb_tasks
m_read
m_write

tests
1) Write a block to acc
2) Start acc
3) Wait for acc to finish
4) Read block from acc
5) print it out 

rst

clk

wb_tasks.sv
module wishbone_tasks(wishbone.master wb);
   int result = 0;
   reg oldack;
   reg [31:0] olddat;

   always @(posedge wb.clk) begin
      oldack <= wb.ack;
      olddat <= wb.dat_i;
   end
   
   task m_read(input [31:0] adr, output logic [31:0] data);
      begin
      @(posedge wb.clk);
      wb.adr <= adr;
      wb.stb <= 1'b1;
      wb.we  <= 1'b0;
      wb.cyc <= 1'b1;
      wb.sel <= 4'hf;
 
      @(posedge wb.clk);
      #1; 
      while (!oldack) begin
        @(posedge wb.clk);
              #1;
      end
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      wb.stb <= 1'b0;
      wb.we  <= 1'b0;
      wb.cyc <= 1'b0;
      wb.sel <= 4'h0;
 
      data = olddat;
      end
   endtask // m_read
   ...
endmodule // wishbone_tasks
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Potential pitfalls when creating a design
● What can go wrong?

– Design mistakes

– Synthesis errors

– Runtime errors

● Crossing clock domains

– Handshaking

– Asynchronous FIFOs
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A design bug
● Symptom: The boot sequence of uClinux hangs after a 

second when the Icache is on.
● Uclinux boots ok with Icache off
● No problems detected in the monitor when the icache is 

on
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First try
● Modify the testbench so uClinux is present in SDRAM 

models
● Add interesting signals to the wave window
● Run the simulation over night
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Oops...
● In the morning the simulation was not running any longer
● The log files had filled up all free space on the fileserver...

– ... which promptly crashed, causing all sorts of 
merriment
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Handling long simulation runtimes
● Use checkpointing to reduce/eliminate the need for 

logging
– Add no signals to wave window (and log for that 

matter)

– Modify UART so printouts are displayed in the 
transcript window (using $display())

– run 100 ms; checkpoint 100ms.chk

– run 100 ms; checkpoint 200ms.chk

– run 100 ms; checkpoint 300ms.chk

– ...
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Handling long simulation runtime, cont.
● Now you can pinpoint the time interval where the crash 

happened
– Restore the checkpoint in Modelsim that occured 

closest before the actual crash

– vsim -restore 600ms.chk

– Debug as usual (by adding signals to wave 
window/etc)
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So what was the bug?
● Cacheline filled up incorrectly (AAAA AAAA CCCC DDDD 

instead of AAAA BBBB CCCC DDDD)
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What if you cannot find a bug during 
simulation?

● Very likely you have some undefined behavior in your 
design
– Race condition in RTL code (blocking vs non-blocking 

assignment)
– Incorrect use of ”don't cares”
– You are not crossing clock domains correctly 
– etc.

● Not so likely:
– You have triggered a bug in the CAD tools
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Clock domain crossing
● Why do we need synchronous designs?

– Race conditions
– Metastability

● Crossing clock domains
– (Avoid if possible)
– Using handshakes
– Using asynchronous FIFOs
– Your own solution

● (Only if you like debugging systems where bugs cannot be 
deterministically reproduced...)

● Do not forget that the reset signal has to be passed to 
each clock domain!
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Troubleshooting
● Post Place-and-Route (PAR) simulation

– Generate a new netlist using netgen
– Simulation done with LUTs and FF
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32-bit add/sub example:
Output s takes 15ns to stabilize after sub 0->1

Available for lab0!
make sim_lab0_sdf
See lab webpage
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Testbenches that work with PAR netlists
● Avoid violating setup and hold times of flipflops

– Delay test values 

● Test results at the end of the clock cycle
– Test values at 

the clock cycle 
transition, before 
updates moved 
on from input
flipflops 
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initial begin // Test adder
  @(posedge clk);

     #4; // delay after clockedge
  a <= 5;
  b <= 3;
  @(posedge clk);
  if (result != 8) begin

        $display(”Adder fail”);
        $stop;
    end
end

Simulation ok, but still not working?
● Add measurement logic to the FPGA Design

– Use switches and LEDs

● Chipscope/Signaltap

– Add logic analyzer function to the FPGA design

– Store samples in blockRAM or similar

– Communicate with PC over JTAG

● Warning!

