

TSEA44: Computer
hardware – a
system on a chip
Lecture 7: DMA, lab3, testbenches

Today
● Hints for documentation
● DMA
● Lab3
● Testbenches

2016-11-24 2TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

Lab reports
● Lab1: Section 3.7.2 is good reading

– Specifies what to include (code, diagrams, state
graphs)

– Specifies things to discuss in the report
● Same type of section found for the other lab tasks also
● Include all code you have written/modified

– Assume the reader have access to the original lab
setup

2016-11-24 3TSEA44: Computer hardware – a system on a chip

Creating schematics
● Alternatives

– Openoffice/libreoffice diagram tool (I use this for
slides)

– Inkscape (potentially very nice looking, very
cumbersome though)

– Dia (decent if you have RTL library for it)
– TikZ (if you really like latex)
– MS Paint (I'm only kidding)
– Hand drawn schematics from whiteboard/paper

● Quality problems...
– Visio (if you have a license for it)

2016-11-24 4TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

schematic_gui
● Previous examiners (Andreas Ehliar) hobby project
● http://github.com/ehliar/schematic_gui

– Tutorial at
https://github.com/ehliar/schematic_gui/blob/master
/tutorial/tutorial.md

● Accessible also on computers in
the lab

module load TSEA44

schematic_gui

2016-11-24 5TSEA44: Computer hardware – a system on a chip

Packed arrays, how to use them
2016-11-24 6TSEA44: Computer hardware – a system on a chip

logic [11:0] tm1[0:7][0:7];

logic [0:7][0:7][11:0] tm2;

left to right, right first

tm1[0][0] // DC component
tm2[0][0] // -”-

tm2[0] // tm2[0:7][0] //

x

y
z

2016-11-24 23:45

Array slicing
The size of the part select or slice must be
constant, but the position can be variable.

logic [31:0] b;

logic [7:0] a1, a2;

a1 = b[x -: 8]; // OK fixed width

a2 = b[y +: 8]; // OK fixed width

d = b[x:y]; // not OK

2016-11-24 7TSEA44: Computer hardware – a system on a chip

Lab 3 - DMA
2016-11-24 8TSEA44: Computer hardware – a system on a chip

W
B

PKMC

DCT

CPU

UART

ETH

Monitor

SDRAM

Clinux
(kernel + filesystem)
 webserver
 tftp
 testbild.raw

tftp jpegtest
web page

0

1

2

32

6
6

1

0

0x9600_0000

0x9000_0000

0x4000_0000

0x9200_0000

-

Use DMA to fill the DCT acc!

terminal

2016-11-24 23:45

Proposed architecture

● Design FSM
● Change here
● Modify jpegfiles

2016-11-24 9TSEA44: Computer hardware – a system on a chip

9

wbm

wbs FSM

Address generation
● We want to transfer block by

block (8x8)
● Address generator must

konw format (width, height)
of image

2016-11-24 10TSEA44: Computer hardware – a system on a chip

testbild.raw

2016-11-24 23:45

State diagram
2016-11-24 11TSEA44: Computer hardware – a system on a chip

In this state we wait until the
program tells us that it has
read the result of the transform
by writing to the control
register.

The DMA accelerator has to
release the bus regularly so
that other components can
access it. Do it for every line
you read. When we finish the
first block, we start the DCT
accelerator.

The DMA module is not
doing anything.

Same as WAITREADY except that
we go to the IDLE state when
done.

The DMA module is
fetching an 8x8 block.
Once the block is fetched
we go to the WAITREADY
state and start the DCT
transform.

A measurement: make sim_jpeg
2016-11-24 12TSEA44: Computer hardware – a system on a chip

Copy 16 words
from SDRAM to DCT (DMA)

DCT

Copy 32 words
from DCT to SDRAM

2016-11-24 23:45

A closer look at the DMA
2016-11-24 13TSEA44: Computer hardware – a system on a chip

Release bus for
m0, m1, m2

 If CPU is waiting it will
get the bus

W
B

PKMC

DCT

CPU

UART

ETH

Monitor
SDRAM

Clinux
(kernel + filesystem)
 webserver
 tftp
 testbild.raw

0

1

2

32

66

1

0 -

DCT => Memory (Software)
2016-11-24 14TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

