

TSEA44: Computer
hardware – a
system on a chip
Lecture 6: Lab 2 intro, Pitfalls when
coding, debugging, Design for FPGAs

Material by Andreas Ehliar

Agenda

● Lab2 introduction (shown already at end of lecture 4)
● Pitfalls when writing code
● Debugging
● Influence of goal hardware on architecture and code style

2022-11-22 2TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Lab 2 – A JPEG accelerator

1. Design HW

2. Change existing software jpegfiles under uCLinux

a) insert your accelerator

b) insert your DMA

c) insert your instruction

2022-11-22 3TSEA44: Computer hardware – a system on a chip

Our FPGA computer with accelerator

2022-11-22 4TSEA44: Computer hardware – a system on a chip

Boot-
ROM
RAM

PKMC
uCLinux
testbild.raw

WB

UART

ICNPC

PC

IR

RF

DC

WBI

WBI

LSU

OR1200

tx

rx

FFs on
outputs

FFs on
outputs

ALU

DCTQ
DMA

bit

testbild.jpg

s6

m6

m6

m0

m1

2022-11-22 10:36

Raw image format in memory

2022-11-22 5TSEA44: Computer hardware – a system on a chip

0x00ff00ff

8 bit pixels [0,255]
4 pixels/word

Somewhere 128
must be subtracted
from each pixel!

… …

Proposed architecture

2022-11-22 6TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Testcases available
● Lab page of the

course webpages

● Includes code for
quantization

2022-11-22 7TSEA44: Computer hardware – a system on a chip

DCT module
● Given to you

– 1D DCT

● 8 in ports (12 bits), 8 out ports (16 bits)

● Fix point arithmetic

● Straightforward implementation of Loeffler's algorithm

2022-11-22 8TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Proposed architecture

2022-11-22 9TSEA44: Computer hardware – a system on a chip

Transpose Memory

● Rearrange rows to
columns

– Use distributed RAM

● Synchronous write

● Asynchronous read

2022-11-22 10TSEA44: Computer hardware – a system on a chip

write rows 0 -> 7

read columns 0 ->7

t_wr

t_rd

12

2022-11-22 10:36

Proposed architecture

2022-11-22 11TSEA44: Computer hardware – a system on a chip

Proposed architecture

2022-11-22 12TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Proposed architecture

2022-11-22 13TSEA44: Computer hardware – a system on a chip

Some ideas

2022-11-22 14TSEA44: Computer hardware – a system on a chip

You can read 8 pixels per clock,
If you use both ports

You can rebuild the BRAM
to a FIFO

data_out

Write counterRead counter

data_in

empty

full

read

write

2022-11-22 10:36

Some notes on the WB I/F
● Be careful with wb.ack

2022-11-22 15TSEA44: Computer hardware – a system on a chip

clk

stb

ack

ack

Test benches – 2 alternatives

1) Simulate the whole computer – make sim

2022-11-22 16TSEA44: Computer hardware – a system on a chip

CPU

WB

Boot
ROM

New
Accclk

rst

Par
Port

Insert some code
In the beginning of
the monitor mon2.c

There are some
alternatives to
uncomment

Tip: You can write to
parport to make it
easier to find things in
ModelSim

2022-11-22 10:36

Test benches – 2 alternatives

2) Simulate the accelerator – make sim_jpeg

2022-11-22 17TSEA44: Computer hardware – a system on a chip

New
Acc

wb_tasks
m_read
m_write

tests
1) Write a block to acc
2) Start acc
3) Wait for acc to finish
4) Read block from acc
5) print it out

rst

clk

wb_tasks.sv
module wishbone_tasks(wishbone.master wb);
 int result = 0;
 reg oldack;
 reg [31:0] olddat;

 always @(posedge wb.clk) begin
 oldack <= wb.ack;
 olddat <= wb.dat_i;
 end

 task m_read(input [31:0] adr, output logic [31:0] data);
 begin
 @(posedge wb.clk);
 wb.adr <= adr;
 wb.stb <= 1'b1;
 wb.we <= 1'b0;
 wb.cyc <= 1'b1;
 wb.sel <= 4'hf;

 @(posedge wb.clk);
 #1;
 while (!oldack) begin
 @(posedge wb.clk);
 #1;
 end

2022-11-22 18TSEA44: Computer hardware – a system on a chip

 wb.stb <= 1'b0;
 wb.we <= 1'b0;
 wb.cyc <= 1'b0;
 wb.sel <= 4'h0;

 data = olddat;
 end
 endtask // m_read
 ...
endmodule // wishbone_tasks

2022-11-22 10:36

Potential pitfalls when creating a design
● What can go wrong?