– Many people think signaltap/chipscope replace 
simulation. It does not! Better to spend time writing 
better testbench
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Clock cycle constraints effects on result

2022-11-22 31TSEA44: Computer hardware – a system on a chip

To get the best out of the FPGA

● Understand the architecture

● Use suitable descriptions

● Use available tools to extract implementation 
information

– FPGA editor

– Floorplanner

– Planahead

– Datasheets

– Timing reports
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FPGA components

● CLB:s

– Slices

– LUT

● Hard blocks

– Block memory

– Multipliers

– I/O units
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1/2 slice (total 8 of these in one CLB)

● Note

– 4-input LUT G

– XORG

– CYOG

– MUXCY

– MULTAND
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Combinatorial logic using a LUT

● 4 inputs give any logic function of at most 4 inputs
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LUT

d
c

a
b

Adders and carrychains in Xilinx FPGAs

● 1 fulladder structure using carry chain acceleration

– MUXCY and XORG
located outside LUT

● 1 LUT/bit
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Extend to Add/subtract in Xilinx FPGAs

● Still one unused input to the LUT
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Sub

Cin
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Rule of thumb for efficient adders in 4-
input LUT based FPGAs

● S = a + K(b,c,d)

● Plain adder

● Adder/subtracter

● 2-to-1 mux and adder

● More strange versions

– S = (opb | opc | opd) + opa

– S = (opb & opc) + (opb & opa)
(Uses MULT_AND located under LUT in slice figure)
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Carry chain for other purposes: 
Comparators

● Compare 2 bits per LUT

● Compare 4 bits per LUT 
if one value is constant!
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Carry chain drawbacks

● Example: Address calculation selecting one byte memory

● The carry chain itself is extremely fast
● Getting on the chain is not very fast
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BlockRAM

K
[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

BlockRAM

K
OpA[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

Imm[1:0]

WE delayed by carry chain 2-bit adder in K using 1 LUT 
gives faster implementation
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Multiplexers in FPGAs

● A big difference between ASIC and FPGAs: Multiplexers 
are cheap in ASIC and expensive in FPGAs

● 4-input LUT: One 2-to-1 mux

● Specialized multiplexers in the slices are used to combine 
LUTs into larger multiplexers

2022-11-22 41TSEA44: Computer hardware – a system on a chip

Multiplexers in Xilinx FPGAs

● Possible use of spare input:
– Invert output, set output to one or zero
– Tricky variants based on a,b, and s[0]

● How many 4-input LUTs needed for a 4-to-1 mux (without 
MUXFx components)?
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Avoiding multiplexers in pipelined 
designs

● Multiplexers are costly in FPGAs
● Alternative 1: Use or gates and make sure unused inputs 

are set to 0 using reset input of flip-flops
● Alternative 2: Use and gates and make sure unused 

inputs are set to 1. (see MULT_AND as well!)
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Memory guidelines

● Standard rule: Large memories should be synchronous

● For high frequency design you want to register the 
output of the memory as well.

● For power reasons you should not enable the memory 
unless necessary
– Double check that your enables work when inferring a 

memory!

● Smaller memories may be asynchronous if necessary

● You should not have a reset signal for your memory array
– Easy to forget for shift registers!
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Memories larger than one BlockRAM

● Why use the right variant? Reduced power consumption!
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36 bit wide

9 bit
wide

X[35:27]

X[35:0]
X[26:18]

X[17:9]

X[8:0]

72 kilobit using 4 BlockRAMs
that are 9 bits wide

72 kilobit using 4 BlockRAMs
that are 36 bits wide

A case study: A divider for a RISC 
processor

● Used in a 32-bit RISC processor

● Target frequency: 320 MHz in a Virtex-4 (speedgrade -12)

● Uses restoring division algorithm (basic operations are 
shift, subtract, and select)

– Serial computation

– Very similar to manual division
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dividend
divisor

=quotient×divisor+remainder
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Initial divider architecture
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Dividend input

-

1 0

Shift   Divisor

  Remainder
  Shift register

Remainder output Quotient output

Divisor input

Next-bit from dividend

MSB

Initial divider architecture
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Dividend input
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Divisor input
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MSB

Retiming
opportunity

Initial speed:
300 MHz
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Issues

● Cannot combine subtracter and 2-to-1 multiplexer!