A hint

●

2016-11-24 15TSEA44: Computer hardware – a system on a chip

DMAN DCTQN

HuffmanN

DMAN+1 DCTQN+1

HuffmanN+1

DMAN DCTQN

HuffmanN

DMAN+1 DCTQN+1

HuffmanN+1

DMAN+2 DCTQN+2

readN
readN+1

How long time do these blocks take?

readN readN+1

Burst Read

●

2016-11-24 16TSEA44: Computer hardware – a system on a chip

M S
cti

bte

2016-11-24 23:45

Burst cycle types
2016-11-24 17TSEA44: Computer hardware – a system on a chip

Burst access
● Note: Only the SRAM memory controller i the Leela

memory controller has burst support
– It is a graphics controller not used in our lab setup

2016-11-24 18TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

Changes in the slave
2016-11-24 19TSEA44: Computer hardware – a system on a chip

wb_adr[3:2]

wb_adr[31:4]

local address counter

wb_dat_o[31:0]

+1

Why not write DMA? (acc -> memory)
2016-11-24 20TSEA44: Computer hardware – a system on a chip

W
B

PKMC

DCT

CPU

UART

ETH

Monitor

SDRAM

0

1

2

32

6
6

1

0 -

// This the main encoding loop
void encode_image(void)
{
 int i;
 int MCU_count = width*height/DCTSIZE2;
 short MCU_block[DCTSIZE2];

 for(i = 0; i < MCU_count; i++)
 {
 forward_DCT(MCU_block);
 encode_mcu_huff(MCU_block);
 }
}

1) I/O is on 0x90, 0x91, …, 0x99
 other addr to PKMC

2) Noncacheable data mem addr >= 0x8000_0000,
 SDRAM 0x0, SRAM 0x2000_0000 or 0xc000_0000
2) MCU_block must be in noncacheable area
3) Skip MCU_block, let encode_mcu_huff read from acc

2016-11-24 23:45

Testbenches
2016-11-24 21TSEA44: Computer hardware – a system on a chip

Spear,Chris:
System Verilog
for verification.
Springer

Bergeron,Janick:
Writing testbenches
using System Verilog.
Springer

DUT

Testbench

Testbenches
2016-11-24 22TSEA44: Computer hardware – a system on a chip

Like an FSM
(same as DUT)
• complicated to design
• hard to test timing
• hard to test flow

Like High-Level Software
(very different from DUT)
• easy to design
• easy to test timing
• easy to test flow

2016-11-24 23:45

An example: A TB for your design
2016-11-24 23TSEA44: Computer hardware – a system on a chip

DUT

Driver

JPEG AX

Wishbone
BFM

TesterHi-level
tester

slave

Mem

master

clk
rst

Testbench: top level
2016-11-24 24TSEA44: Computer hardware – a system on a chip

module jpeg_top_tb();
 logic clk = 1'b0;
 logic rst = 1'b1;
 wishbone wb(clk,rst), wbm(clk,rst);

 initial begin
 #75 rst = 1'b0;
 end

 always #20 clk = ~clk;

 // Instantiate the tester
 tester tester0();

 // Instantiate the drivers
 wishbone_tasks wb0(.*);

 // Instantiate the DUT
 jpeg_top dut(.*);
 mem mem0(.*);
endmodule // jpeg_top_tb

2016-11-24 23:45

Testbench: Hi-level tester
2016-11-24 25TSEA44: Computer hardware – a system on a chip

program tester();
 int result = 0;
 int d = 32'h01020304;

 initial begin

 for (int i=0; i<16; i++) begin
 jpeg_top_tb.wb0.m_write(32'h96000000 + 4*i, d); // fill inmem
 d += 32'h04040404;
 end

 jpeg_top_tb.wb0.m_write(32'h96001000, 32'h01000000); // start ax

 while (result != 32'h80000000)
 jpeg_top_tb.wb0.m_read(32'h96001000,result); // wait for ax

 for (int j=0; j<8; j++) begin
 for (int i=0; i<4; i++) begin // print outmem
 jpeg_top_tb.wb0.m_read(32'h96000800 + 4*i + j*16,result);
 $fwrite(1,"%5d ", result >>> 16);
 $fwrite(1,"%5d ", (result << 16) >>>16);
 end
 $fwrite(1,"\n");
 end
 end
endprogram // tester