– Design mistakes

– Synthesis errors

– Runtime errors

● Crossing clock domains

– Handshaking

– Asynchronous FIFOs

2022-11-22 19TSEA44: Computer hardware – a system on a chip

A design bug
● Symptom: The boot sequence of uClinux hangs after a

second when the Icache is on.
● Uclinux boots ok with Icache off
● No problems detected in the monitor when the icache is

on

2022-11-22 20TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

First try
● Modify the testbench so uClinux is present in SDRAM

models
● Add interesting signals to the wave window
● Run the simulation over night

2022-11-22 21TSEA44: Computer hardware – a system on a chip

Oops...
● In the morning the simulation was not running any longer
● The log files had filled up all free space on the fileserver...

– ... which promptly crashed, causing all sorts of
merriment

2022-11-22 22TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Handling long simulation runtimes
● Use checkpointing to reduce/eliminate the need for

logging
– Add no signals to wave window (and log for that

matter)

– Modify UART so printouts are displayed in the
transcript window (using $display())

– run 100 ms; checkpoint 100ms.chk

– run 100 ms; checkpoint 200ms.chk

– run 100 ms; checkpoint 300ms.chk

– ...

2022-11-22 23TSEA44: Computer hardware – a system on a chip

Handling long simulation runtime, cont.
● Now you can pinpoint the time interval where the crash

happened
– Restore the checkpoint in Modelsim that occured

closest before the actual crash

– vsim -restore 600ms.chk

– Debug as usual (by adding signals to wave
window/etc)

2022-11-22 24TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

So what was the bug?
● Cacheline filled up incorrectly (AAAA AAAA CCCC DDDD

instead of AAAA BBBB CCCC DDDD)

2022-11-22 25TSEA44: Computer hardware – a system on a chip

What if you cannot find a bug during
simulation?

● Very likely you have some undefined behavior in your
design
– Race condition in RTL code (blocking vs non-blocking

assignment)
– Incorrect use of ”don't cares”
– You are not crossing clock domains correctly
– etc.

● Not so likely:
– You have triggered a bug in the CAD tools

2022-11-22 26TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Clock domain crossing
● Why do we need synchronous designs?

– Race conditions
– Metastability

● Crossing clock domains
– (Avoid if possible)
– Using handshakes
– Using asynchronous FIFOs
– Your own solution

● (Only if you like debugging systems where bugs cannot be
deterministically reproduced...)

● Do not forget that the reset signal has to be passed to
each clock domain!

2022-11-22 27TSEA44: Computer hardware – a system on a chip

Troubleshooting
● Post Place-and-Route (PAR) simulation

– Generate a new netlist using netgen
– Simulation done with LUTs and FF

2022-11-22 28TSEA44: Computer hardware – a system on a chip

32-bit add/sub example:
Output s takes 15ns to stabilize after sub 0->1

Available for lab0!
make sim_lab0_sdf
See lab webpage

2022-11-22 10:36

Testbenches that work with PAR netlists
● Avoid violating setup and hold times of flipflops

– Delay test values

● Test results at the end of the clock cycle
– Test values at

the clock cycle
transition, before
updates moved
on from input
flipflops

2022-11-22 29TSEA44: Computer hardware – a system on a chip

initial begin // Test adder
 @(posedge clk);

 #4; // delay after clockedge
 a <= 5;
 b <= 3;
 @(posedge clk);
 if (result != 8) begin

 $display(”Adder fail”);
 $stop;
 end
end

Simulation ok, but still not working?
● Add measurement logic to the FPGA Design

– Use switches and LEDs

● Chipscope/Signaltap

– Add logic analyzer function to the FPGA design

– Store samples in blockRAM or similar

– Communicate with PC over JTAG

● Warning!