● Solution: Preprocess divisor and use an addition instead
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Retimed and using adder
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Other issues

● Synthesis tool was too clever

● Manually instantiating the components worked

● Alternatively a complete rewrite of the module worked 
as well

● Improves clock frequency to 377 MHz (from 300 MHz)
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Dealing with negative numbers

● Idea:  Take absolute value of dividend and divisor

● Negate quotient and remainder if necessary

● For a 32 bit divider this seems to require around 128 
extra LUTs...
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Absolute value for divisor
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Absolute value for dividend
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Quotient negator: Reuse 
negator for dividend
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Tricky to do in practice

● Required signals for shift register:

1. Load enable/shift enable

2. Invert enable

3. Input data of new dividend

4. Input data of new dividend (MSB bit)

5. Current value of register

● 5 inputs to a 4 input LUT?
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Tricky to do in practice - Solution

● Solution: Skip MSB of dividend input for ABS operation

● Always invert the dividend, only add 1 as a carry in if 
appropriate
– This can be implemented by adding a few extra LSB 

bits
– If we had a positive value we can compensate for the 

inversion at shift out
– We can even add a control bit to select between 

signed/unsigned division

● Manual instantiation was necessary to actually 
implement this
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Results for Virtex-4, speedgrade 12

● Unoptimized, unsigned:  300 MHz, 107 LUTs

● Retimed, unsigned:  377 MHz, 140 LUTs

● Retimed, signed:  361 MHz, 151 LUTs

● Retimed, signed or unsigned:  363 MHz, 153 LUTs
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Manual instantiation

● Last resort when synthesis attributes and rewriting the 
RTL code does not work

● Not portable between FPGA vendors

– Suprisingly portable to ASIC however 
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Manual instantiation of flip-flops

● Allows you to ensure that the correct signals are 
corrected to the D, CE, and SR inputs

– XST (Xilinx own synthesis tool, not used in the lab) 
often seem to select the wrong input for SR

– Background:  SR input is quite slow compared to D 
input

● Can sometimes be avoided by rewriting the code or using 
synthesis attributes

● Often easier to just instantiate flip-flop primitives directly
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Manual instantiation of Memories and 
DSP Blocks

● Well documented in various application notes
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Synthesis attributes

● A convenient way to force the synthesis tool to do what 
you mean

● In VHDL:

attribute keep :  string;
attribute keep of mysignal:  signal is "TRUE"

● In Verilog:

(* KEEP = "TRUE" *) wire mysignal;

● Note:  Synthesis attributes discussed here are for XST, not 
Precision!

– (Read the Precision manual)
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Synthesis attribute KEEP

● Preserves the selected signal

● Use case:

– The synthesis tool makes a bad optimization decision.

– By using KEEP you can ensure that a certain signal is 
not hidden inside a LUT and hence guide the 
optimization process
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KEEP example from a display controller

wire inimagey = (yctr > 31) && (yctr < 192);
wire inimagex = (xctr > 15) && (xctr < 26);
...

always @(posedge clk) begin
  if (inimagey && (xctr == 15) ) begin
  ...
  end else if(inimagey && (xctr == 26)) begin
  ...
  if (inimagey && (xctr == 15) ) begin
  ...
  end else if(inimagey && (yctr[2:0] == 7)) begin
  ...

● Problem:  Synthesis tool merged inimagey test with other 
tests in suboptimal way
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Solution: Force inimagey and inimagex 
to be separate signals

(* KEEP = "TRUE" *) wire inimagey;
(* KEEP = "TRUE" *) wire inimagex;

assign inimagey = (yctr > 31) && (yctr < 192);
assign inimagex = (xctr > 15) && (xctr < 26);

● Saved area in an area constrained situation

● Especially important when targetting both CPLD and 
FPGAs with a single IP core
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SIGNAL ENCODING attribute

● Allows you to select encoding for state machines

● Useful when synthesis tool make suboptimal state 
machine encoding choices

● (Alternatively:  You can disable FSM optimization if you 
really want to)
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Example: Memory byte select in a 
processor

● Signal encoding specified 2 FF, 4 states.

● Two signals into mux control signal
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FSM
BlockRAM
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Example: Memory byte select in a 
processor

● Heuristics in the synthesis tool selected one-hot coding 
for the FSM...
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FSM
BlockRAM

K

EQUIVALENT REGISTER REMOVAL 
attribute

● Allows you to specify that certain registers should not be 
optimized away.

● Perfect when you do not want the synthesis tool to touch 
your carefully optimized (duplicated) flip-flops

2022-11-22 70TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36



  

 

Example: Operand bus in a processor

● Problem:  Manual register duplication in read operand 
stage is removed by synthesis tool

● Solution:  Disable optimization locally by setting 
EQUIVALENT_REGISTER_REMOVAL to "no"
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Very heavy fanoutDecode

ALU Shifter Memory MAC

Read OPS

Fetch

4-to-1 multiplexer using two LUT4
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4-to-1 multiplexer using two LUT4
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LUT

A
B

S[1]
S[0]

LUT
D
C O

T = S1[1] ? S[0] : {S[0] ? B : A}; 

O = S1[1] ? {T ? D : C} : T;

Conclusions
● By mapping your design to the FPGA in an efficient manner 

you can significantly improve the performance of your 
design

● Keep this in mind early in the design phase.

● (However, don't optimize unless you really need to.)
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