Testbench: mem
2016-11-24 26TSEA44: Computer hardware – a system on a chip

module mem(wishbone.slave wbm);
 logic [7:0] rom[0:2047];
 logic [1:0] state;
 logic [8:0] adr;
 integer blockx, blocky, x, y, i;

 initial begin
 // A test image, same as dma_dct_hw.c
 for (blocky=0; blocky<`HEIGHT; blocky++)
 for (blockx=0; blockx<`WIDTH; blockx++)
 for (i=1, y=0; y<8; y++)
 for (x=0; x<8; x++)
 rom[blockx*8+x+(blocky*8+y)*`PITCH] = i++; // these are not wishbone cycles
 end

 assign wbm.err = 1'b0;
 assign wbm.rty = 1'b0;

 always_ff @(posedge wbm.clk)
 if (wbm.rst)
 state <= 2'h0;
 else
 case (state)
 2'h0: if (wbm.stb) state <= 2'h1;
 2'h1: state <= 2'h2;
 2'h2: state <= 2'h0;
 endcase

 assign wbm.ack = state[1];

 always_ff @(posedge wbm.clk)
 adr <= wbm.adr[8:0];

 assign wbm.dat_i = {rom[adr], rom[adr+1],
 rom[adr+2], rom[adr+3]};
endmodule // mem

2016-11-24 23:45

DMA? Easy!
2016-11-24 27TSEA44: Computer hardware – a system on a chip

…
// Init DMA-engine
 jpeg_top_tb.wb0.m_write(32'h96001800, 32'h0);
 jpeg_top_tb.wb0.m_write(32'h96001804, ?);
 jpeg_top_tb.wb0.m_write(32'h96001808, ?);
 jpeg_top_tb.wb0.m_write(32'h9600180c, ?);
 jpeg_top_tb.wb0.m_write(32'h96001810, ?); // start DMA engine

 for (int blocky=0; blocky<`HEIGHT; blocky++) begin
 for (int blockx=0; blockx<`WIDTH; blockx++) begin
 // Wait for DCTDMA to fill the DCT accelerator
 result = 0;
 while (?) // wait for block to finish
 jpeg_top_tb.wb0.m_read(32'h96001810, result);

 $display("blocky=%5d blockx=%5d", blocky, blockx);

 for (int j=0; j<8; j++) begin
 for (int i=0; i<4; i++) begin
 jpeg_top_tb.wb0.m_read(32'h96000800 + 4*i + j*16, result);
 $fwrite(1,"%5d ", result >>> 16);
 $fwrite(1,"%5d ", (result << 16) >>>16);
 end
 $fwrite(1,"\n");
 end

 jpeg_top_tb.wb0.m_write(?); // start next block
 end
 end
 …

wishbone_tasks.sv
2016-11-24 28TSEA44: Computer hardware – a system on a chip

28

 // ******************************
 task m_read(input [31:0] adr,
 output logic [31:0] data);
 begin

 @(posedge wb.clk);
 wb.adr <= adr;
 wb.stb <= 1'b1;
 wb.we <= 1'b0;
 wb.cyc <= 1'b1;
 wb.sel <= 4'hf;

 @(posedge wb.clk);
 #1;

 while (!oldack) begin
 @(posedge wb.clk);

 #1;
 end

 wb.stb <= 1'b0;
 wb.we <= 1'b0;
 wb.cyc <= 1'b0;
 wb.sel <= 4'h0;

 data = olddat;
 end
 endtask // m_read

 // ******************************
 task m_write(input [31:0] adr,
 input [31:0] dat);
 // similar to m_read
 endtask // m_write

endmodule // wishbone_tasks

module wishbone_tasks(wishbone.master wb);
 int result = 0;

 reg oldack;
 reg [31:0] olddat;

 always_ff @(posedge wb.clk) begin
 oldack <= wb.ack;
 olddat <= wb.dat_i;
 end

m_read wb

m_write wb

adr

adr

data

dat

• May/may not consume time
• May/may not be synthable
• Do not contain always/initial
• Do not return values. Pass via output