– Many people think signaltap/chipscope replace
simulation. It does not! Better to spend time writing
better testbench

2022-11-22 30TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Clock cycle constraints effects on result

2022-11-22 31TSEA44: Computer hardware – a system on a chip

To get the best out of the FPGA

● Understand the architecture

● Use suitable descriptions

● Use available tools to extract implementation
information

– FPGA editor

– Floorplanner

– Planahead

– Datasheets

– Timing reports

2022-11-22 32TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

FPGA components

● CLB:s

– Slices

– LUT

● Hard blocks

– Block memory

– Multipliers

– I/O units

2022-11-22 33TSEA44: Computer hardware – a system on a chip

1/2 slice (total 8 of these in one CLB)

● Note

– 4-input LUT G

– XORG

– CYOG

– MUXCY

– MULTAND

2022-11-22 34TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Combinatorial logic using a LUT

● 4 inputs give any logic function of at most 4 inputs

2022-11-22 35TSEA44: Computer hardware – a system on a chip

LUT

d
c

a
b

Adders and carrychains in Xilinx FPGAs

● 1 fulladder structure using carry chain acceleration

– MUXCY and XORG
located outside LUT

● 1 LUT/bit

2022-11-22 36TSEA44: Computer hardware – a system on a chip

=1
=1=1

B
A

Cout

MUXCY

XORG

iCBAS 

Cin

LUT

2022-11-22 10:36

Extend to Add/subtract in Xilinx FPGAs

● Still one unused input to the LUT

2022-11-22 37TSEA44: Computer hardware – a system on a chip

=1
=1=1

B
A

Cout

S

=1
Sub

Cin

LUT

Rule of thumb for efficient adders in 4-
input LUT based FPGAs

● S = a + K(b,c,d)

● Plain adder

● Adder/subtracter

● 2-to-1 mux and adder

● More strange versions

– S = (opb | opc | opd) + opa

– S = (opb & opc) + (opb & opa)
(Uses MULT_AND located under LUT in slice figure)

2022-11-22 38TSEA44: Computer hardware – a system on a chip

+

K

c
i

c
o

a

S

b
c
d

2022-11-22 10:36

Carry chain for other purposes:
Comparators

● Compare 2 bits per LUT

● Compare 4 bits per LUT
if one value is constant!

2022-11-22 39TSEA44: Computer hardware – a system on a chip

=1

=1
≥1

0 1

0

LUT

=1

=1
≥1

0 1

0

LUT

1

MUXCY

MUXCY

are_equal

a[3]

a[2]

a[0]

a[1]

b[3]

b[2]

b[1]

b[0]

Carry chain drawbacks

● Example: Address calculation selecting one byte memory

● The carry chain itself is extremely fast
● Getting on the chain is not very fast

2022-11-22 40TSEA44: Computer hardware – a system on a chip

BlockRAM

K
[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

BlockRAM

K
OpA[1:0]

OpA Imm Ctrl

Data Addr WE[3:0]

Imm[1:0]

WE delayed by carry chain 2-bit adder in K using 1 LUT
gives faster implementation

2022-11-22 10:36

Multiplexers in FPGAs

● A big difference between ASIC and FPGAs: Multiplexers
are cheap in ASIC and expensive in FPGAs

● 4-input LUT: One 2-to-1 mux

● Specialized multiplexers in the slices are used to combine
LUTs into larger multiplexers

2022-11-22 41TSEA44: Computer hardware – a system on a chip

Multiplexers in Xilinx FPGAs

● Possible use of spare input:
– Invert output, set output to one or zero
– Tricky variants based on a,b, and s[0]

● How many 4-input LUTs needed for a 4-to-1 mux (without
MUXFx components)?

2022-11-22 42TSEA44: Computer hardware – a system on a chip

LUT

d
c

s[0]

b

LUT

a
s[0]

s[1]

MUXF5

Result

2022-11-22 10:36

Avoiding multiplexers in pipelined
designs

● Multiplexers are costly in FPGAs
● Alternative 1: Use or gates and make sure unused inputs

are set to 0 using reset input of flip-flops
● Alternative 2: Use and gates and make sure unused

inputs are set to 1. (see MULT_AND as well!)

2022-11-22 43TSEA44: Computer hardware – a system on a chip

Execution
Unit 1

≥1

≥1

≥1

R

R

R

Select active unit

Execution
Unit 2

Execution
Unit 3

F
ro

m
 o

tg
he

r
pi

pe
lin

e
st

ag
es

Memory guidelines

● Standard rule: Large memories should be synchronous

● For high frequency design you want to register the
output of the memory as well.

● For power reasons you should not enable the memory
unless necessary
– Double check that your enables work when inferring a

memory!

● Smaller memories may be asynchronous if necessary

● You should not have a reset signal for your memory array
– Easy to forget for shift registers!

2022-11-22 44TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Memories larger than one BlockRAM

● Why use the right variant? Reduced power consumption!