2016-11-24 23:45

Race conditions
2016-11-24 29TSEA44: Computer hardware – a system on a chip

always_ff @(posedge clk) begin
 b <= a;
end

always_ff @(posedge clk) begin
 c <= b;
end

b+ = a b = b+

c+ = b c = c+

Threads executing
in parallel

in
no particular order

 cycles

Race conditions
2016-11-24 30TSEA44: Computer hardware – a system on a chip

always_ff @(posedge clk) begin
 count = count + 1;
end

always_ff @(posedge clk) begin
 $write(”count=%d\n”, count);
end

always_ff @(posedge clk) begin
 count <= count + 1;
end

always_ff @(posedge clk) begin
 $write(”count=%d\n”, count);
end

count = count +1

print count

count+ = count +1

print count

count = count+

 cycles cycles

2016-11-24 23:45

Hm...
2016-11-24 31TSEA44: Computer hardware – a system on a chip

initial begin
 @(posedge clk);
 stb <= 1;

 @(posedge clk);

 while (ack == 0)
 @(posedge clk);

 stb <= 0;
end

stback

always_ff @(posedge clk)
 case (ack)
 0: if (stb)
 ack <= 1;
 1: ack <= 0;
 endcase;

stb

ack

TB

DUT

Read ack
1
stb+ = 0

Read ack 1
ack+ = 0

stb = 0

ack = 0

Nonblocking assignment (<=)
=> no race condition
Blocking assignment (=)
 => race condition

program block
● Purpose: Identifies verification code
● A program is different from a module

– Only initial blocks allowed
– Executes last
– (module -> clocking/assertions -> program)
– No race situation in previous example!

2016-11-24 32TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

Hm...
2016-11-24 33TSEA44: Computer hardware – a system on a chip

@(posedge clk);
stb <= 1;

@(posedge clk);
#1;
while (oldack == 0) begin
 @(posedge clk);
 #1;
end
stb <= 0;

DUT (module)

stb

ack

TB (program)

always_ff @(posedge clk)
 case (ack)
 0: if (stb) ack <= 1;
 1: ack <= 0;
 endcase;

stb

ack

oldack

oldack

#1#1

Clocking block
SystemVerilog adds the clocking block that identifies clock signals, and capture the timing and
synchronization requirements of the blocks being modeled.

A clocking block assembles signals that are synchronous to a particular clock, and makes their
timing explicit.

The clocking block is a key element in cycle-based methodology, which enables users to write
testbenches at a higher level of abstraction. Rather than focusing on signals and transitions in
time, the test can be defined in terms of cycles and transactions.

 Possible to simulate setup and hold time

2016-11-24 34TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

Clocking block
2016-11-24 35TSEA44: Computer hardware – a system on a chip

interface wishbone(input clk,rst);
 wire stb,ack;

 clocking cb @(posedge clk);
 input ack;
 output stb;
 endclocking // cb

 modport tb (clocking cb,
 input clk,rst);

endinterface // wishbone

module tb();
 logic clk = 1'b0;
 logic rst = 1'b1;

 // instantiate a WB
 wishbone wb(clk,rst);

 initial begin
 #75 rst = 1'b0;
 end

 always #20 clk = ~clk;

 // Instantiate the DUT
 jpeg_top dut(.*);

 // Instantiate the tester
 tester tester0(.*);
 mem mem0(.*);
endmodule // jpeg_top_tb

Clocking block
2016-11-24 36TSEA44: Computer hardware – a system on a chip

program tester(wishbone.tb wb);

 …

 initial begin
 for (int i=0; i<3; i++) begin
 wb.cb.stb <= 0;
 ##1;
 wb.cb.stb <= 1;
 while (wb.cb.ack==0)
 ##1;
 end
 end
endprogram // tester

module jpeg_top(wishbone wb);
 reg state;

 assign wb.ack = state;

 always_ff @(posedge wb.clk)
 if (wb.rst)
 state <= 1'b0;
 else if(state)
 state <= 1'b0;
 else if (wb.stb)
 state <= 1'b1;
endmodule // jpeg_topstb

ack

2016-11-24 23:45

A complex testbench
(from Spear: SV for verification)

2016-11-24 37TSEA44: Computer hardware – a system on a chip

DUT

Driver
WB cycle

Agent
Read testbild.raw

Assertions Monitor
WB cycle

Score-
board

Checker
Compute DCT+Q

Functional
coverage

Object Oriented Programming
● SV includes OOP
● Classes can be defined

– Inside a program
– Inside a module
– Stand alone

2016-11-24 38TSEA44: Computer hardware – a system on a chip

2016-11-24 23:45

Cross coverage
2016-11-24 39TSEA44: Computer hardware – a system on a chip

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

OOP
2016-11-24 40TSEA44: Computer hardware – a system on a chip

program class_t;

 class packet;
 // members in class
 integer size;
 integer payload [];
 integer i;
 // Constructor
 function new (integer size);
 begin
 this.size = size;
 payload = new[size];
 for (i=0; i < this.size; i ++)
 payload[i] = $random();
 end
 endfunction
 // Task in class (object method)
 task print ();
 begin
 $write("Payload : ");
 for (i=0; i < size; i ++)
 $write("%x ",payload[i]);
 $write("\n");
 end
 endtask

 // Function in class (object method)
 function integer get_size();
 begin
 get_size = this.size;
 end
 endfunction
 endclass

 packet pkt;

 initial begin
 pkt = new(5);
 pkt.print();
 $display ("Size of packet %0d",
 pkt.get_size());
 end

endprogram

2016-11-24 23:45

What is an assertion?
● A concise description of [un]desired behavior

2016-11-24 41TSEA44: Computer hardware – a system on a chip

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

Assertions
2016-11-24 42TSEA44: Computer hardware – a system on a chip

Tom Fitzpatrick, SystemVerilog for VHDL Users, DATE'04

2016-11-24 23:45

Assertions
● Assertions are built of

1. Boolean expressions

2. Sequences

3. Properties

4. Assertion directives

2016-11-24 43TSEA44: Computer hardware – a system on a chip

Sequential regular expressions
● Describing a sequence of events
● Sequences of Boolean expressions can be described with

a specified time step in-between
● ##N delay operator
● [*N] repetition operator

2016-11-24 44TSEA44: Computer hardware – a system on a chip

sequence s1;
 @(posedge clk) a ##1 b ##4 c ##[1:5] z;
endsequence

2016-11-24 23:45

Properties
● Declare property by name
● Formal parameters to enable property reuse
● Top level operators

not desired/undesired
disable iff reset
|->, |=> implication

2016-11-24 45TSEA44: Computer hardware – a system on a chip

property p1;
disable iff (rst)

x |-> s1;
endproperty

Assertion Directives
● assert – checks that the property is never violated
● cover – tracks all occurrences of property

a1: assert p1 else $display(”grr”);

2016-11-24 46TSEA44: Computer hardware – a system on a chip

property s2a;
 @(posedge clk) disable iff (rst)
 $rose(stb) |-> ##[0:16] $rose(ack);
endproperty

a_s2a:assert property (s2a) else
 $display(" (%0t)(%m) Delayed ack on addr %h",
 $time, adr);

2016-11-24 23:45

Coverage
● Code coverage (code profiling)

– reflects how thorough the HDL code was exercised
● Functional Coverage (histogram binning)

– perceives the design from a user's or a system
point of view

– Have you covered all of your typical scenarios?
– Error cases? Corner cases? Protocols?

● Functional coverage also allows relationships,
– ”OK, I've covered every state in my state machine,

but did I ever have an interrupt at the same time?
When the input buffer was full, did I have all types
of packets injected? Did I ever inject two errorneous
packets in a row?”