2022-11-22 45TSEA44: Computer hardware – a system on a chip

36 bit wide

9 bit
wide

X[35:27]

X[35:0]
X[26:18]

X[17:9]

X[8:0]

72 kilobit using 4 BlockRAMs
that are 9 bits wide

72 kilobit using 4 BlockRAMs
that are 36 bits wide

A case study: A divider for a RISC
processor

● Used in a 32-bit RISC processor

● Target frequency: 320 MHz in a Virtex-4 (speedgrade -12)

● Uses restoring division algorithm (basic operations are
shift, subtract, and select)

– Serial computation

– Very similar to manual division

2022-11-22 46TSEA44: Computer hardware – a system on a chip

dividend
divisor

=quotient×divisor+remainder

2022-11-22 10:36

Initial divider architecture

2022-11-22 47TSEA44: Computer hardware – a system on a chip

Dividend input

-

1 0

Shift Divisor

 Remainder
 Shift register

Remainder output Quotient output

Divisor input

Next-bit from dividend

MSB

Initial divider architecture

2022-11-22 48TSEA44: Computer hardware – a system on a chip

Dividend input

-

1 0

Shift Divisor

 Remainder
 Shift register

Remainder output Quotient output

Divisor input

Next-bit from dividend

MSB

Retiming
opportunity

Initial speed:
300 MHz

2022-11-22 10:36

Issues

● Cannot combine subtracter and 2-to-1 multiplexer!

● Solution: Preprocess divisor and use an addition instead

2022-11-22 49TSEA44: Computer hardware – a system on a chip

Retimed and using adder

2022-11-22 50TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t
fr

o
m

 d
iv

id
en

d

MSB

1

1 0

Shift

 Newremainder

MSB

2022-11-22 10:36

Other issues

● Synthesis tool was too clever

● Manually instantiating the components worked

● Alternatively a complete rewrite of the module worked
as well

● Improves clock frequency to 377 MHz (from 300 MHz)

2022-11-22 51TSEA44: Computer hardware – a system on a chip

Dealing with negative numbers

● Idea: Take absolute value of dividend and divisor

● Negate quotient and remainder if necessary

● For a 32 bit divider this seems to require around 128
extra LUTs...

2022-11-22 52TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Absolute value for divisor

2022-11-22 53TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t
fr

o
m

 d
iv

id
en

d

MSB

1

1 0

Shift

 Newremainder

MSB

Absolute value for dividend

2022-11-22 54TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t
fr

o
m

 d
iv

id
en

d

MSB

1

1 0

Shift

 Newremainder

MSB

2022-11-22 10:36

Quotient negator: Reuse
negator for dividend

2022-11-22 55TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t
fr

o
m

 d
iv

id
en

d

MSB

1

1 0

Shift

 Newremainder

MSB

Remainder negator

2022-11-22 56TSEA44: Computer hardware – a system on a chip

Dividend input

+

1 0 Shift

 Inverted
Divisor

 Remainder

 Shift register

Remainder output Quotient output

Divisor input

N
ex

t-
bi

t
fr

o
m

 d
iv

id
en

d

MSB

1

1 0

Shift

 Newremainder

MSB

2022-11-22 10:36

Tricky to do in practice

● Required signals for shift register:

1. Load enable/shift enable

2. Invert enable

3. Input data of new dividend

4. Input data of new dividend (MSB bit)

5. Current value of register

● 5 inputs to a 4 input LUT?

2022-11-22 57TSEA44: Computer hardware – a system on a chip

Tricky to do in practice - Solution

● Solution: Skip MSB of dividend input for ABS operation

● Always invert the dividend, only add 1 as a carry in if
appropriate
– This can be implemented by adding a few extra LSB

bits
– If we had a positive value we can compensate for the

inversion at shift out
– We can even add a control bit to select between

signed/unsigned division

● Manual instantiation was necessary to actually
implement this

2022-11-22 58TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Results for Virtex-4, speedgrade 12

● Unoptimized, unsigned: 300 MHz, 107 LUTs

● Retimed, unsigned: 377 MHz, 140 LUTs

● Retimed, signed: 361 MHz, 151 LUTs

● Retimed, signed or unsigned: 363 MHz, 153 LUTs

2022-11-22 59TSEA44: Computer hardware – a system on a chip

Manual instantiation

● Last resort when synthesis attributes and rewriting the
RTL code does not work

● Not portable between FPGA vendors

– Suprisingly portable to ASIC however

2022-11-22 60TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Manual instantiation of flip-flops