2016-11-24 47TSEA44: Computer hardware – a system on a chip

Coverage
2016-11-24 48TSEA44: Computer hardware – a system on a chip

// DUT With Coverage
module simple_coverage();

logic [7:0] addr;
logic [7:0] data;
logic par;
logic rw;
logic en;

// Coverage Group
covergroup memory @ (posedge en);
 address : coverpoint addr {
 bins low = {0,50};
 bins med = {51,150};
 bins high = {151,255};
 }
 parity : coverpoint par {
 bins even = {0};
 bins odd = {1};
 }
 read_write : coverpoint rw {
 bins read = {0};
 bins write = {1};
 }
endgroup

memory mem = new();

// Task to drive values
task drive (input [7:0] a, input [7:0] d,
 input r);
 #5 en <= 1;
 addr <= a;
 rw <= r;
 data <= d;
 par <= ^d;
 $display ("@%2tns Address :%d data %x,
 rw %x, parity %x",
 $time,a,d,r, ^d);
 #5 en <= 0;
 rw <= 0;
 data <= 0;
 par <= 0;
 addr <= 0;
 rw <= 0;
endtask

// Testvector generation
initial begin
 en = 0;
 repeat (10) begin
 drive ($random,$random,$random);
 end
 #10 $finish;
end

endmodule

2016-11-24 23:45

Report
2016-11-24 49TSEA44: Computer hardware – a system on a chip

@ 5ns Address : 36 data 81, rw 1, parity 0
@15ns Address : 99 data 0d, rw 1, parity 1
@25ns Address :101 data 12, rw 1, parity 0
@35ns Address : 13 data 76, rw 1, parity 1
@45ns Address :237 data 8c, rw 1, parity 1
@55ns Address :198 data c5, rw 0, parity 0
@65ns Address :229 data 77, rw 0, parity 0
@75ns Address :143 data f2, rw 0, parity 1

ModelSim says:COVERGROUP COVERAGE:
--
Covergroup Metric Goal/ Status
 At Least
--
 TYPE /simple_coverage/memory 44.4% 100 Uncovered
 Coverpoint memory::address 33.3% 100 Uncovered
 covered/total bins: 1 3
 bin low 9 1 Covered
 bin med 0 1 ZERO
 bin high 0 1 ZERO
 Coverpoint memory::parity 50.0% 100 Uncovered
 covered/total bins: 1 2
 bin even 9 1 Covered
 bin odd 0 1 ZERO
 Coverpoint memory::read_write 50.0% 100 Uncovered
 covered/total bins: 1 2
 bin read 9 1 Covered
 bin write 0 1 ZERO

TOTAL COVERGROUP COVERAGE: 44.4% COVERGROUP TYPES: 1

Report
generator:

Cross coverage
2016-11-24 50TSEA44: Computer hardware – a system on a chip

Tom Fitzpatrick, SystemVerilog for VHDL
Users, DATE'04

2016-11-24 23:45

SV enhanced scheduling
2016-11-24 51TSEA44: Computer hardware – a system on a chip

Active
(design)

Observed
(assertions)

Reactive
(testbench)

timeslot n timeslot n+1

Constrained randomization
2016-11-24 52TSEA44: Computer hardware – a system on a chip

program rc;

class Bus;
 rand bit[31:0] addr;
 rand bit[31:0] data;
 constraint word_align {addr[1:0] == 2'b0;
 addr[31:24] == 8'h99;}
endclass // Bus

 initial begin
 Bus bus = new;
 repeat (50) begin

 if (bus.randomize() == 1)
 $display ("addr = 0x%h data = 0x%h\n",

 bus.addr, bus.data);
 else
 $display ("Randomization failed.\n");

 end
 end
endprogram // rc

2016-11-24 23:45

Parallel threads
2016-11-24 53TSEA44: Computer hardware – a system on a chip

fork fork fork

join join_any join_none

An example-sketch
● WB arbitration test

– Instantiate 4 wishbone_tasks

2016-11-24 54TSEA44: Computer hardware – a system on a chip

program tester2();
 …
 initial begin
 …
 fork
 begin // 2
 for (int i; i<100; i++)
 jpeg_top_tb.wb2.m_write(32'h100, 32’h0);
 end
 …
 begin // 6
 for (int i; i<100; i++)
 jpeg_top_tb.wb6.m_write(32'h20000000, result);
 end
 …

 join
 …
 end
endprogram

W
B

PKMC

DCT

UART

ETH

Monitor
SDRAM

Clinux
(kernel + filesystem)
 webserver
 tftp
 testbild.raw

0

1

2

32

6
6

1

0 -

wb2

wb0

wb1

wb6

2016-11-24 23:45

www.liu.se

2016-11-24 23:45