● Allows you to ensure that the correct signals are
corrected to the D, CE, and SR inputs

– XST (Xilinx own synthesis tool, not used in the lab)
often seem to select the wrong input for SR

– Background: SR input is quite slow compared to D
input

● Can sometimes be avoided by rewriting the code or using
synthesis attributes

● Often easier to just instantiate flip-flop primitives directly

2022-11-22 61TSEA44: Computer hardware – a system on a chip

Manual instantiation of Memories and
DSP Blocks

● Well documented in various application notes

2022-11-22 62TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Synthesis attributes

● A convenient way to force the synthesis tool to do what
you mean

● In VHDL:

attribute keep : string;
attribute keep of mysignal: signal is "TRUE"

● In Verilog:

(* KEEP = "TRUE" *) wire mysignal;

● Note: Synthesis attributes discussed here are for XST, not
Precision!

– (Read the Precision manual)

2022-11-22 63TSEA44: Computer hardware – a system on a chip

Synthesis attribute KEEP

● Preserves the selected signal

● Use case:

– The synthesis tool makes a bad optimization decision.

– By using KEEP you can ensure that a certain signal is
not hidden inside a LUT and hence guide the
optimization process

2022-11-22 64TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

KEEP example from a display controller

wire inimagey = (yctr > 31) && (yctr < 192);
wire inimagex = (xctr > 15) && (xctr < 26);
...

always @(posedge clk) begin
 if (inimagey && (xctr == 15)) begin
 ...
 end else if(inimagey && (xctr == 26)) begin
 ...
 if (inimagey && (xctr == 15)) begin
 ...
 end else if(inimagey && (yctr[2:0] == 7)) begin
 ...

● Problem: Synthesis tool merged inimagey test with other
tests in suboptimal way

2022-11-22 65TSEA44: Computer hardware – a system on a chip

Solution: Force inimagey and inimagex
to be separate signals

(* KEEP = "TRUE" *) wire inimagey;
(* KEEP = "TRUE" *) wire inimagex;

assign inimagey = (yctr > 31) && (yctr < 192);
assign inimagex = (xctr > 15) && (xctr < 26);

● Saved area in an area constrained situation

● Especially important when targetting both CPLD and
FPGAs with a single IP core

2022-11-22 66TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

SIGNAL ENCODING attribute

● Allows you to select encoding for state machines

● Useful when synthesis tool make suboptimal state
machine encoding choices

● (Alternatively: You can disable FSM optimization if you
really want to)

2022-11-22 67TSEA44: Computer hardware – a system on a chip

Example: Memory byte select in a
processor

● Signal encoding specified 2 FF, 4 states.

● Two signals into mux control signal

2022-11-22 68TSEA44: Computer hardware – a system on a chip

FSM
BlockRAM

2022-11-22 10:36

Example: Memory byte select in a
processor

● Heuristics in the synthesis tool selected one-hot coding
for the FSM...

2022-11-22 69TSEA44: Computer hardware – a system on a chip

FSM
BlockRAM

K

EQUIVALENT REGISTER REMOVAL
attribute

● Allows you to specify that certain registers should not be
optimized away.

● Perfect when you do not want the synthesis tool to touch
your carefully optimized (duplicated) flip-flops

2022-11-22 70TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

Example: Operand bus in a processor

● Problem: Manual register duplication in read operand
stage is removed by synthesis tool

● Solution: Disable optimization locally by setting
EQUIVALENT_REGISTER_REMOVAL to "no"

2022-11-22 71TSEA44: Computer hardware – a system on a chip

Very heavy fanoutDecode

ALU Shifter Memory MAC

Read OPS

Fetch

4-to-1 multiplexer using two LUT4

2022-11-22 72TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

4-to-1 multiplexer using two LUT4

2022-11-22 73TSEA44: Computer hardware – a system on a chip

LUT

A
B

S[1]
S[0]

LUT
D
C O

T = S1[1] ? S[0] : {S[0] ? B : A};

O = S1[1] ? {T ? D : C} : T;

Conclusions
● By mapping your design to the FPGA in an efficient manner

you can significantly improve the performance of your
design

● Keep this in mind early in the design phase.

● (However, don't optimize unless you really need to.)

2022-11-22 74TSEA44: Computer hardware – a system on a chip

2022-11-22 10:36

www.liu.se

2022-11-22 10:36

